
  

 

 

Retrieval and Disambiguation of Mathematical Expressions  

for Mathematical Information Access 

  

 

 

 

 

 

 

 

 

 

Giovanni Yoko Kristianto 

 

	

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTokyo Repository

https://core.ac.uk/display/197128122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Retrieval and Disambiguation of Mathematical Expressions

for Mathematical Information Access

数学情報アクセスのための数式表現の検索と曖昧性解消

by

Giovanni Yoko Kristianto

クリスティアント　ギオヴァニ　ヨコ

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 9, 2016

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Akiko Aizawa 相澤彰子

Professor of Computer Science



ABSTRACT

Mathematical expressions are important for communication of scientific information,

for instance, to give formal definitions of concepts written in natural language. In this

dissertation, we propose a mathematical information access (MIA) system which can

help people access and understand math expressions in scientific documents. MIA has

been studied in the digital mathematics library and information retrieval communities for

searching for math expressions based on their token elements (e.g. identifiers, numbers,

and operators) and structures (e.g. fractions, scripting, and matrices). The major focus

of the existing work on MIA has been the development of algorithms to store the tree

representation of math expressions into a database. On the other hand, the descriptive

text of the math expression (hereinafter, we call it textual information) has not yet fully

exploited for MIA. The use of textual information has potential to improve the retrieval

performance of an MIA system and helps the MIA user understand the definitions of

math expressions.

This dissertation presents a framework of MIA that supports math search and math

understanding of the users by utilizing math structure and text similarities. We introduce

three core ideas which are essential for realizing MIA.

The first core idea in this dissertation is the development of a math information re-

trieval (MIR) system that exploits the structures and the textual information of math

expressions to allow effective search for mathematical knowledge. Following the conven-

tion of the current digital math library research community, we assume that a query is

given as the combination of math expressions and textual keywords. Our proposed math

search system takes advantage of multiple types of textual information to enable high-

recall and high-precision retrieval. An evaluation in NTICR-12 MathIR, a mathematics

information retrieval shared task, shows that our search system achieved the best perfor-

mance over other existing math search systems in retrieving highly relevant paragraphs

containing the users’ requested math expressions.

The second core idea in this dissertation is the enrichment of the textual information

of a math expression considering the relationships with other math expressions within

the same document. The motivation behind is that textual descriptions of the com-

ponent subexpressions or identifiers are useful to explain a complex math expression,

yet these descriptions may not be captured within the context of the target expression.

Therefore, to enrich the textual information of each math expression, while keeping its

capability to enable high precision search, we utilize the dependency relationships (e.g.

formulae-variables relationships) between math expressions. An evaluation shows that

this approach has a significant impact in improving search precision.

In addition to the development of math search system, this dissertation formulates

a task of determining the identity of math expressions in documents by linking these

expressions to their corresponding entities in knowledge base, such as Wikipedia. This

task is denoted as math entity linking (MEL). We propose a supervised learning based

approach using math related features, such as math and text similarities, as well as the



location and importance of the math expression within the document. Our evaluation

shows that the proposed approach can determine correct links for math expressions in a

higher precision than a straightforward application of an MIR system.

To conclude, this dissertation proposes the use of math structures and multiple types

of textual information incorporated with the dependency relationships between math

expressions to capture the semantics inherent in math expressions. The proposed math

search system shows the highest search performance among other four state-of-the-art

search systems. In addition, we propose a MEL module reliable enough to link math

expressions to their best non-null corresponding entities in knowledge base. Since math

expressions are essential part of scientific information, our proposed approach has an im-

portant implication for the applications of information access in a wide range of scientific

fields. Finally, this dissertation is a step towards enabling effective formula search and

formula browsing in digital library practices.
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Chapter 1

Introduction

1.1 Motivation

Mathematics plays a fundamental role in science, technology, and engineering.

As a consequence, scientific documents or publications frequently contain mathe-

matical knowledge, which is presented in the form of mathematical expressions or

formulae. These math expressions are essential for communicating information

in the scientific documents — for instance, to explain or define concepts writ-

ten in natural language. Regarding the number of documents containing math

expressions, there are 120,000 journal articles per year in pure/applied mathe-

matics In addition, there are 1,208,910 e-prints stored in arXiv1 up to November

2016. These include papers in the fields of Physics, Mathematics, Computer Sci-

ence, Quantitative Biology, Quantitative Finance, and Statistics. Furthermore, it

was estimated that the cumulative total of scholarly research articles in existence

passed 50 million in 2009 (Jinha, 2010) with a doubling time of 8-15 years (Larsen

and von Ins, 2010). In spite of the importance of math expressions and the large

number of documents containing them, current general-purpose search engines

such as Google cannot effectively locate math expressions contained in a scien-

tific document (Zanibbi and Blostein, 2012).

A mathematical information access (MIA) system is required to help people

effectively locate and understand math expressions contained in documents. In

this dissertation, we propose an MIA system that consists of two modules, namely

• Math Search, which allows people to search for math expressions in a

document collection.

• Math Entity Linking (MEL) for document browsing. A document

browser shows the user the document containing the requested math ex-

pressions. This browser is expected to be a reading assistant for the user
1https://arxiv.org/
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by providing information about math expressions contained in each docu-

ment. For this purpose, the MEL module attempts to link/ground math

expressions in the documents to their corresponding entities in a knowledge

base (which is Wikipedia in this dissertation).

Figure 1.1 illustrates the process of these two modules. For instance, a person

wants to know the applications of the concept of “information theoretic entropy,”

which is usually denoted by H(X). To do so, they specify the math expression

H(X) and “entropy” as the query. In response, the math search module of the

MIA system retrieves a ranked list of math expressions and their textual mean-

ings. These math expressions exist in the document collection that is indexed by

the MIA system prior to any user query. Once the person selects one of the re-

turned math expressions, the MIA system connects them with the document con-

taining the selected expression. Then, the MEL module of the MIA system iden-

tifies the math expressions in the document, i.e., D(P ||Q) =
∑

x∈S P (X)log P (x)
Q(x)

and H(X) = −
∑

x∈S P (X)logP (X). Subsequently, this module provides in-

formation about these expressions by linking each of them to the corresponding

entity in Wikipedia — for instance, the former expression to the Wikipedia article

of “Kullback–Leibler divergence” and the latter one to the “Entropy (information

theory).”

1.2 Objective and Challenge

This dissertation is dedicated to the development of an MIA system that includes

math search and MEL modules. This system is expected to enrich current digital

library practices by enabling mathematics-aware information retrieval (MIR) and

the grounding of mathematical knowledge in documents.

The main challenge when developing accurate math search and MEL modules

is to address the ambiguity inherent in math expressions. Most of the previous

work on math search systems attempted to capture the semantics of the math

expressions from their structures. They focused on establishing techniques to

index the structures of math expressions. However, we suggest that the ambi-

guity of math expressions cannot be solved by only capturing the structures of

the expressions. There are three characteristics of math expressions (Kohlhase

and Sucan, 2006) that we consider to be the cause of this ambiguity: (1) mathe-

matical notation is context-dependent (i.e., identical mathematical presentation

can represent multiple distinct mathematical objects), (2) different mathematical

notations may actually mean the same, and (3) certain variations in notation are

2
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Figure 1.1: Mathematical Information Access system

widely considered to be irrelevant.

We attempt to overcome these problems by capturing the meanings of math

expressions through their textual information. In this dissertation, we extract

two categories of textual information for each math expression in the document

collection, namely

• Textual information explaining the target math expression.

3



For instance, the mathematical expressions nPk, nPk, Pn,k, and P (n, k)

represent the same mathematical concept, namely k-permutations of n,

even though they have different representations. The availability of textual

information for each of these expressions is intended to assist the MIA

system to determine that these expressions refer to the same concept. In

this case, the textual information is expected to contain at least the key

term “permutation.”

• Textual information that explains the meaning of each of the symbols con-

tained in the target math expression.

