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Abstract— Within the framework of European Space Agency 

(ESA) activities, several campaigns were carried out in the last 
decade with the purpose of exploiting the capabilities of multi-
frequency Synthetic Aperture Radar (SAR) data to retrieve snow 
information. This paper presents the results obtained from the 
ESA SnowSAR airborne campaigns, carried out between 2011 and 
2013 on boreal forest, tundra and alpine environments, selected as 
representative of different snow regimes. The aim of this study was 
to assess the capability of X and Ku band SAR in retrieving the 
snow parameters, namely Snow Depth (SD) and Snow Water 
Equivalent (SWE). The retrieval was based on Machine Learning 
(ML) techniques and, in particular, of Artificial Neural Networks 
(ANN). ANN have been selected among other ML approaches 
since they are capable to offer a good compromise between 
retrieval accuracy and computational cost. Two approaches were 
evaluated, the first based on the experimental data (data driven) 
and the second based on data simulated by the Dense Medium 
Radiative Transfer (DMRT). The data driven algorithm was 
trained on half of the SnowSAR dataset and validated on the 
remaining half. The validation resulted in a correlation coefficient 
R ≃ 0.77 between estimated and target SD, a root-mean-square 
error (RMSE) ≃ 13 cm, and bias = 0.03 cm. ANN algorithms 
specific for each test site were also implemented, obtaining more 
accurate results, and the robustness of the data driven approach 
was evaluated over time and space.  

The algorithm trained with DMRT simulations and tested on 
the experimental dataset was able to estimate the target parameter 
(SWE in this case) with R=0.74, RMSE =34.8 mm and bias=1.8 
mm. The model driven approach had the twofold advantage of 
reducing the amount of in-situ data required for training the 
algorithm and of extending the algorithm exportability to other 
test sites. 

 
Index Terms — SnowSAR, Snow Depth, Snow Water 

Equivalent, SAR, Artificial Neural Networks, DMRT-QMS 
model. 
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I. INTRODUCTION 

DESPITE the urgent need of an accurate characterization 
of snow cover for climate, hydrological and meteorological 
reasons, the existing observation systems are unable to provide 
detailed information of snow at the spatial and temporal 
resolution and accuracy required by stakeholders and users.  

In-situ systems are unable to provide spatially distributed and 
frequent measurements for wide regions of the globe [1] and the 
possibility of monitoring snow from space is still limited by the 
absence of sensors able to measure key snow parameters at the 
required temporal and spatial resolution. Indeed, while the 
snow cover extent is routinely observed by multispectral 
sensors (e.g. [2]), the microwave satellite radiometers are the 
only instruments currently operating at the appropriate 
frequencies for retrieving information on snow mass at global 
scale (e.g. [3-6]). These sensors, although characterized by 
good coverage and temporal revisiting, are hampered by the 
spatial resolution which is in the order of tens of kilometres. 
Conversely, the Synthetic Aperture Radar (SAR), which could 
be suitable for snow mass monitoring at high spatial resolution, 
are in fact limited by the poor revisiting. Most important, the 
frequency bands on board of the current satellites, namely L, C 
and X bands, are not the optimal, and SAR sensors at higher 
frequencies would be better suited for this scope.  

Nevertheless, some examples of Snow Depth (SD) and Snow 
Water Equivalent (SWE) retrieval using SAR can be found in 
literature. Among the others, Gunerussen et al. [7] attempted 
the retrieval by using a delta-K technique on interferometric 
synthetic aperture radar (InSAR) by utilizing the presence of 
scatterers in two images with and without snow cover. Pettinato 
et al. [8] exploited the Artificial Neural Networks to estimate 
SWE from Cosmo Sky-MED X band SAR. Finally, Leinss et 
al. [9, 10] applied differential interferometry to polarimetric 
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SAR data at X band from TerraSAR-X. Although the most part 
of the scientific community agrees in considering the C-band 
SAR not suitable for SD/SWE monitoring, the mapping of SD 
in the Northern Hemisphere mountains by using Sentinel-1 has 
been recently proposed by Lievens et al. [11]. This study can be 
regarded as one of the first attempts to apply a retrieval 
methodology based on SAR data at global scale. 

The CoReH2O (Cold Regions Hydrology High-resolution 
Observatory) satellite mission, candidate for the European 
Space Agency (ESA) 7th Earth Explorer [12] aimed to address 
these issues by providing timely information on SWE over land 
at a resolution of few hundred of meters. The sensor envisaged 
for CoReH2O was a dual polarization, dual frequency SAR at 
X (9.6GHz) and Ku (17.25GHz) bands. To demonstrate the 
CoReH2O retrieval concept, ESA developed the SnowSAR 
airborne SAR simulating the satellite sensor [13-14]. Between 
2010 and 2013, experimental campaigns have been carried out 
in several sites in Northern Finland, Austrian Alps, and 
Northern Canada.  

