21 research outputs found

    Symbolic and Visual Retrieval of Mathematical Notation using Formula Graph Symbol Pair Matching and Structural Alignment

    Get PDF
    Large data collections containing millions of math formulae in different formats are available on-line. Retrieving math expressions from these collections is challenging. We propose a framework for retrieval of mathematical notation using symbol pairs extracted from visual and semantic representations of mathematical expressions on the symbolic domain for retrieval of text documents. We further adapt our model for retrieval of mathematical notation on images and lecture videos. Graph-based representations are used on each modality to describe math formulas. For symbolic formula retrieval, where the structure is known, we use symbol layout trees and operator trees. For image-based formula retrieval, since the structure is unknown we use a more general Line of Sight graph representation. Paths of these graphs define symbol pairs tuples that are used as the entries for our inverted index of mathematical notation. Our retrieval framework uses a three-stage approach with a fast selection of candidates as the first layer, a more detailed matching algorithm with similarity metric computation in the second stage, and finally when relevance assessments are available, we use an optional third layer with linear regression for estimation of relevance using multiple similarity scores for final re-ranking. Our model has been evaluated using large collections of documents, and preliminary results are presented for videos and cross-modal search. The proposed framework can be adapted for other domains like chemistry or technical diagrams where two visually similar elements from a collection are usually related to each other

    Math Information Retrieval using a Text Search Engine

    Get PDF
    Combining text and mathematics when searching in a corpus with extensive mathematical notation remains an open problem. Recent results for math information retrieval systems on the math and text retrieval task at NTCIR-12, for example, show room for improvement, even though formula retrieval appears to be fairly successful. This thesis explores how to adapt the state-of-the-art BM25 text ranking method to work well when searching for math and text together. Symbol layout trees are used to represent math formulas, and features are extracted from the trees, which are then used as search terms for BM25. This thesis explores various features of symbol layout trees and explores their effects on retrieval performance. Based on the results, a set of features are recommended that can be used effectively in a conventional text-based retrieval engine. The feature set is validated using various NTCIR math only benchmarks. Various proximity measures show math and text are closer in documents deemed rel- evant than documents deemed non-relevant for NTCIR queries. Therefore it would seem that proximity could improve ranking for math information retrieval systems when search- ing for both math and text. Nevertheless, two attempts to include proximity when scoring matches were unsuccessful in improving retrieval effectiveness. Finally, the BM25 ranking of both math and text using the feature set designed for formula retrieval is validated by various NTCIR math and text benchmarks

    Dowsing for Math Answers: Exploring MathCQA with a Math-aware Search Engine

    Get PDF
    Solving math problems can be challenging. It is so challenging that one might wish to seek insights from the internet, looking for related references to understand more about the problems. Even more, one might wish to actually search for the answer, believing that some wise people have already solved the problem and shared their intelligence selflessly. However, searching for relevant answers for a math problem effectively from those sites is itself not trivial. This thesis details how a math-aware search engine Tangent-L---which adopts a traditional text retrieval model (Bag-of-Words scored by BM25+ using formulas' symbol pairs and other features as "words''---tackles the challenge of finding answers to math questions. Various adaptations for Tangent-L to this challenge are explored, including query conversion, weighting scheme of math features, and result re-ranking. In a recent workshop series named Answer Retrieval for Questions on Math (ARQMath), and with math problems from Math StackExchange, the submissions based on these adaptations of Tangent-L achieved the best participant run for two consecutive years, performing better than many participating models designed with machine learning and deep learning models. The major contributions of this thesis are the design and implementation of the three-stage approach to adapting Tangent-L to the challenge, and the detailed analyses of many variants to understand which aspects are most beneficial. The code repository is available, as is a data exploration too built for interested participants to view the math questions in this ARQMath challenge and check the performance of their answer rankings

    数学情報アクセスのための数式表現の検索と曖昧性解消

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 渋谷 哲朗, 東京大学教授 萩谷 昌己, 東京大学准教授 蓮尾 一郎, 東京大学准教授 鶴岡 慶雅, 東京工業大学准教授 藤井 敦University of Tokyo(東京大学

    Effective Math-Aware Ad-Hoc Retrieval based on Structure Search and Semantic Similarities

    Get PDF
    Despite the prevalence of digital scientific and educational contents on the Internet, only a few search engines are capable to retrieve them efficiently and effectively. The main challenge in freely searching scientific literature arises from the presence of structured math formulas and their heterogeneous and contextually important surrounding words. This thesis introduces an effective math-aware, ad-hoc retrieval model that incorporates structure search and semantic similarities. Transformer-based neural retrievers have been adopted to capture additional semantics using domain-adapted supervised retrieval. To enable structure search, I suggest an unsupervised retrieval model that can filter potential mathematical formulas based on structure similarity. This similarity is determined by measuring the largest common substructure(s) in a formula tree representation, known as the Operator Tree (OPT). The structure matching is approximated by employing maximum matching of path-based structure features. The proposed structure similarity measurement can be tailored based on the desired effectiveness and efficiency trade-offs. It may consider various node types, such as operators and operands, and accommodate different numbers of common subtrees with varying weights. In addition to structure similarity, this unsupervised model also captures symbol substitutions through a greedy matching algorithm applied to the matched substructure(s). To achieve efficient structure search, I introduce a dynamic pruning algorithm to the problem of structure retrieval. The proposed retrieval algorithm efficiently identifies the maximum common subtree among formula candidates and safely eliminates potential structure matches that exceed a dynamic threshold. To accomplish this, three rank-safe pruning strategies are suggested and compared against exhaustive search baselines. Additionally, more aggressive thresholding policies are proposed to balance effectiveness with further speed improvements. A novel hierarchical inverted index has been implemented. This index is designed to be compatible with traditional information retrieval (IR) infrastructure and optimization techniques. To capture other semantic similarities, I have incorporated neural retrievers into a hybrid setting with structure search. This approach has achieved the state-of-the-art effectiveness in recent math information retrieval tasks. In comparison to strict and unsupervised matching, I have found that supervised neural retrievers are able to capture additional semantic similarities in a highly complementary manner. In order to learn effective representations in heterogeneous math contents, I have proposed a novel pretraining architecture that can improve the contextual awareness between math and its surrounding texts. This pretraining scheme generates effective downstream single-vector representations, eliminating the efficiency bottleneck from using multi-vector dense representations. In the end, the thesis examines future directions, specifically the integration of recent advancements in language modeling. This includes incorporating ongoing exciting developments of large language models for improved math information retrieval. A preliminary evaluation has been conducted to assess the impact of these advancements