For instance, the left-hand part of Fig. 1.2 indicates that the math expres-

sion Q
S may express the same quantity as Q

A , given that, in the examined

documents, Q has the same textual information (i.e., “total electric charge”)

in both expressions, and S and A can both be used to express “surface area”.

Thus, the textual information of S and A should also help disambiguate
Q
S and Q

A . Conversely, the right-hand part of Fig. 1.2 shows that the same

expression Q
S is used both for “surface charge density” and “superficial ve-

locity,” depending on whether Q represents the “total electric charge” or

“volume flow rate.” Again, the textual information of the sub-expression

Q helps to determine the meaning of the larger expression.

By doing so, we expect our search module to identify whether two math expres-

sions have the same meaning, and our MEL module can link each math expression

to the correct Wikipedia article.

1.3 Problem Statement

Even though we have already identified that the textual information of math

expressions and their constituent symbols will help us address the main chal-

lenge in developing an MIA system (i.e., ambiguity of math expressions), we

still need to determine how to extract this textual information and how to cap-

ture the dependency relationships, e.g., formulae-symbols relationships, between

math expressions. Moreover, for the math search module, we need to design an

effective technique to combine both the textual information and the information

regarding the structures of math expressions. Furthermore, for the MEL module,

we need to devise a strategy to precisely link math expressions to their corre-

sponding Wikipedia articles. As we will see, the information we use in the math

search module is not sufficient for constructing a reliable MEL module. Here, we

concisely describe the development process of our MIA system: (1) framework

4



Figure 1.2: Dependency between the meaning of a math expression and the
meanings of its constituent symbols. The left-hand part of the figure shows two
math expressions that have different representations, yet express the same math
concept. The right-hand part shows two math expressions that have the same
representation, but different meanings.

of mathematical search system, (2) utilizing dependency relationships between

mathematical expressions in mathematical search system, and (3) mathematical

entity linking.

1.3.1 Framework of Mathematical Search System

The main objective in the research of MIR is to have a math search system

capable of precisely retrieving math expressions relevant to users’ queries. There

are multiple aspects of a math search system that we need to consider during the

development process:

• Extraction of textual information of each math expression in the document

collection.

The most popular way to extract text related to a math expression is simply

by using all words found in the document or paragraph containing the

expression. However, this approach also introduced an issue. Since all

math expressions within the same paragraph or documents will have the

same textual information, it is difficult to identify the exact meaning of each

expression. To tackle this issue, we need to extract textual information that

is more precise in defining math expressions.

• Indexing of math expressions and their textual information.

Although textual information can be easily indexed using a current search

5



engine library, such as Lucene (The Apache Software Foundation, 2015a),

math expressions require a preprocessing step prior to indexing. We need

to extract the literals (identifiers, constants, and operators) and the sub-

structures of math expressions. We also have to consider the placement

of symbols in math expressions. All this extracted information about the

content and structure of each math expression is then indexed. This is ex-

pected to allow a flexible search, thus we can obtain retrieval results with

good recall.

• Scoring function for the ranking purpose.

A reliable scoring function is required to allow high-precision retrieval.

Since we may index several different types of information in our database,

we need to derive a scoring function that prevents a bias toward certain

types of information. Furthermore, we can incorporate a reranking tech-

nique as a post-processing tool.

Chapter 3 is dedicated to introducing our math search framework and describe

in detail how we set up each aspect of the search module.

1.3.2 Utilizing Dependency Relationships between Mathematical Ex-

pressions in Mathematical Search System

Textual information explaining a mathematical expression is usually obtained

from the text surrounding the expression. However, this surrounding text does

not always contain the explanation for the symbols that exist within the expres-

sion. This issue can be addressed by näıvely setting the surrounding text to have

a very wide window size. However, this risks including many words from the sur-

rounding text that do not necessarily explain the expression or the constituent

symbols. Therefore, instead of näıvely expanding the window size of the sur-

rounding text, we propose to capture the dependency relationships between each

math expression and its constituent sub-expressions in a document. For instance,

given three math expressions Q
A , Q, and A, we extract two dependency relation-

ships, i.e., between Q
A and Q, and between Q

A and A, as shown in Figure 1.2.

Subsequently, we can use the meanings (as captured in the surrounding text) of

Q and A to determine the meaning of the larger expression Q
A . In this disserta-

tion, we use the term “dependency graph” to refer to the set of all constituent

expressions and the set of ordered pairs showing individual dependencies.

In this dissertation, we extract the dependency graphs of math expressions

by examining only the presentation of each math expression. Since each doc-

6



ument will have its own dependency graph, three characteristics of math ex-

pressions (Kohlhase and Sucan, 2006) that cause ambiguity will not be critical

issues. Within a document, math expressions with the same visually rendered

form often have the same meaning. However, the opposite does not always hold.

Within a document, a mathematical concept is sometimes expressed by a nota-

tion with certain variations. For instance, the function f(x) may be defined as

f(x) = x + c and f(x) = x + 5 in a document. These expressions should be

related to one another, because both defined f(x).

In this dissertation, we propose a heuristic method for constructing depen-

dency graphs. We base our heuristic method on string matching between math

expressions, with five normalization steps applied to each expression prior to the

matching procedure. Our first objective in this task will be to measure how accu-

rate the proposed method is in extracting the dependency graphs. Our hypothesis

on this respect can be stated as:

Hypothesis 1 A combination of normalizing math expressions and applying

string matching between expressions can predict the existence of dependency re-

lationships between math expressions.

Further, this proposed dependency graph will allow us to enrich the textual

information of each indexed math expression without the need to expand the

window size of the surrounding text. Our second objective will be to evaluate

the effectiveness of the enriched textual information to improve the performance

of the math search systems. By doing so, we hypothesize that:

Hypothesis 2 The use of a dependency graph helps determine the meaning of

math expressions, thus improving the search results of math search systems.

We test the Hypotheses 1 and 2 in Chapter ?? and ??, respectively.

1.3.3 Linking Mathematical Expressions to Wikipedia

One of the challenges in developing an MEL system is shared with math search

systems, that is, the semantics of math expressions are often difficult to identify

from their surface level representation. Therefore, a solution that is effective for

math search systems would also be expected to work for an MEL system. How-

ever, there is a unique challenge that appears in MEL, but not in math searches:

math expressions in the Wikipedia articles that match a given math mention are

likely to be important in the containing Wikipedia articles. This challenge arises

because the nature of the task performed by MEL is to assign the Wikipedia title

7
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Figure 1.3: An example of a representative math expression in a Wikipedia ar-
ticle. There are two distinct math expressions, H(X) =

∑n
i=1 P (xi)I(xi) =

−
∑n

i=1 logbP (xi) and e. The former expression is more significant to the article
than the latter.

to mentions. Hence, we expect that, given a math mention, the MEL system

will return a Wikipedia article that contains math expression(s) similar to the

mention, and more importantly, of which the title precisely describes the math

mention.

We first investigate the performance of MEL by simply using the math search

technique in Chapter 5.6. To provide more accurate links, we attempt to capture

the importance of matching math expressions in their corresponding Wikipedia

articles. In a Wikipedia article, early sections, such as the summary, infobox,

introduction, and definition, hold explanations that are important to the concept

described by the article. Therefore, math expressions that appear in these early

sections are very likely significant to the article. In addition, each math expres-

sion in a Wikipedia article may be displayed either inline or in an equation-type

environment (i.e., it appears on its own line). Important math expressions are of-

ten displayed in equation-type environments, and less significant expressions are

displayed inline. Figure 1.3 illustrates an example of a representative/important

math expression H(X) =
∑n

i=1 P (xi)I(xi) = −
∑n

i=1 logbP (xi) in the Wikipedia

article entitled “Entropy (information theory).” This math expression is found

on the early section (i.e. “Definition”) and displayed in an equation-type envi-

ronment.

Our objective is to determine the best non-null Wikipedia article for each

math expression given the observation of common features, such as math and

text similarities, as well as the location and display of matching expression in the

8



article. Hence, our hypothesis can be stated as:

Hypothesis 3 A combination of math search features (math and text similari-

ties) and the importance feature, which is encoded from the location and display

of the matching math expression in the Wikipedia article, can predict a correct

link for each math mention.