Although a comprehensive analysis of the entire dataset was 
not provided yet, SnowSAR data collected in specific test areas 
were already analysed in previous works [15-20, 23]. In [20], a 
retrieval approach based on a parametrized implementation of 
the BIContinuous Dense Media Radiative Transfer Model (Bic-
DMRT) [21-22] was applied to SnowSAR data collected both 
in Finland and Canada. In [23], the SWE retrieval from 
SnowSAR data was attempted for Finland test area by 
minimizing the difference between simulated and measured 
backscatter, as a function of SWE and the effective snow grain 
size (RE). The backscattering was simulated by a semi-
empirical radiative transfer (RT) model.  

In this study, SnowSAR acquisitions from all test sites have 
been compared with in situ measurements of snow parameters, 
with the aim of exploiting the capability of these frequencies in 
estimating SD and SWE. Based on the results of the sensitivity 
analysis, the retrieval of both SD and SWE has been then 
attempted with an algorithm based on the Artificial Neural 
Networks (ANN). With the increasing computational power of 
recent computers, Machine Learning (ML) in general, and 
ANN in particular, gained an exponentially increased 
consideration for solving a wide range of problems [24]. Since 
the late 80’s, the ANN capabilities of approximating nonlinear 
relationships and solving a variety of mathematical problems 
were largely proven [25-26]. Several examples of ANN 
applications to remote sensing of hydrological parameters can 
be found in literature. In particular, ANN applications to SAR 
and microwave radiometers for the retrieval of surface 
parameters are shown in [27-32]. A few ANN applications for 
the retrieval of SWE from SAR data can be also found [8]. With 
respect to other Machine Learning (ML) techniques, the ANN 
have proven to be able to offer a good compromise between 
retrieval accuracy and computational cost [30]. This study 
pointed out the ANN capability of exploiting the synergy of 
frequencies and polarizations of SnowSAR acquisitions to 
improve the retrieval with respect to the algorithms based on 

single frequency and single polarization. The possibility of 
training the ANN with experimental data (experimental driven 
training) and with data simulated by an electromagnetic 
forward model (model driven training) have been both 
evaluated. To this scope, the model simulations have been 
based on the Dense Medium Radiative Transfer (DMRT) 
Theory with the Quasi Crystalline approximation of densely 
packed Sticky spheres (DMRT-QMS) [33-34].  

The paper is structured as follows: a synthetic description of 
the experimental campaigns and datasets is provided in section 
II, and the sensitivity analysis of SnowSAR data to SD is 
presented in section III. Both the data driven and the model 
driven retrieval algorithms are described in Section IV and their 
results are presented in section V, where a retrieval based on 
single frequency is also shown. Finally, the obtained results are 
discussed in section VI, focusing on the effectiveness of the 
proposed approach.  

II. SNOWSAR DATASET 
SnowSAR is a side looking, dual polarized (VV/VH), SAR 

instrument designed to operate from small airplanes. In the 
framework of CoReH2O preparatory experiments, some flight 
campaigns have been carried out between 2010 and 2013 using 
SnowSAR in several sites in Northern Finland, Austrian Alps 
and Northern Canada. The main information about the 
SnowSAR campaigns is summarized in this section, for a 
complete description, see the detailed documentation of each 
campaign [15-16, 35-36]. 

The purpose of the SnowSAR campaigns was to gather 
information on the backscattering properties of snow-covered 
terrain and to demonstrate the CoReH2O retrieval concept. 
SnowSAR was flown in Sodankylä, Northern Finland for a 
single test flight in 2011 and a total of ten flights during the 
winter 2011-2012. The Sodankylä site represents a typical 
northern boreal forest environment, consisting of a mosaic of 
coniferous-dominated forests, wetlands and lakes [16]. 
Additional acquisitions considered in this study took place over 
a tundra site (Saariselka). Over the Austrian Alps, three flight 
campaigns were performed between November 2012 and 
February 2013 over three sites located in different elevation 
zones, namely Leutasch, representing an Alpine valley with 
cultivated meadows at 1100 m above sea level, Rotmoos, a 
narrow valley above the tree-line covered alpine grassland, 
bogs, debris and moraines at elevations between 2250 and 2400 
m, and Mittelbergferner, a glacier extending from 2500 m to 
3550 m in elevation. In Canada a total of two missions were 
flown in March and April 2013, over a site in Trail Valley 
Creek, near Inuvik, Northwest Territories, Canada. Trail Valley 
Creek, located at the Northern edge of the Boreal forest, is 
representative of the tundra environment and snow regime.  

The SD measured during the experiments ranged between 0 
and <150 cm for both Finland and Canada and from 0 to 280 
cm for Alps. Fig. 1 shows the SD distribution for each test area. 



 
At a flight altitude of 1200 meters, the SnowSAR swaths 

span approximately 400 meters in range and up to several 
kilometers in the flight direction, while the calibrated and 
geocoded backscattering coefficient (σ0) are provided at a 
spatial resolution of 2 and 10 meters. The instrument calibration 
was performed by a combination of internal calibration, corner 
reflector targets installed along flight paths, and cross-
calibration with space-borne instruments [14].  

The SnowSAR dataset is publicly available: the calibrated 
and geocoded σ0 it can be requested through the ESA data 
portal (https://earth.esa.int/web/guest/campaigns).   