    Ranked List Fusion and Re-Ranking With Pre-Trained Transformers for ARQMath Lab

    Get PDF
    This paper elaborates on our submission to the ARQMath track at CLEF 2021. For our submission this year we use a collection of methods to retrieve and re-rank the answers in Math Stack Exchange in addition to our two-stage model which was comparable to the best model last year in terms of NDCG’. We also provide a detailed analysis of what the transformers are learning and why is it hard to train a math language model using transformers. This year’s submission to Task-1 includes summarizing long question-answer pairs to augment and index documents, using byte-pair encoding to tokenize formula and then re-rank them, and finally important keywords extraction from posts. Using an ensemble of these methods our approach shows a 20% improvement than our ARQMath’2020 Task-1 submission

    Making Presentation Math Computable

    Get PDF
    This Open-Access-book addresses the issue of translating mathematical expressions from LaTeX to the syntax of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Sciences, Technology, Engineering, and Mathematics (STEM), LaTeX has become the de-facto standard to typeset mathematical formulae in publications. Since scientists are generally required to publish their work, LaTeX has become an integral part of today's publishing workflow. On the other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and visualize mathematics. However, existing LaTeX import functions in CAS are limited to simple arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the workflow of experimenting and publishing in the Sciences often includes time-consuming and error-prone manual conversions between presentational LaTeX and computational CAS formats. To address the lack of a reliable and comprehensive translation tool between LaTeX and CAS, this thesis makes the following three contributions. First, it provides an approach to semantically enhance LaTeX expressions with sufficient semantic information for translations into CAS syntaxes. Second, it demonstrates the first context-aware LaTeX to CAS translation framework LaCASt. Third, the thesis provides a novel approach to evaluate the performance for LaTeX to CAS translations on large-scaled datasets with an automatic verification of equations in digital mathematical libraries. This is an open access book

    Making Presentation Math Computable

    Get PDF
    This Open-Access-book addresses the issue of translating mathematical expressions from LaTeX to the syntax of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Sciences, Technology, Engineering, and Mathematics (STEM), LaTeX has become the de-facto standard to typeset mathematical formulae in publications. Since scientists are generally required to publish their work, LaTeX has become an integral part of today's publishing workflow. On the other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and visualize mathematics. However, existing LaTeX import functions in CAS are limited to simple arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the workflow of experimenting and publishing in the Sciences often includes time-consuming and error-prone manual conversions between presentational LaTeX and computational CAS formats. To address the lack of a reliable and comprehensive translation tool between LaTeX and CAS, this thesis makes the following three contributions. First, it provides an approach to semantically enhance LaTeX expressions with sufficient semantic information for translations into CAS syntaxes. Second, it demonstrates the first context-aware LaTeX to CAS translation framework LaCASt. Third, the thesis provides a novel approach to evaluate the performance for LaTeX to CAS translations on large-scaled datasets with an automatic verification of equations in digital mathematical libraries. This is an open access book

    Leveraging Formulae and Text for Improved Math Retrieval

    Get PDF
    Large collections containing millions of math formulas are available online. Retrieving math expressions from these collections is challenging. Users can use formula, formula+text, or math questions to express their math information needs. The structural complexity of formulas requires specialized processing. Despite the existence of math search systems and online community question-answering websites for math, little is known about mathematical information needs. This research first explores the characteristics of math searches using a general search engine. The findings show how math searches are different from general searches. Then, test collections for math-aware search are introduced. The ARQMath test collections have two main tasks: 1) finding answers for math questions and 2) contextual formula search. In each test collection (ARQMath-1 to -3) the same collection is used, Math Stack Exchange posts from 2010 to 2018, introducing different topics for each task. Compared to the previous test collections, ARQMath has a much larger number of diverse topics, and improved evaluation protocol. Another key role of this research is to leverage text and math information for improved math information retrieval. Three formula search models that only use the formula, with no context are introduced. The first model is an n-gram embedding model using both symbol layout tree and operator tree representations. The second model uses tree-edit distance to re-rank the results from the first model. Finally, a learning-to-rank model that leverages full-tree, sub-tree, and vector similarity scores is introduced. To use context, Math Abstract Meaning Representation (MathAMR) is introduced, which generalizes AMR trees to include math formula operations and arguments. This MathAMR is then used for contextualized formula search using a fine-tuned Sentence-BERT model. The experiments show tree-edit distance ranking achieves the current state-of-the-art results on contextual formula search task, and the MathAMR model can be beneficial for re-ranking. This research also addresses the answer retrieval task, introducing a two-step retrieval model in which similar questions are first found and then answers previously given to those similar questions are ranked. The proposed model, fine-tunes two Sentence-BERT models, one for finding similar questions and another one for ranking the answers. For Sentence-BERT model, raw text as well as MathAMR are used
    corecore