1.4 Contribution

1.4.1 Framework of Mathematical Search System

We develop the framework of our math search module by introducing three granu-

larity levels of textual information (math, paragraph, and document) and combin-

ing them by first applying score normalization. Furthermore, we investigate the

impact of using cold-start weights obtained from multiple linear regression. These

methods will allow us to index multiple types of information in our databases,

and prevent a bias toward certain types of information during scoring. In addi-

tion, we apply unification as a post-processing tool in our search module. The

motivation is to ensure that math expressions that can be instantiated from the

query are ranked higher than those that cannot.

We evaluate our math search module in the NTCIR-12 MathIR task (Zanibbi

et al., 2016), and show a precision of 23.45% in relevant judgment and 48.28% in

partially relevant judgment. In this task, our proposed search system shows the

highest search performance among four other available systems.

1.4.2 Utilizing Dependency Relationships between Mathematical Ex-

pressions in Mathematical Search System

We next propose the concept of dependency graph between math expressions to

further improve the performance of our math search module. First, we introduce

a heuristic method to extract dependency graphs and evaluate its effectiveness

using manually annotated data. Our evaluation shows that the extraction method

delivers an accuracy of 86.74%.

Then, we validate the effectiveness of the dependency graph in enriching tex-

tual information related to math expressions and in improving the retrieval results

of math search module. Our experimental result shows that the use of the de-

pendency graph in the math search module increased the precision by 12.60%.

Furthermore, in the NTCIR-12 MathIR task, we record that the dependency

graph significantly improves the precision of our search module, i.e., a relative

improvement of up to 24.52%.
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1.4.3 Linking Mathematical Expressions to Wikipedia

The MEL module of our MIA system was developed by introducing a learning-

based approach that exploits our proposed dependency graph and utilizes several

features, such as math-level similarity, document-level similarity, math impor-

tance, and matching location. We encode the importance feature by applying

the Personalized PageRank algorithm to the dependency graph of the math ex-

pressions that appear in eachWikipedia article. We utilize two factors to establish

the preference vector, namely location and display of each math expression in the

article. We found that this proposed importance feature is capable of detecting

representative/important math expressions in Wikipedia articles.

In addition, to train and evaluate our approach, we construct a dataset

that is derived from a dataset released by the NTCIR-12 MathIR Wikipedia

task (Zanibbi et al., 2016). Our evaluation shows that the proposed approach

achieves 83.40% precision, outperforming the straightforward application of a

math search system (6.22%).

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows.

• Chapter 2 — Literature Review

We introduce several previous reports of work related to this dissertation.

This work can be classified into three categories: development of math

search systems, extraction of textual information related to math expres-

sions, and the entity-linking task.

• Chapter 3 — Framework of Mathematical Search System

In this chapter, we present the framework of our math search system in

detail. We explain the techniques that were used to encode math expres-

sions and the extraction of textual explanations for each math expression.

Subsequently, we present our approach in combining all the indexed infor-

mation for the searching purpose. Next, we describe the unification method

as a post-processing module. Then, we report the performance of our math

search system in the NTCIR-12 MathIR task.

• Chapter 4 — Utilizing Dependency Relationships between Math-

ematical Expressions in a Mathematical Search System

We discuss the extraction and impact of the dependency graph of mathe-

matical expressions in our math search system. We first explain the depen-
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dency graph of mathematical expressions. Then, we describe our proposed

heuristic extraction method and the application of the dependency graph in

math search systems. We evaluate the effectiveness of our heuristic method

in extracting dependency graphs of math expressions, and also examine the

impact of these dependency graphs on our math search system.

• Chapter 5 — Linking Mathematical Expressions to Wikipedia

We present our solution to the challenge of determining the identity of math

expressions in documents by linking these expressions to their corresponding

Wikipedia articles. We introduce a learning-based approach using common

features, such as math and text similarities, as well as the importance of

math expressions within the document. Further, we test our approach using

a dataset that is derived from a dataset released by NTCIR-12 MathIR

Wikipedia task.

• Chapter 6 — Discussion and Future Work

In this chapter, we discuss the limitations of our math search and math

entity linking modules. In addition, we present several future tasks and

potential directions in which to continue our investigation.

• Chapter 7 — Conclusion

Here we summarize our findings and their implications for the communi-

ties of mathematical information access, information retrieval, and entity

linking.
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Chapter 2

Literature Review

This chapter discusses previous work related to this dissertation which can be

summarized into four categories: formats of math expressions, development of

math search systems (including formula indexing, ranking function, and test col-

lections), textual information related to math expressions, and the entity linking

task.

2.1 Formats of Mathematical Expressions

There are several different formats for math expressions, including LATEX, ASCI-

IMath, OpenMath, and MathML. LATEX, ASCIIMath, and Presentation markup

of MathML are used to display math expressions. On the other hand, OpenMath,

and Content markup of MathML are used to convey mathematical meaning. Fig-

ure 2.1 shows a math expression expressed in several different formats.

2.1.1 LATEX

TEX/LATEX (Knuth, 1984; Lamport, 1994) is a typesetting markup language that

are popular within scientific community. One of the greatest strengths of TEX(and

later on, LATEX) is that it allows simple construction of math expressions. As

shown by the example in Fig. 2.1 , the markup codes in TEX/LATEX are repre-

sented by strings beginning with a backslash, e.g., \frac and \sqrt.

2.1.2 MathML

MathML (Ausbrooks et al., 2014) is a markup language for representing math

expressions. This format is recommended by the W3C Math Working Group

as a standard to describe math expressions. It is usually expressed in XML

syntax. An important aspect of MathML is that there are two types of markup:

Presentation markup and Content markup.
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LATEX ASCIIMath
\frac{\sqrt{a}}{2} sqrt(a) / 2

Presentation MathML Content MathML

<math>

<mfrac >

<msqrt>

<mi>a</mi>

</msqrt>

<mn>2</mn>

</mfrac >

</math>

<math>

<apply >

<divide/>

<apply>

<root/>

<ci>a</ci>

</apply>

<cn>2</cn>

</apply >

</math>

OpenMath

<OMOBJ>

<OMBIND >

<OMA>

<OMS cd="arith1" name="divide" />

<OMA>

<OMS cd="arith1" name="root" />

<OMV name="a" />

</OMA>

<OMI>2</OMI>

</OMA>

</OMBIND >

</OMOBJ>

Figure 2.1: Several different formats for representing a math expression
√
a
2

Presentation MathML

Presentation markup of MathML is used to describe the layout structure of math-

ematical notation. Compared to LATEX, this markup contains additional tags to

identify symbols types. The presentation elements of Presentation MathML are

divided into two classes, namely token elements and layout schemata. Token ele-

ments are intended to represent the smallest units of math notation which carry

meaning, e.g., individual symbols, function names, numbers, and labels. Mean-

while, layout schemata build expressions out of parts and can have only elements

as content. These are further divided into General Layout, Script and Limit,

Tabular Math, and Elementary Math schemata. All these MathML presentation

elements only suggest specific ways of rendering; a particular MathML renderer

is free to use its own rules.
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Content MathML

Content MathML provides an explicit encoding of the underlying mathematical

meaning of a math expression instead of its layout. The basic building blocks

of Content MathML expressions are numbers, identifiers, and symbols. This

markup uses the <apply> element to represent a function application.

2.1.3 ASCIIMath

MathML format is the best-known open markup format for representing math

expressions, because it has a mature specification, and also supports two types

of markup for different purposes. However, it may be inconvenient for people to

write math expressions using MathML format, because it needs to be expressed

in XML (or HTML) syntax.

ASCIIMath (Gray, 2007) overcomes this problem by providing an easy way to

produce MathML representation. People write math expressions using ACIIMath

markup, which is a simplified markup language, and then ASCIIMathML script

converts this ASCIIMath notation to MathML.

2.1.4 OpenMath

OpenMath (Buswell et al., 2004) has a strong relationship to MathML Content.