Simultaneously with flights, in-situ snow measurements 
were performed in each test site: The majority of data consisted 
of snow depth (SD) punctual measurements sampled along 
transects at a minimum interval of 100 m. Measurements of 
snow profile were also carried out, including vertical profiles of 
snow density, temperature, hardness, wetness, grain size and 
shape. SWE measurements were available for a subset of points 
in Finland and Canada areas [15, 16] and from the snow pit 
measurements of the Alpine test sites [17]: the snow density 
derived from the ratio SWE/SD was in the range 100 – 450 
Kg/m3.  

TABLE I. COMPOSITION OF THE DATABASE: N. OF POINTS PER TEST SITE 
IN EACH TEST AREA 

Test 
area 

SD range 
(cm) 

Test site n. of data  
(4 σ0 +SD) 

n. of data  
(4 σ 0 +SWE) 

Alps 0 - 280 
Leutasch 87 - 
Mittelbergferner 105 - 
Rotmoos 419 - 

Finland 0 - <150 Sodankylä 12400 390 
Saariselka 3585 50 

Canada 0 - <150 TVC 24081 405 
 Total 40677 845 

 
For the scopes of this study, the SnowSAR acquisitions have 

been co-located with in-situ data by relating each measurement 
to the 3x3 average of SnowSAR acquisitions centered in the 
measurement point. The resulting dataset was composed of 
≃40,000 sets of 4 σ0 values (X and Ku bands, VV and VH pol.) 
and corresponding SD in situ. The total amount of data for each 

test site is summarized in Table I: most of the data were 
collected in Canada and Finland where SD did not exceed 150 
cm, while SD values up to 280 cm were recorded in the alpine 
dataset, which represents the 1.5% of the entire dataset.  

III. DATA ANALYSIS 

A. Backscattering vs. incidence angle 

The σ0 signature depends on the wide range of local 
incidence angles on which SAR data have been acquired 
(between 25° and 65°). The angular dependence was found to 
be particularly important for the Alpine test area, in which the 
Local Incidence Angle (LIA) differ significantly from the 
nominal angle because of the complex topography. In this area, 
the backscatter exhibited a decreasing trend when LIA 
increases, with a correlation coefficient R up to -0.59 for X data 
in VV polarization. The expected decrease of σ° for increasing 
LIA was confirmed in the Finnish test sites, characterized by 
almost flat topography, with R ≃ -0.33.  

 

Fig. 2: The behavior of the SnowSAR backscattering vs. LIA before 
and after normalization for Canada test site. 

 

 

a) 
 

b) 

 

c) 

Fig. 1. Distribution of the in-situ SD measurements collected during the experiments in a) Alps, b) Finland, c) Canada. 
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The Canada dataset exhibited an unexpected increasing trend 
of σ° with increasing LIA. Such increase depended on the use 
of the nominal incidence angle instead of LIA for computing 
σ0. The backscattering computation was therefore revised to 
include a correction factor expressed as sin(𝜗𝜗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

sin(𝜗𝜗𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙)
. 

The trends of σ0 as a function of LIA before and after 
applying the correction are displayed in Fig. 2: for simplicity, 
figure refers to X band in VV polarization, but analogous results 
have been obtained for both frequencies and polarizations.  

The correlation coefficients between σ° and LIA are 
summarized in Table II, the R values listed for Canada refer to 
the LIA-corrected σ0.  

TABLE II. R VALUES OF THE CORRELATION BETWEEN SNOWSAR DATA 
AND LOCAL INCIDENCE ANGLE (LIA) 

  R 
  X VV X VH Ku VV Ku VH 
Alps -0.59 -0.3 -0.44 -0.22 
Finland -0.24 -0.1 -0.33 -0.02 
Canada -0.62 -0.54 -0.33 -0.59 

 

B. Backscattering vs. SD 

Considering the entire SnowSAR dataset, the σ0 values at 
single frequency and polarization were found poorly correlated 
to the in-situ SD and SWE. This result agrees with previous 
studies [23] and it depends on the temporal and spatial 
variability of other snow parameters that affect the relationship 
σ° - SD, i.e.: snow density, grain radius and stratigraphy, as well 
as on the medium (soil, vegetation, debris, glacier ice) 
underlying snow.  

The σ° sensitivity to SD was evaluated for each test area, 
revealing site-dependent relations: for example, at the 
Mittelbergferner glacier, σ° at both frequencies and 
polarizations is negatively correlated to SD between Mission 1 
(M1, 21 Nov. 2012) and Mission 3 (M3, 21 Feb. 2013), 
because, between the two dates, the strong signal from the 
coarse-grained frozen firn and glacier ice is attenuated by the 
increase of seasonal snow [36]. At Leutasch instead, the relation 
between σ° and SD is positive due to the strong backscattering 
signal of coarse-grained snow caused by melt-freeze 
metamorphosis of snow over the smooth ground [36].  

Some increase of backscattering with SD was found for 
Finland and Canada test sites: slightly higher correlation was 
found at X band for the deeper SD in Finland and at Ku band 
for the shallower SD in Canada, respectively. However, the R 
values are too low for drawing any conclusion about. 