Both formats represent the semantics of math expressions. As shown in Fig. 2.1,

there is an obvious line-by-line similarity for the XML structures and token el-

ements. The main difference is the use of content dictionaries (cd attributes in

OpenMath elements) to handle symbols. In the example, the identification of

symbols divide and root relies on the availability of content dictionary arith1.

2.2 Development of Mathematical Search Systems

In the mathematical information retrieval (MIR), the user information needs

can be classified into several categories as shown in Table 2.1. To satisfy these

information needs, majority of current MIR research focus on the development of

search techniques based on query-by-expression (Kohlhase and Kohlhase, 2007;

Zhao et al., 2008; Zanibbi and Blostein, 2012).

2.2.1 Formula Indexing

Kamali and Tompa (2013a) found that searching for mathematical expressions

and retrieving relevant documents based on their mathematical content is not

straightforward. The following reasons were identified.
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Table 2.1: Categories of information needs in math information re-
trieval (Kohlhase and Kohlhase, 2007; Zhao et al., 2008; Zanibbi and Blostein,
2012)

No Information Need
1 Specific or similar math formulae (visual form/appearance, math-

ematical content, or concept name)
2 Theorems, proofs, and counter-examples
3 Examples and visualizations (e.g. graphs or charts)
4 Problems and solution sets (e.g. for instruction)
5 Algorithms
6 Applications (e.g. applications of Fourier transform)
7 Answer for mathematical questions or conjectures
8 People (e.g. authors)
9 Determine novelty/sequence of mathematical discoveries

• Mathematical expressions are objects with a complex structure and few

distinct symbols and terms. Furthermore, the symbols and terms alone are

usually inadequate for distinguishing between different math expressions.

• Relevant math expressions may include small variations in presentation.

• The majority of published math expressions are encoded with respect to

their presentation, and most instances do not preserve sufficient semantic

information.

As a result, formula indexing and retrieval has become one of the key issues

in math retrieval (Zanibbi and Blostein, 2012). Many math search systems have

attempted to solve this issue, with the most popular implementation reducing the

search for formulae to a full-text search. There are several other techniques (Guidi

and Sacerdoti Coen, 2015), such as substitution-tree indexing, reduction to SQL

queries, and reduction to XML-based searches, but fewer systems have been

derived from these. We now provide a review of several math search systems.

Reduction to Full Text Searches

The most popular implementation of a math search system is to reduce the

search for formulae to a full-text search. Several early studies on math search

systems, e.g. ActiveMath (Libbrecht and Melis, 2006), MathGO! (Adeel et al.,

2008), DLMF (Miller and Youssef, 2003; Youssef, 2005, 2006, 2007a,b), Math-

Find (Munavalli and Miner, 2006), and Mathdex (Miner and Munavalli, 2007),

implemented full-text search technology. In ActiveMath (Libbrecht and Melis,
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2006), mathematical data are represented in OMDoc format. These data are tok-

enized and then indexed using the Lucene search engine. MathGO! (Adeel et al.,

2008) uses a template-based approach to recognize and search for math expres-

sions. MathFind (Munavalli and Miner, 2006) translates each math expression

in a document into a sequence of text-encoded math fragments, and then indexes

this sequence together with all words found within the document.

The Digital Library of Mathematical Functions (DLMF) search (Miller and

Youssef, 2003; Youssef, 2005, 2006, 2007a,b) is a fully math-aware fine-grained

search system that supports search and access to fine-grained targets such as

equations, figures, tables, definitions, and named rules/theorems. In its imple-

mentation, this system handles mathematical expressions as a collection of math-

ematical terms. Hashimoto et al. (2007) and Hijikata et al. (2007) proposed a

search engine for MathML objects using the structure of mathematical expres-

sions, whereby inverted indices were constructed using the DOM structure and

represented in XPath.

Several of the more recent math search systems can be classified as follows.

• Extracting literals (identifiers, constants, and operators) from mathematical

expressions.

The Qualibeta system (Pinto et al., 2014) extracts features such as cate-

gories, a set of identifiers, a set of constants, operators, and a set of unique

identifiers to represent each math expression.

• Extracting and generalizing the substructures of math expressions.

WikiMirs (Hu et al., 2013) is a tree-based indexing system that indexes

all substructures of the formulae in LATEX considering the generalization

of substructures. Subsequent versions of WikiMirs (Lin et al., 2014; Gao

et al., 2014; Wang et al., 2015) utilize a semantic enrichment technique to

extract useful semantic information from math expressions, and then apply

hierarchical generalization to the substructures of the expressions to sup-

port substructure matching and fuzzy matching. The MIaS system (Ĺı̌ska,

2013; Sojka and Ĺı̌ska, 2011b; Sojka, 2012; Růžička et al., 2014) focuses

on a similarity search based on canonical MathML. It processes each math

expression by applying ordering, subexpression extraction, variable unifica-

tion, and constant unification steps to the math expression. TUW (Lipani

et al., 2014) implements a tokenizer that starts from the tree structure of

the math expressions, and then extracts and linearizes the tokens. This
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tokenizer slices a math expression tree by levels, and collapses each subex-

pression obtained from the slicing step.

• Extracting placement of symbols in math expressions.

The Tangent system (Pattaniyil and Zanibbi, 2014) captures the structure

of math expressions by generating symbol pair tuples from a symbol layout

tree representation of the expression. These symbol pair tuples describe the

relative placement of symbols in an expression. The MCAT system (Topić

et al., 2013; Kristianto et al., 2014c,a), captures the content and structure

of math expressions by encoding the paths between nodes within the tree

structure of the expressions.

Other Approaches

Another type of approach used in math search systems is the one based on

substitution-tree indexing (Graf, 1996), which was originally developed for au-

tomatic theorem proving to store lemmas and quickly retrieve formulae up to

instantiation or generalization. MathWebSearch (Kohlhase and Sucan, 2006;

Kohlhase et al., 2012; Hambasan et al., 2014) is based on this approach. In

addition, Schellenberg (2011); Schellenberg et al. (2012) introduced a system for

the layout-based (LATEX) indexing and retrieval of math expressions using sub-

stitution trees.

Other math search systems aim to approximate math expressions via a series

of relations to be stored in a relational database. Asperti and Selmi (2004)

generated an SQL query for each given query formula that is represented by

a set of relations. The recall of their system can be maximized by relaxing

such relations or by employing normalization. The fourth type of math search

system reduces the search for math expressions to an XML-based search. For

instance, the FSE system (Schubotz et al., 2013) formalized formula queries using

XQuery/XPath technology. This system traded flexibility for performance, and

did not normalize the input in any way. In addition to the systems described

above, there is a lattice-based system developed by Nguyen et al. (2012b) that

cannot be classified into any of the above categories. This system extracted math

features from the MathML-formatted math expressions, and then constructed a

mathematical concept lattice using these features.
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2.2.2 Ranking Function for Formula Retrieval

In addition to math expression indexing, several studies have focused on determin-

ing the ranking function for formula retrieval. Yokoi and Aizawa (2009) proposed

a similarity search scheme for mathematical expressions based on a Subpath Set

and reported that it works well on “simplified” Content MathML. Sojka and Ĺı̌ska

(2011a) computed a weight for each indexed math expression that describes how

far this expression from its original representation. They then tried to create a

complex and robust weighting function that would be appropriate to documents

from many scientific fields. Nguyen et al. (2012a) proposed an online learning-

to-rank model to learn scoring function after having extracted math expression

features based on the MathML Content format. Their model outperformed other

standard information retrieval models, but there was no comparison against other

math-specific similarity functions.

Kamali and Tompa (2013a) proposed a tree-edit distance-based method to

calculate the structural similarity between two expressions, and also introduced

a pattern-based search to enable flexible matching of expressions in a controlled

way. Furthermore, Kamali and Tompa (2013b) described optimization techniques

to reduce the index size and the query processing time required by this tree-edit

distance-based method. Zhang and Youssef (2014) proposed five math similarity

measure factors: taxonomy of functions and operators, data-type hierarchical

level of the math expressions, depth of matching position, query coverage, and

the different importance between expression and formula. Schubotz et al. (2014)

evaluated each of these five factors individually and confirmed that each factor

is relevant to math similarity, with a note that the last factor mentioned above

is of lower relevance than the other four factors.