TABLE III. CORRELATION BETWEEN SNOWSAR σ° AND SD: R VALUES 
FOR EACH AREA AT EACH FREQUENCY AND POLARIZATION.  

 R 
 X VV X VH Ku VV Ku VH 

Leutasch 0.81 0.73 0.65 0.73 
Mittelbergferner -0.6 -0.02 -0.6 -0.39 
Rotmoos -0.05 0.05 -0.43 -0.36 
Finland 0.22 0.34 0.07 0.12 
Canada ≃ 0 0.12 0.19 0.27 
All 0.15 0.26 0.1 0.26 

The R values obtained at each frequency and polarization for 
each test site are listed in Table III. The sensitivity analysis was 
repeated for the data collected in the central incidence angles 
(35° to 45°), in order to reduce the effect of LIA on the σ0 
sensitivity to SD. However, the results did not point out any 
significant increase of correlation.  

IV. ANN RETRIEVAL ALGORITHMS 
The sensitivity analysis clearly confirmed that a general 

relationship between σ° at single frequency and polarization 
and SD cannot be established on the entire dataset, since many 
other factors concur to the total signal measured by SnowSAR. 
The spatial and temporal variations of soil background and of 
the other snow parameters, have indeed a dominant effect, 
which was capable of masking the σ° sensitivity to the target 
parameter. However, the effect of each soil and snow parameter 
on the measured σ° depended on frequency and polarization. 
Therefore, the synergy of available polarizations and 
frequencies was exploited in this study, with the aim of 
improving the retrievals. 

For this scope, the SD/SWE retrievals were based on Feed-
Forward Multi-Layer Perceptron ANN (FF-MLP), because of 
their intrinsic capability of make synergic use of multiple 
inputs.  

FF-MLP are composed of one or more hidden layers with a 
certain number of neurons (also called perceptrons), that are 
fully interconnected. The inputs are transferred from a layer to 
another by the transfer function: linear, hyperbolic tangent 
sigmoid (tansig), and logistic sigmoid (logsig) are the most 
popular transfer functions. The ANN training is based on the 
so-called Back Propagation learning rule (BP), which attempts 
to minimize the mean square error (MSE) between the target 
value and the training output. Such minimization is obtained by 
adjusting the weights and offsets to inhibit or excite the 
connections: this is achieved iteratively during the training. The 
ANN implementation proposed in this study was based on the 
Matlab® Neural Networks toolbox. 
A SD retrieval algorithm based on ANN has been therefore 
implemented and validated using the available dataset. The 
main constraint for obtaining good accuracies with ANN 
algorithms, is represented by the statistical significance of the 
training set, which shall be representative of all the surface 
conditions that can be encountered in the operational use of the 
algorithm [37]. ANNs are prone to outliers: it means that the 
predicted output can be affected by large errors if the input data 
are outside the range of values that ANN learned to manage 
during the training. This ANN characteristic could some 
limitations to the algorithm exportability, in this case to the 
possibility to use the already trained ANN for predicting SD in 
other test areas. 

Two different strategies have been evaluated, training the 
algorithm with a subset of the experimental data available 
(experimental driven approach), and with data simulated by 
electromagnetic models (model driven approach), the latter 
aimed at overcoming any possible limitation to the algorithm 
exportability. Indeed, by employing simulated data in the 
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training, the ANN acts for retrieving the target parameter by 
inverting the electromagnetic model, similarly to other 
physically based algorithms, but with less constraints due to the 
approximations needed for an analytical inversion [38].  

 

 
Fig. 3. Iterative process for defining the “optimal” ANN 

Algorithm inputs were the SnowSAR acquisitions at both 
frequencies and polarizations and the corresponding LIA, in 
order to account for the backscattering dependence on the local 
topography. Considering that the number of SWE 
measurements was not sufficient for implementing the data 
driven approach, the algorithm outputs was SD in the case of 
data driven approach and SWE in the case of model driven 
approach. In both experimental and model driven approaches, 
the optimal ANN for the given problem was defined by 
applying the systematic search described in [39]. The process 
increased iteratively the number of neurons and hidden layers 
and tests the three transfer functions available with the scope of 
preventing the overfitting and the underfitting. The flowchart of 
Fig. 3 shows how the systematic process has been adapted to 
this study. The optimal ANN resulting from the iterative 
process was composed by two hidden layers of 14 neurons each, 
the transfer function was tansig. 

A. Experimental driven approach 

The three SnowSAR datasets summarized in Table I were 
divided in two equal parts: the first part was used for training 
the algorithm and the other part for validating the results, by 
predicting SD from the SnowSAR data not considered for the 
training. Both interleaved and random samplings have been 

considered for dividing the data in training and validation 
subsets: a negligible difference in the obtained results was 
found if using one or another sampling. In order to verify the 
statistical independence between training and validation, the 
correlation of σ° values from the two datasets corresponding to 
the same (or closest) SD vas evaluated. The obtained R < 0.3 at 
both frequencies and both polarizations confirmed the scarce 
correlation between training and validation datasets.  