2.2.3 Test Collections for Math Search Systems

Most early work on math search systems used specially generated datasets to

evaluate the resulting systems. The number of publicly available test collections,

which consist of a document set, list of topics, and assessment of pooled results,

for the evaluation of math search systems is limited.

Kamali and Tompa (2013a)’s Dataset

Kamali and Tompa (2013a) generated an evaluation dataset that consists of pages

from Wikipedia and DLMF, and contains a total of 863,358 math expressions.

The 98 queries in this dataset were produced from an interview process (45)
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and a mathematics forum (53). In the interview process, the invited students

and researchers were asked to search for math expressions of potential interest

to them in a practical situation. To prepare queries from mathematics forum,

Kamali and Tompa (2013a) gathered discussion threads each of which can be

described with a query that consists of a single math expression. They manually

read each thread and responses to manually judge if a given math expression,

together with the page that contains it, can answer the information need of the

user who started the thread. Queries in their dataset contain math expressions,

but no textual keywords.

The NTCIR-10 Math Pilot Task

The NTCIR-10 Math Pilot task (Aizawa et al., 2013) was the first attempt to

develop a common evaluation dataset for math formula searches based on a pool-

ing method. This dataset includes 100,000 scientific papers, 21 topics for formula

searches (each query contains only math formulae), and 15 topics for full-text

searches (each query contains both a list of formulae and a list of textual key-

words). For each topic, 100 retrieval units (math expressions) from the pooled

results were assessed. Topics in this task express several user information needs,

such as specific or similar math formulae (category 1 in Table 2.1), theorems (2),

examples (3), solutions (4), and applications (6).

The NTCIR-11 Math-2 Task

The NTCIR-11 Math-2 task (Aizawa et al., 2014) dataset consists of 105,120

scientific articles (with about 60 million math expressions) converted from LATEX

to an HTML+MathML-based format by the KWARC project (Kohlhase and

Ginev, 2016). To get a varied sample of technical documents containing math

expressions, this corpus contains articles from the arXiv categories math, cs,

physics:math-ph, stat, physics:hep-th, and physics:nlin. In addition, this dataset

contains 50 full-text search topics, which express the same information need cat-

egories as in the Math Pilot task. This task is focused on full-text searches,

and uses paragraph-level retrieval units (8,301,578 units in the dataset). Fur-

thermore, 50 retrieval units (paragraphs) from pooled results (from 20 submitted

runs) have been assessed for each topic. Each retrieval unit is judged as being

non-relevant, partially relevant, or highly relevant. In addition to this Math-2

task, the Wikipedia Open Subtask (Aizawa et al., 2014; Schubotz et al., 2015)

used the Wikipedia dataset instead of scientific articles.
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The NTCIR-12 MathIR Task

The NTCIR-12 MathIR task (Zanibbi et al., 2016) makes use of two corpora.

The first corpus contains technical articles in asXiv, and the second corpus con-

tains English Wikipedia articles. For each corpus, there are two subtasks. Three

subtasks (arXiv-main, arXiv-simto, and Wiki-main) contain queries with formu-

lae and keywords. The last subtask (Wiki-formula) considers isolated formula

queries. The arXiv corpus used in this task is the same as the one used for

NTCIR-11 Math-2. The retrieval units (paragraphs) for this corpus is also the

same one used for NTCIR-11 Math-2.

The Wikipedia corpus provided by this task contains 319,689 articles from

English Wikipedia converted into a simpler XHTML format with images removed.

Unlike the arXiv corpus, the retrieval units for this corpus is document. Around

10% of the sampled articles contain <math> tags that demarcate LATEX. All

articles with a <math> tags are included in the corpus. The remaining 90% of

the articles are sample from Wikipedia articles that do not contain a <math>

tag. The task organizer set this latter set of articles as distractors for keyword

matching.

The Wikipedia articles were initially in MediaWiki format. The NTCIR or-

ganizers extracted the math expressions by first converting the MediaWiki math

templates to LATEXand then converted them together with LATEXformulae demar-

cated by <math> tags in the articles to MathML format using LaTeXML (Miller,

2016). In total, there are 592,442 formulae in the corpus, encoded using LATEX,

Presentation MathML Presentation, and Content MathML. There was however

no attempt from the task organizer to detect or label untagged formulae, which

often appear directly in HTML text.

MathOverflow Dataset

The general-purpose Mathematical Information Retrieval (MIR) test collections

mentioned above are focused on accommodating information needs of varying

complexity. A recent work by Stathopoulos and Teufel (2015) focused on the re-

trieval of research-level mathematical information and the construction of a Math

IR test collection for these needs. They regarded the questions in MathOverflow

as the information needs, and then tried to retrieve the scientific publications

that answer these questions. To construct the topics, they examined each identi-

fied MathOverflow discussion thread for conformance to two criteria: (a) useful

questions should express an information need that is clear and can be satisfied
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by describing objects or properties, stating conditions, and/or producing exam-

ples or counter-examples and (b) scientific documents cited in the MathOverflow

accepted answers should address all sub-parts of the question in a manner that

requires minimal deduction and do not synthesize mathematical results form mul-

tiple resources. Topics in their dataset take the form of coherent text interspersed

with math expressions. The relevance judgments for these topics were procured

from the answers of the corresponding discussion threads in the MathOverflow.

2.3 Extraction of Textual Information for Mathematical Expres-

sions

Previous work on extracting textual information for math expressions can be clas-

sified into two categories. The first assumes that the meaning of a math expression

can be found from text preceding and/or following the expression (Grigore et al.,

2009; Wolska et al., 2011; Pinto and Balke, 2015), and the second attempts to

extract only those terms that precisely describe the math expression (Nghiem

et al., 2010; Yokoi et al., 2011; Kristianto et al., 2014b).

2.3.1 Utilization of Surrounding Text to Capture the Meaning of

Math Expressions

One of the earliest studies on extracting textual information for mathematical

expressions actually focused on resolving the semantics of mathematical expres-

sions (Grigore et al., 2009). This approach uses the natural language within which

math expressions are embedded to resolve their semantics and enable their dis-

ambiguation. It focuses on mathematical expressions that are syntactically part

of a nominal group and in an apposition relation with the immediately preced-

ing noun phrase, i.e. the target expressions come from a linguistic pattern: “. . .

noun phrase symbolic math expression. . .”. By assuming that a target mathe-

matical expression can be disambiguated using its left context, this method dis-

ambiguates mathematical expressions by computing the term similarity between

the local lexical context of a given expression, i.e. all nouns appearing in the

five-word window to the left of the target expression, and a set of terms from

Term Clusters based on the OpenMath Content Dictionaries1. The calculated

similarity score determines the disambiguation of the target expression. Wolska

and Grigore (2010) complemented the work of Grigore et al. (2009) by conduct-

ing three corpus-based studies on declarations of simple symbols in mathematical

1http://www.openmath.org/cdnames.html
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writing. This work counted how many mathematical symbols were explicitly de-

clared in 50 documents. Subsequently, Wolska et al. (2011) determined that each

target mathematical expression had a local and global lexical context. The local

context is a set of domain terms that occur within the immediately preceding

and following linguistic context. The global context is a set of domain terms that

occur in the declaration statements of the target expression or other expressions

that are structurally similar to the target expression. These two types of lexical

context were then utilized to enhance the disambiguation work. Another recent

study by Pinto and Balke (2015) extracted the sense of math expressions by apply-

ing Latent Dirichlet Allocation over context words surrounding the expressions.

They concluded that the senses obtained from the context words were helpful for

classification, such as predicting the Mathematics Subject Classification (MSC)

classes from a document collection.