The training set was further divided in three parts, the first 
one served to iteratively define the weights and biases by 
applying the BP rule and the other two for having independent 
tests at each training iteration. In this study the percentages of 
data in the three subsets were 60%, 20% and 20% respectively.  

B. Dedicated algorithms 

The site dependent sensitivity of σ° to SD suggested that 
dedicated algorithms for Alps, Finland and Canada could 
improve the retrieval. Therefore, three ANN – one for each area 
– have been implemented and trained according to the 
processing described in the previous section, but considering 
only data from each test site. The optimal ANN for the Finland 
and Canada datasets was composed by two hidden layers of 10 
to 12 neurons, respectively. Almost equivalent results were 
obtained by using logsig or tansig transfer functions. Depending 
on the small amount of data for the alpine dataset (611 data 
samples), the ANN for SnowSAR data on Alps was limited to 
one hidden layer of 7 neurons, in order to have a numbers of 
ANN parameters to be defined lower than the dimension of the 
training set (50% of the data available), thus preventing the 
problem to be indeterminated. In this way, it was possible to 
keep a subset of ≃ 300 points not involved in the training for 
validating the results. 

C. Model driven approach. 

An implementation of the Dense Media Radiative Transfer 
(DMRT) theory, based on the Quasi-Crystalline Approximation 
(QCA) of Mie scattering of densely packed Sticky spheres [33, 
34] was considered for implementing the model driven 
approach. The model, called DMRT-QMS, was developed by a 
team of the University of Washington (UW), United States and 
it is available online [40].  

The input parameters required by DMRT-QMS are 
frequency, incidence angle, snow parameters, namely 
thickness, grain diameter, snow density, and stickiness. The 
latter parameter accounts for the backscatter properties of 
natural snow packs, referring to distinct differences in sintering 
and clustering associated with different grain types and 
metamorphic states [41]. The contribution of soil under snow to 
the total backscattering was simulated by the Oh model [42]. 

Besides the observation angle, the model requires as inputs 
the soil permittivity and the surface roughness: the latter is 
expressed with a simplified parametrization based on Root 
Mean Square of the heights (rms). DMRT-QMS was run by 
considering an equivalent “single layer” snowpack, with 
average values of the input density and equivalent grain 
diameter, since detailed information on snow stratigraphy was 
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not available for the most part of dataset. 
The DMRT-QMS was first calibrated on the experimental 

dataset: for this scope, the subset of 845 data, derived from the 
Finnish and Canadian in-situ measurements carried out during 
the experimental campaigns, was considered: this subset 
includes also the snow density information, which is a 
mandatory input for DMRT-QMS. The dataset was divided in 
two parts by random sampling: the first part served to adjust the 
model parameters and the second to validate the results. The 
model parameters were calibrated via RMSE minimization 
between simulated and measured backscattering, as a function 
of equivalent grain diameter, stickiness and soil surface 
roughness. For the minimization, the two snow parameters were 
kept free in the range 0.1 - 2.6 mm and 0.1 – 0.4, respectively, 
while the roughness parameter was kept free in the range 0.1 ÷2 
cm. The range defined for grain size included the typical 
variability of snow grain dimensions [43, 44], while the one for 
stickiness was set according to the DMRT-QMS theory and 
previous studies [41, 45]. The other DMRT-QMS inputs were 
derived from the experimental dataset: in particular, SD ranged 
between 5 and 150 cm, and snow density ranged between 100 
and 450 450 Kg/m3. Finally, the soil under snow was assumed 
frozen, with permittivity ε = 5.13+0.45i at X band and 
ε  = 4.91+0.49i at Ku band, according to the Mironov model 
[46]. The DMRT-QMS inputs for this minimization are 
summarized in Table IV. 

TABLE IV. LIST OF THE DMRT-QMS MODEL INPUTS 

bands X and Ku (SnowSAR) 
Incidence angle Between 25° and 55°, from dataset 

n. of snow layers One “single layer” equivalent 
Snow density  100 ÷450 kg/m3, from in-situ measures 

Equivalent grain diameter 0.3 ÷ 2.6 mm, from RMSE minimization. 
Stickiness 0.1 ÷ 0.4, from RMSE minimization. 

Snow temperature Fixed = -10°C (small effect on simulations) 
Snow depth 5 ÷ 150 cm, from in-situ measurements 

Soil roughness (rms) 0.1 ÷2 cm from RMSE minimization 
Soil dielectric constant ε= 5.13+0.45i at X band and ε =4.91+0.49i 

at Ku band, according to Mironov model 

The consistency between model simulations and 
experimental data has been verified by direct comparison: Fig. 
4 shows the simulated backscattering as a function of 
SnowSAR measurements at both frequencies and polarizations, 
while the main statistics of the comparison between model 
simulations and SnowSAR data are summarized in Table V. 

TABLE V. R, RMSE AND BIAS OF THE COMPARISON BETWEEN DMRT 
SIMULATIONS AND SNOWSAR ACQUISITIONS. 