2.3.2 Extracting Specific Descriptions of Math Expressions

Nghiem et al. (2010) proposed text matching and pattern matching methods to

mine mathematical knowledge from Wikipedia. These methods extracted coref-

erence relations between formulae and the concepts that refer to them. Yokoi

et al. (2011) extracted textual descriptions of mathematical expressions from

Japanese scientific papers. This work considered only compound nouns as the

description candidates. When the descriptions are expressed as complex noun

phrases that contain prepositions, adverbs, or other noun phrases, only the final

compound noun in the phrase (Japanese is a head-final language) is annotated

and extracted. A subsequent study (Kristianto et al., 2012a) proposed a set of

annotation guidelines by introducing full and short descriptions, and enabling

multiple descriptions to be related. Following this, two applications based on

the extracted descriptions of mathematical formulae were introduced, namely

semantic search and semantic browsing (Kristianto et al., 2012b).

2.3.3 Utilization of Textual Information in Math Search Systems

Prior to the indexing process, several math search systems extract textual in-

formation to represent mathematical expressions. These systems store both the

math expressions and the associated textual information in their index systems

to enable mathematical expressions to be searched using queries that contain

both math expressions and textual keywords. Nguyen et al. (2012a) presented a

math-aware search engine that handles both textual keywords and mathematical

expressions, and benchmarked the system using math documents crawled from an
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online math question answering system, MathOverflow2. Several systems (Ham-

basan et al., 2014; Růžička et al., 2014, 2016; Pattaniyil and Zanibbi, 2014; Davila

et al., 2016; Lipani et al., 2014) construct word vectors to represent each math

expression by associating the expression with all words found in the same docu-

ment or paragraph. WikiMirs 3.0 (Wang et al., 2015; Gao et al., 2016) regards

the preceding and following paragraphs of a math expression as the context of the

expression. Similarly, Qualibeta (Pinto et al., 2014) and MCAT (Kristianto et al.,

2014c) associate each expression with the surrounding text. We consider that,

when surrounding text is used to represent math expressions, the proportion of

words related to that expression is higher than when all words in the document

are used.

2.4 Wikification

In natural language processing, entity linking (EL) is a task to overcome the am-

biguity and variability of natural language. Mentions of entities may have mul-

tiple meanings and a given entity can be expressed in many ways. EL addresses

these challenges by linking entity mentions in text to corresponding entities in a

knowledge base. The definition of this task consists of several aspects as follows.

• Definition of the mentions to highlight (e.g. named entities, keyphrases,

and biological terms)

• Target encyclopedic resource (e.g. Wikipedia and ontologies)

• What to point in the knowledge base (e.g. Wikipedia title and concept in

an ontology)

One variant of EL is wikification (Bunescu and Paşca, 2006; Cucerzan, 2007;

Mihalcea and Csomai, 2007; Milne andWitten, 2008; Ferragina and Scaiella, 2010;

Han et al., 2011; Ratinov et al., 2011; Cheng and Roth, 2013; Guo and Barbosa,

2014), which identifies a set of entity mentions in a document and then locates

the most accurate mapping from these mentions to corresponding Wikipedia

articles. Figure 2.2 shows an example of the wikification process. There are

several subtasks to address in wikification (and in general, EL) as follows.

• Identifying target mentions in the input text that should be wikified.

• Identifying candidate titles that may correspond to each mention.

• Disambiguating each mention by ranking the candidate titles.
2http://mathoverflow.net
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Figure 2.2: Processing steps in wikification. The first box contains the original
text. The second box contains the same text, only the mentions are now detected
(the underlined and blue colored text). The third box contains several candidate
titles corresponding to the mentions. The arrows from the second to the third
box illustrate the assignments of the candidate titles. The solid arrows indicate
the assignment returned by the disambiguation step.

• Detecting NIL mentions, which are mentions that do not correspond to a

Wikipedia title.

2.4.1 Mention Identification

For identifying target mentions, the simplest technique is to treat each n-gram

as a potential concept mention. However, this approach is likely intractable for

large document collections. An alternative to this is to apply surface form based

filtering, e.g., extracting noun phrases (NPs) from shallow parsing, augmenting

NPs with surrounding tokens, and removing stop words and punctuation from the

extracted NPs. In addition to this, there are several studies applying classification

and statistics based filtering techniques (Finkel et al., 2005; Ratinov and Roth,

2009; Li et al., 2012; Florian et al., 2006; Li and Ji, 2014; Mihalcea and Csomai,

2007; Mendes et al., 2011). Wikify! system (Mihalcea and Csomai, 2007) used

this approach and assign a numeric value (i.e. tf-idf (Salton and Buckley, 1988),

χ2 independence test (Manning and Schütze, 1999), and keyphraseness measure)

to each possible mention, reflecting the likelihood that a given candidate is a

valuable keyphrases.

Mention detection modules often utilize a controlled vocabulary derived from

prior link knowledge in Wikipedia. For instance, mentions can be defined as n-

grams used as anchor text within Wikipedia (Ratinov et al., 2011; Davis et al.,
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2012; G. Demartini and Cudré-Mauroux, 2012; Han and Sun, 2011; Han et al.,

2011; Mihalcea and Csomai, 2007; Cucerzan, 2007; Milne and Witten, 2008; Fer-

ragina and Scaiella, 2010). On the other hand, other systems only use terms that

exceed link probability threshold (Bunescu and Paşca, 2006; Cucerzan, 2007;

Fernandez et al., 2010; Hachey et al., 2013). DBPedia Spotlight (Mendes et al.,

2011) uses dictionary-based chunking with string matching via DBPedia (struc-

tured content from Wikipedia) lexicalization dataset.

2.4.2 Generating Candidate Titles and Disambiguating Mentions

The candidate generation is usually based on matching each mention to the

Wikipedia titles. For example, the candidates can be titles that are overlap,

superstring, or substring of the mention. Then, the initial title ranks are based

on Wikipedia article length, the number of incoming Wikipedia links, prior link

probability (e.g. commonness (Medelyan et al., 2008)), or graph based methods

(e.g. centrality (Hachey et al., 2011)).

Most of the EL and wikification studies focused on developing algorithms for

disambiguation. Their proposed methods can be divided into: local and global

disambiguation approaches.

Local Disambiguation

Early EL studies (Bunescu and Paşca, 2006; Mihalcea and Csomai, 2007) applied

local methods, disambiguating each mention in isolation—usually ranking the

candidate entities by their compatibilities with the mention—and then taking

the most compatible entity. Let M = {m1, . . . ,mN} be the set of mentions to

disambiguate, and φ(mi, tj) be a score function representing the likelihood that

candidate tj is the correct disambiguation for mention mi, the local approach

returns assignments Γ = (t1, . . . , tN ) by solving the following problem:

Γ∗
local = argmax

Γ

∑

i

φ(mi, ti) (2.1)

Local disambiguation works well when the context is rich enough to identify

a mention. Typical features (Dredze et al., 2010; Anastacio et al., 2011) used

for ranking in this approach include popularity features, text-based document

similarity, topical similarity (based on LDA (Blei et al., 2003)), name similarity,

NER and Geo-based features, page-type features, and validation-only features.

Given all extracted features, wikification systems rerank their initial rankling

lists. Several methods used for this reranking purpose can be categorized into: un-
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supervised learning (Ferragina and Scaiella, 2010), supervised learning (Bunescu

and Paşca, 2006; Mihalcea and Csomai, 2007; Milne and Witten, 2008; Lehmann

et al., 2010; de Pablo-Sanchez et al., 2010; Han and Sun, 2011; Chen and Ji, 2011;

Ratinov et al., 2011), and graph-based ranking (Gonzalez et al., 2012).

Global Disambiguation

More recent EL systems have adopted a global coherence approach that ac-

counts for the semantic relations between mentions and entities, utilizing var-

ious measures of semantic relatedness. Figure 2.2 shows the motivation of this

approach. Mention “Red Devils” have several different title candidates, e.g.,

Manchester United F.C. and Belgium national football team. However, be-

cause the surrounding mentions are semantically closer (i.e. “’Zlatan Ibrahi-

movic”, “Schweini”, and “Jose Mourinho” are the Manchester United person-

nel) to the former entity than the latter one, this mention should be linked to

Manchester United F.C..