 R RMSE (dB) Bias (dB) 

X VV 0.99 0.2 ≃ 0 
X VH 0.99 0.4 -0.02 
Ku VV 0.91 0.7 -0.01 
Ku VH 0.86 1.2 0.07 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 4. DMRT-QMS simulations vs. SnowSAR measurements: a) XVV, b) XVH, c) KuVV and d) KuVH 
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Fig. 5. Generation of the training and validation sets for the model driven approach. 

 
The slightly worse result obtained at Ku band, can be 

attributed to the validity limits of the Oh model, which was used 
to simulate the soil background σ°. Indeed, the simplified 
parametrization for soil roughness works well for the lower 
microwave frequencies e.g. L- and C- bands; however, it is less 
accurate at higher frequencies and in particular at Ku-band [42]. 
At the latter frequency indeed, the modeled soil σ° shows an 
increase of several dB when the soil rms increases from 0 to 0.5 
cm. Then σ° saturates almost completely, becoming insensitive 
to higher rms. This effect is only attenuated by the snow cover, 
but it is not cancelled. Therefore, in the range 0÷0.5 cm, small 
rms variations can lead to large variations of the modelled σ°. 
Conversely, in the range 0.5÷2 cm (or greater), the soil 
contribution at Ku band becomes insensitive to the surface 
roughness and it only depends on the observation angle. This 
odd sensitivity to the soil rms leads to some dispersion of 
simulated σ° values at Ku band, that affects the overall result. 

After the minimization, the PDF distribution of all the inputs 
was computed and the pseudo random dataset was generated. 
Finally, the DMRT-QMS simulations were iterated using the 
pseudo random inputs to generate the training set. The process 
is summarized in the flowchart of Fig. 5. 

The dataset obtained by iterating the model simulations was 
considered for training a new ANN, that was subsequently 
validated on the remaining 50% of the experimental dataset. 
The architecture definition followed the same iterative process 
of the experimental driven training, and the ANN inputs were 
the same; however, considering the availability of SWE data for 
this subset, the output parameter was SWE instead of SD. 

V. RESULTS 

A. Experimental driven approach 

The algorithm validation was obtained by applying the 
trained ANN to the validation set, composed of the 50% data 
not used in the training. Fig. 6 shows the SD estimated by the 
ANN algorithm as a function of the measured SD values in the 
validation dataset.  

The corresponding statistics were: regression coefficient R ≃ 
0.77, RMSE ≃ 13 cm, and a negligible bias. The clusters of data 
belonging to each dataset are evidenced by different colors. The 
result shown in FIG. 6 demonstrates that the algorithm, trained 

on ≃ 20.000 sets of backscattering vectors and corresponding 
SD, was able to estimate SD in the range 0-280 cm on the 
remaining ≃ 20.000 sets not involved in the training. 

1) Validation of the dedicated algorithms 

The results obtained by the three dedicated algorithms are 
shown in Fig. 7 a) for Alps, b) for Finland and c) for Canada, 
respectively. In Fig. 7 b) and c) the results are represented as 
density plot, with color bar proportional to the occurrence of 
points. With respect to the results of the general ANN, the 
correlation increased for all the areas and RMSE decreased for 
Canada and Alps. The validation for Alps dataset was carried 
out on a small dataset (≃ 300 points), depending on the small 
amount of data available for the alpine dataset (611 data 
samples). The main results of the dedicated algorithms are 
summarized in Table VI. 

TABLE VI. R, RMSE AND BIAS OF THE “DEDICATED” ALGORITHMS  

 R RMSE Bias 
Alps 0.9 25.6 3.4 
Finland 0.86 10.1 0.03 
Canada 0.7 10.5 0.03 

 

 
Fig. 6. ANN validation results as: a) scatterplot of the ANN 

estimated SD against target values. 
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a) 

 

a) 
 

b) 

 

c) 

Fig. 7. Validation of the “dedicated” ANNs: a) scatterplot estimated vs. target for the Alpine dataset, b) density plot estimated vs. target for the 
Finland dataset and c) density plot estimated vs. target for the Canada dataset. In b) an c) the colorbar is proportional to the occurrence of data. 
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f) 

Fig. 8. Snow depth maps: a) and b) Sodankylä test area, mission 3 and 5, c) and d) Canada test area, mission 2 and 3, e) Mittelbergferner mission 2 
and f) Rotmoos mission 3. Areas with forest cover fraction > 25% for Sodankylä are masked in gray color. Each figure shows on the left the SD map 
generated by the ANN using SnowSAR data. Superimposed on the map are the SD values from the in-situ measurements, represented at circles with 

the same color scale of the map surrounded by a red line. The right top panel shows the distribution of SD values in the map and the right bottom 
panel shows the corresponding distribution of in-situ SD.  

 

2) SD maps 

To evaluate the generalization capabilities of the proposed 
method, the dedicated algorithms have been applied to the 
entire SnowSAR images, for generating output maps of SD at 
the same resolution of the input SnowSAR data.  