The global optimization problem to be solved by this approach is:

Γ∗ = argmax
Γ

[
∑

i

φ(mi, ti) + ψ(Γ)] (2.2)

where ψ is a coherence function. As this formulation is NP-hard, many approxi-

mations have been introduced.

Cucerzan (2007) maximized the agreement between the contextual informa-

tion extracted from Wikipedia and from a document, as well as the agreement

among category tags associated with the candidate entities. Milne and Witten

(2008) utilized directly connected entities to represent each entity and measured

their relatedness using normalized Google distance (Cilibrasi and Vitanyi, 2007).

Han et al. (2011) proposed a graph-based collective system exploiting the random

walk model on an entity graph to jointly link mentions. Ratinov et al. (2011)

introduced an EL system that combines local and global features. They analyzed

the strengths and weaknesses of local and global variants of their EL system,

GLOW, finding that local disambiguation provides a baseline that is difficult

to surpass. Ceccarelli et al. (2013) investigated the effectiveness of combining

a set of relatedness features together using a learning-to-rank technique. These

features are shown in Table 2.2.

Cheng and Roth (2013) formalized the EL problem as an integer linear pro-

gramming problem to find assignments collectively. Guo and Barbosa (2014)

proposed the use of the probability distribution resulting from a random walk
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Table 2.2: Relatedness Features (Ceccarelli et al., 2013)

Singleton Features
P (a) = ||in(a)||/|W | probability of a mention to entity a
H(a) entropy of a

Asymmetric Features
P (a|b) = |in(a) ∩ in(b)|/|in(b)| conditional probability of the entity a

given b
Link(a → b) whether a link to b
P (a → b) probability that a links to b
Friend(a, b) equals 1 if a links to b, and |out(a) ∩

in(b)|/|out(a)| otherwise
KL(a||b) Kullback-Leibler divergence

Symmetric Features
ρMW (a, b) co-citation based similarity

J(a, b) = in(a)∩in(b)
in(a)∪in(b) Jaccard similarity

P (a, b) joint probability of entities a and b
Link(a ↔ b) whether a links to b and vice versa
AvgFr(a, b) average of Friend(a, b) and Friend(b, a)
ρMW
out (a, b) ρMW considering outgoing links
ρMW
in−out(a, b) ρMW considering the union of incoming

and outgoing links
Jout(a, b) Jaccard similarity considering the outgo-

ing links
Jin−out(a, b) Jaccard similarity considering the union of

incoming and outgoing links
χ2(a, b) χ2 statistic considering incoming links
χ2
out(a, b) χ2 statistic considering outgoing links
χ2
in−out(a, b) χ2 statistic considering the union of in-

coming and outgoing links
PMI(a, b) point-wise mutual information considering

incoming links

with restart over a suitable entity graph as a unified representation of the se-

mantics of entities and documents. Alhelbawy and Gaizauskas (2014) presents a

collective disambiguation approach using a graph model.

2.4.3 NIL Detection

Most of the early studies in wikification used hyperlinks in the Wikipedia pages to

train and evaluate their systems. They treated the anchor text in the hyperlinks

as the mentions, and the Wikipedia articles the hyperlinks go to as the gold-

standard data. During training, wikification systems used these mentions They

treated these hyperlinks as disambiguated mentions.
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This approach however, may introduce bias to the trained statistical models,

because compared to the mentions from general text, mentions found in the

Wikipedia are disproportionately likely to have corresponding Wikipedia articles.

According to Ratinov et al. (2011), a mention is linked to NIL entity if:

1. the mention does not have a corresponding Wikipedia article,

2. the mention has a corresponding Wikipedia title, but it does not appear

the candidates, or

3. the disambiguation module chooses an incorrect disambiguation over the

correct one.

Bunescu and Paşca (2006); Zuo et al. (2014) tackled this issue by return-

ing the disambiguation result if its confidence score is greater than a threshold

value, and NIL otherwise. Meanwhile, Ratinov et al. (2011) trained a classifier

using several features, such as features from disambiguation step, disambiguation

confidence, commonness entropy, and whether the mention is detected by named

entity recognizer (NER) as a named entity, to decide whether the disambiguation

result of a mention is indeed correct.

2.4.4 Recent Progress in Wikification

One of the interesting advances in wikification and entity linking is the implemen-

tation of Joint Entity Recognition and Linking (JERL). This approach attempts

to improve the performance of end-to-end wikification by applying global infer-

ence using additional knowledge. The motivation of doing this approach is to

transfer knowledge between entity recognition and linking modules. By doing so,

the error propagation in EL or wikification systems with the pipeline architecture

can be minimized.

Joint optimization is however expensive as it increases the complexity of the

problem. It requires a careful consideration of features and mutual dependency

between multiple tasks, so that the training and inference is tractable. Meij et al.

(2012) proposed a solution to the problem of wikifying microblog posts. They

studied several supervised machine learning methods, but without utilizing any

global evidence. Similar to this work, Guo et al. (2013) also introduced a solution

for microblog post (tweet) entity linking. They introduced a structural SVM

algorithm (Chang et al., 2010; Taskar et al., 2004; Tscohantaridris et al., 2005),

which requires an NP-hard inference, and utilized entity-to-entity relations, but

did not incorporate evidence from multiple tweets. Huang et al. (2014) enhanced
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these two previous studies by proposing a semi-supervised graph regularization

model to incorporate both local and global evidence from multiple tweets.

Sil and Yates (2013) introduced a reranking model that exploits the depen-

dency between entity linking decisions and mention boundary decisions. They

exploited an existing state-of-the-art NER system to over generate candidate

mentions, and left the linking algorithm, which is a linear MaxEnt based rerank-

ing model, to make a final decision. In contrast to the Guo et al. (2013)’s ap-

proach, Sil and Yates (2013)’s is more suited for long documents. While Sil and

Yates (2013) depended on an existing NER system, Luo et al. (2015) captured

the mutual dependency between NER and EL by considering entity type and

confidence information. In this model, NER can also benefit from the decision of

entity linking module, since both decisions are made together.
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Chapter 3

Framework of Mathematical Search System

Current mathematical search systems are expected to allow math expressions

within a document to be queried using mathematical expressions and keywords.

Recent shared tasks in mathematical information retrieval (MIR) (Aizawa et al.,

2013, 2014; Zanibbi et al., 2016) specified this requirement in their task defini-

tions. However, among current math search systems, the majority of them have

not yet fully exploited the text in the documents. Most of the previous work

on math expression search focused on establishing index systems. They utilize

only a few types of textual information. Hambasan et al. (2014); Růžička et al.

(2016); Davila et al. (2016); Lipani et al. (2014) associate each math expression

with all words found in the same document or paragraph. WikiMirs 3.0 (Wang

et al., 2015; Gao et al., 2016) regards the preceding and following paragraphs of

a math expression as the context of the expression.

To associate each math expression with all words found in the document or

paragraph allows math search systems to have good recall performances. How-

ever, there is also negative impact introduced by this approach. Since all math

expressions within the same paragraph or documents will have the same textual

information, it is difficult to identify the exact meaning of each expression. There-

fore, the use of such type of textual information is not effective in improving the

precision of search system. We propose the use of textual information specifically

describing the meaning of math expression to tackle this issue.

In this chapter, we take advantages of multiple types of textual information

to build a reliable math search system. For each math expression, we store the

textual information obtained from its containing paragraph and document, so

that we can ensure that the recall performance of our system is good. Further-

more, we introduce our proposed textual information, which specifically defined

each math expression, to our math search system. This will allow our system to

have a good precision and recall.
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Once we indexed math expressions and their textual information, we set up

the scoring and ranking components of our system. We apply normalization to

the scores from all information types, including structures of math expressions

and textual information. The intent of this procedure is to prevent a scoring

bias toward certain information types. Later, we explore several learning to

rank methods to effectively combine all these information types we have in our

database. Subsequently, we examine the effectiveness of unification technique as

the final step in our math search pipeline. The results from recent MIR shared

task (Zanibbi et al., 2016) show that our system outperforms four other math

search systems (Gao et al., 2016; Růžička et al., 2016; Davila et al., 2016; Thanda

et al., 2016).