Six examples of snow depth maps derived from SnowSAR 
flights on Sodankylä (Finland), Trail Valley Creek (Canada), 
Mittelbergfernel(Alps) and Rotmoos (Alps) are represented in 
Fig. 8. The color bar is proportional to SD, maps of Sodankylä 
were masked (gray color) for forests with cover fraction higher 
than 25%, according to [47].  

Each figure shows on the left the SD map generated by the 
ANN using SnowSAR data. The distribution of SD values 
estimated by the ANN is represented in the right top panel and 
the right bottom panel shows the corresponding distribution of 
in-situ SD. Superimposed on the maps are the SD values from 
the in-situ measurements, represented with the same colour 
scale surrounded by a red line. The agreement between 
estimated and measured SD can be qualitatively deducted from 
the comparison of the SD values estimated by the ANN and the 
values measured along the transects, although in some cases the 
transects were not covered by the SnowSAR paths.  

The maps were validated with the in-situ measurements 

available at each date, obtaining 0.76 ≤ R ≤ 0.8 and 6 cm ≤ 
RMSE ≤ 10 cm, for the Canada and Finland test areas, 0.85 < 
R < 0.9 and 0.2<RMSE <25 cm for the Alp test area. The SD 
distribution outside the validation points agreed with the 
qualitative reports from the experimental campaigns.  

3) Algorithm robustness over time: Finland test case 

In order to point out any site dependencies of the data driven 
approach, the algorithm exportability was evaluated over time 
by focusing on the Sodankylä test area (Finland). The available 
dataset was divided in two consecutive subsets: the first (SUB1) 
was composed of data from mission 1 to mission 5, 
corresponding to a significant evolution of the snow conditions, 
with an SD increase from 0 to 90 cm. The second subset (SUB2) 
was instead composed of data from mission 6 to mission 10, 
corresponding to relatively stable snow conditions until the 
beginning of snow melting.  

The retrieval has been attempted by implementing two 
different ANNs: the first trained with the SUB1 dataset and 
tested on SUB2 and the second trained with SUB2 and tested 
on SUB2.  

The ANN trained with SUB2 exhibited a slightly lower 
correlation coefficient (R ≃ 0.66) but smaller error (RMSE ≃ 9 
cm) when tested on SUB1, while the other ANN shown higher 
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correlation (R ≃ 0.74) but also higher error (RMSE ≃ 11.5 cm) 
with some saturation for highest SD values that were not 
properly represented in the training. This analysis confirmed 
that, if the training is representative enough of the snowpack 
properties, the ANN can be successfully applied to other 
datasets (in our case to another period of the same winter 
season). 

 
a) 

 
b) 

Fig. 9. a) validation on mission 1-5 of the ANN trained with 
missions 6-10, b) validation on mission 6-10 of the ANN 

trained with missions 1-5. 

4) Algorithm robustness over space: Canada test case 

The algorithm robustness was also verified over space by 
applying the ANN trained with the Finland dataset to the 
Canada dataset. The obtained results (R= 0.65 – RMSE≃12 cm) 
confirmed the feasibility of the proposed approach, provided 
again that the training was sufficiently representative of the 
entire set of observed snowpack conditions. 

 
Fig. 10. Validation of the “Finland” ANN on the Canada dataset. 

5) Single channel algorithm 

The feasibility of retrieving SD by only using the Ku band 
channel was also evaluated. For this scope, another ANN has 
been implemented and trained according to the strategy 
described in section IV.A, but considering only the Ku band 
data at both polarizations. The validation result is shown in FIG. 
11. 

As expected, the decrease in accuracy is evident, especially 
in terms of correlation (R≃0.73), while the RMSE of about 14 
cm is not far from the result of the general algorithm shown in 
Fig. 6. This analysis confirms the contribution of X band in 
improving the retrieval, thus suggesting the effectiveness of the 
approach proposed for the CoReH2O mission. 

 
Fig. 11. Validation of the “single frequency” ANN using Ku band 

data only. 
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a) 

 
b) 

 
c) 

Fig. 12. Validation of the “model driven” approach: a) SWE estimated by the ANN trained with DMRT-QMS plotted as a function of the target 
values from in-situ, b) result of the ANN trained and tested with experimental data, c) result of the ANN trained and tested with simulated data. 

B. Model driven approach: ANN trained with DMRT-QMS 

The validation of ANN trained with DMRT-QMS 
(ANNDMRT) is shown in Fig. 12 a), where the SWE estimated 
by the ANN is represented as a function of the SWE from in-
situ. As a term of comparison, the result obtained by training 
the ANN with the same subset of SnowSAR measurements 
corresponding to the DMRT-QMS simulations (ANNSnowSAR) is 
shown in Fig. 12 b): the main statistics are R ≃ 0.74, RMSE ≃ 
35 mm and bias ≃ 2 mm for ANNDMRT and R ≃ 0.82, RMSE ≃ 
29 mm and bias < -0.7 mm for ANNSnowSAR. Finally, Fig. 12 c) 
shows the result when ANN is trained and tested with DMRT-
QMS simulated data. Fig. 12 demonstrates that the accuracy of 
the model driven implementation in estimating SWE is not far 
from the one of experimental driven implementation, especially 
in terms of RMSE. The lower correlation can be attributed to 
the light disagreement between SnowSAR data and DMRT-
QMS simulations at Ku band (Fig. 4), since Fig. 12 c) 
demonstrates that the ANN is able to invert DMRT-QMS 
almost exactly.  

The obtained results suggest the effectiveness of the “model 
driven” training. Improvements in the input parametrization of 
DMRT-QMS and, especially, a better characterization of the 
soil surface contribution to the total backscatter, can further 
improve the retrieval accuracy. Concerning the Alpine datasets, 
although some studies pointed out a successful capability of 
DMRT-QMS in simulating data collected on Alps [8], other 
authors [48] reported model inaccuracies that could represent 
an issue to address in some specific cases.  

VI. DISCUSSION 

This study had the twofold purpose of analysing the 
SnowSAR dataset as a whole and to provide a methodology for 
SWE/SD retrieval based on X + Ku SAR acquisitions, along 
with proofs of its effectiveness. In this respect, two retrieval 
approaches, data driven and model driven have been proposed. 
The validation of data driven approach was conducted on a 
relevant part of the dataset (50%) not involved in the training 

and demonstrated the capability of the ANN algorithms to 
retrieve SD from the SnowSAR acquisitions, with R ≃ 0.77. 
The correlation analysis pointed out that training and validation 
datasets were almost independent (R<0.3), thus ensuring the 
representativeness of the validation results.  

The robustness of the algorithm was also evaluated over time 
and over space considering some subsets of the entire dataset: 
the results confirmed the effectiveness of the data driven 
approach. 

The model driven retrieval based on DMRT-QMS obtained 
similar accuracies (R≃0.74). This method had the double 
advantage of reducing the amount of experimental data required 
for training the algorithm and of filling in the gaps of 
experimental datasets. The model simulations allowed 
obtaining a training set representative of a variety of observed 
conditions that the SnowSAR data cannot reproduce, although 
collected in extremely different environmental conditions.  

The results shown in section V.B suggest that by improving 
the DMRT-QMS input parametrization and especially by better 
accounting for the soil background contribution, the model 
driven approach can provide even more accurate retrievals. 
Further investigations should therefore focus on improving the 
DMRT-QMS input parametrization and modeling of soil 
background. Such improvement could be not always 
straightforward, especially for specific cases as the high Alpine 
terrain and glacier test sites of AlpSAR. Moreover, 
opportunities to perform multi-year ANN tests should be 
investigated, to verify the applicability of training data from 
preceding years for retrievals in consecutive seasons and, in 
conclusion, to further assess the reliability of this method for 
implementing an unsupervised inversion algorithm aimed at 
estimating SD and SWE from multifrequency SAR 
acquisitions. In this respect, it should be mentioned that 
updating the training with new data is quite straightforward, as 
it does not imply any change of the algorithm structure, so that 
the proposed approach can be updated for extending the ANN 
applicability to new datasets, hopefully collected by future 
satellite sensors. 
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VII. CONCLUSIONS 

The analysis of the SnowSAR backscattering (σ°) sensitivity 
to SD, carried out on the entire dataset in dry snow conditions, 
pointed out some increase of the measured σ° when SD 
increases at both frequencies and polarizations. However, the 
spatial and temporal variations of microstructure and density of 
snow, and soil characteristics, may have a dominant effect on 
such sensitivity.  

The way that each soil and snow parameter affected the 
measured σ0 changes depended on frequency and polarization: 
therefore, the retrieval problem was addressed by exploiting the 
synergy of available polarizations and frequencies.  

In this respect, the potential of machine learning applications 
and in particular of Artificial Neural Networks (ANN) was 
evaluated: ANN have been selected among other retrieval 
techniques because they can combine easily input data from 
different sources, thus being particularly suitable for combining 
the two frequencies and two polarizations of SnowSAR in the 
same retrieval algorithm. 

This study focused on SD retrieval because the amount of 
SWE data available from the in-situ measurements was not 
sufficient for completing successfully the ANN training and 
testing operations, while a large number of SD samples were 
available from manual measurements. It is well known indeed 
that ANN need of large training sets for obtaining reliable 
retrievals. In this case, the algorithm was trained on 50% of the 
entire dataset (i.e. over the three tests site) of SnowSAR 
acquisitions and corresponding in situ SD measurements, while 
the remaining 50% of data was used for validating the trained 
ANN, by predicting SD from SnowSAR acquisitions not 
involved in the training.  

The results obtained with this approach, with a correlation 
coefficient R ≃ 0.77 between estimated and target SD, a root-
mean-square error (RMSE) ≃ 13 cm, and a bias negligible, 
suggested that ANN are an effective instrument for addressing 
the retrieval. The investigated possibility of training the 
algorithm with data simulated by the Dense Medium Radiative 
Transfer (DMRT), also resulted in comparable accuracies (R ≃ 
0.74 and RMSE ≃35 mm of SWE) with the twofold advantage 
of reducing the amount of in-situ data needed for the training, 
and extending the algorithm exportability to other test sites.  
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