3.1 Components of Mathematical Search System

Figure 3.1 shows the components of our math search system. We group them

into three main building blocks:

1. Data processing prior to indexing

• encode math expressions

• extract textual information

2. Indexing math expressions

3. Searching and Ranking

• combine all the indexed types of information

• perform unification to the initial ranked list

The detail of each component is described in the next sections.

In the development of our math search system, we assume that math expres-

sions are available in MathML format, since several tools can generate MathML

from LATEX (e.g. LaTeXML (Miller, 2016)), PDF files (e.g. Maxtract (Baker

et al., 2012)), handwritten text (e.g. Infty Reader (InftyProject, 2015)), or digi-

tized documents (e.g. Infty Reader).

3.2 Encoding Math Expressions

3.2.1 The Problem

Mathematical notation is quite inconsistent, and symbol set limited: a notation

is commonly reused, and there often exist several different ways of writing down
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the same core meaning. For example, the derivation of function y = f(x) can be

represented as d
d x

f(x), d f(x)
d x

, d
d x

y, d y
d x

, f ′(x), Dxy, ẏ and more. Conversely, the

notation y(x+ 1) could represent both an application of function y, as well as a

multiplication of the value y to x+ 1; and the meaning of i in the most common

interpretation of ai is very different from that in 3i+5. Speaking of the imaginary

constant, in fact, there are at least three ways in common use to represent it:

some journals and writers use the italic i, some the regular i, while Unicode

reserves for it the double-struck i at code point 0x214F (&ImaginaryI; entity

in HTML). Thus, understanding a mathematical equation necessarily involves

context: if it is clear from preceding text or formulae that y is a function, it is

safe to conclude that y(x+ 1) refers to application of this function to x+ 1, and

not multiplication.

This semantic ambiguity of the math expression is a large problem for a math-

ematics search engine. Ideally, one would translate all queries into the content

mark-up: we assume the users will care more about the meaning of their query

rather than a specific notational form. However, currently there is no method

capable of accurately disambiguating the presentation form. While there is ongo-

ing research into this very issue, it is still not at the stage where it could reliably

handle any but the simplest mathematical expressions.

The inability to reliably extract the correct semantic of an expression affected

our method significantly. The realization was that searching for an exact match

is unfeasible. If a query looks for
n∑

i=0

ai, exact matching will not find
∑n

i=0 ai —

even though both are readily understood to be the same thing by a human reader.

Similarly, a query for the relationship between velocity and acceleration v = at

would not find v = gt, a special case where acceleration of gravity is written

as g instead of the usual a. Ideally, v = gt would still be found, but would be

ranked lower than the perfect match, v = at. Therefore, the method needed

to be flexible in order to account for the notational differences, in some ways

similar to full-text search, yet still encode the structural information necessary

to distinguish xy
z from x

y z.

3.2.2 Our Method

The full-text search requirement was solved easily, by adopting Apache Solr (The

Apache Software Foundation, 2015b), a popular open-source full-text search en-

gine. Starting from this choice, we used the method described below to index

and search the math expressions, and thus provide a flexible and soft-matching.
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There are two techniques we employ to encode math expressions: path-based and

hash-based techniques. Both techniques assume that math expressions are in the

MathML format and treat each expression as a tree data structure.

Path-based Encoding Technique for Presentation MathML

The path-based encoding in Presentation MathML will capture the relative loca-

tion of symbols (identifiers, operators, and literal number) in math expressions.

Given a math expression in Presentation MathML format, this encoding tech-

nique produces five fields (types of information): p opaths op, p opaths arg,

p upaths op, p upaths arg and p sisters — which are described below in de-

tail.

Each math expression, both at index time and at query time, is transformed

into a sequence of keywords across several fields. First, vertical paths to operators

(<mo>) are gathered into the p opaths op (ordered paths to operators) field in

such a way that ordering is preserved. Meanwhile, vertical paths to identifiers

(mi) and numbers (mn) are gathered into the p opaths arg (ordered paths to

arguments) field. In some cases (such as looking for b + c and trying to match

a + b + c), ordered paths will not be effective, so we introduce the p upaths op

(unordered paths to operators) and p upaths arg (to arguments) with exactly

the same information as in p opaths op and p opaths arg but with ordering

information removed. This vertical path encoding is performed not only for the

expression’s tree, but for each of its subtrees as well, to achieve a hit on a(b+ c)

for the query b + c. The fifth and final field carrying the expression structure,

p sisters, lists the sister nodes in each subtree.

<math>

<mrow>

<mi>x</mi>

<mo>+</mo>

<mi>y</mi>

</mrow>

</math>

Figure 3.2: Content MathML example: x+ y

Figure 3.2 presents a simple math expression, x+ y, written in Presentation

MathML. The <mrow> node groups the whole expression x + y. The <mi> and

<mo> nodes represent an identifier and an operator, respectively. To index this

mathematical expression, our search system encodes it into the form shown in Fig-

ure 3.3. If the visited element is a leaf (an operator <mo>, a numeric literal <mn>,
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p opaths op: 2#mo#+

p opaths op: mo#+

p opaths arg: 1#mi#x 3#mi#y

p opaths arg: mi#x

p opaths arg: mi#y

p upaths op: #mo#+

p upaths op: mo#+

p upaths arg: #mi#x #mi#y

p upaths arg: mi#x

p upaths arg: mi#y

p sisters: mi#x mo#+ mi#y

Figure 3.3: Encoding result of x+ y (Presentation MathML)

or an identifier <mi>), this encoding process lists not only the node, but also the

value of the node. Given the root node (<mrow>), p opaths op tells that the sec-

ond child is an operator element, which is <mo>, namely p opaths op: 2#mo#+.

The p upaths arg lists the rest of the children (identifiers): p opaths arg:

1#mi#x 3#mi#y. The final elements visited by p opaths op and p opaths arg

are the leaves. This is reflected by the encoding results: p opaths op: mo#+,

p opaths arg: mi#x, and p opaths arg: mi#y.

The procedure for generating p upaths is the same as the one for p opaths,

only with the ordering information removed. The upaths: #mo#+ suggests that

a top-level element is an operator +. The final field, sisters, stores the sister nodes

obtained from the only subtree in x+ y (mi#x mo#+ mi#y). Later, the matching

process is performed on the MathML query, converting it into a Solr (The Apache

Software Foundation, 2015b) disjunctive query.

This encoding technique is used at both index-time and query-time. While

p opaths and p upaths are generated for every subtree of the math expression

being indexed, at query time, however, p opaths and p upaths always start from

the root of the math expression.

Path-based Encoding Technique for Content MathML

The motivation of path-based encoding for Content MathML is similar to to that

for Presentation MathML. However, unlike paths extracted from Presentation

MathML that capture only the relative positions of symbols in math expressions,

each path captured from Content MathML also contains the relationships be-

tween operators and their arguments (identifiers-or-numbers). We suggest that
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this will support our search system in detecting math expressions relevant to

given queries.

Given a math expression in Content MathML format, this encoding technique

produces four fields, namely c opaths type, c opaths arg, c upaths type, and

c upaths arg. The general idea applied in this technique is the same as the

previous one, namely to extract the paths in math structure trees. We make

slight modifications here:

• In addition to the relative positions of symbols in math expressions, we ex-

tract the relationships between operators and their arguments (identifiers-

or-numbers). To do so, for each given math subtree, we set the name of the

function applied to all children as the name of the subtree root.

Each subtree in a math expression in MathML Content is an <apply> sub-

tree. In addition, each subtree contains exactly one operator (e.g. <plus/>,

<minus/>, and <divide/>) as its child, and it is always the first child.

Therefore, we can modify each subtree by replacing the name of its root with

the name of its operator, then removing this operator from the children.

If the operator is an element with a value (e.g. <csymbol>-</csymbol>),

we concatenate its name and its value (csymbol:-), then set the concate-

nation result as the replacement for the root name. After this process, the

resulting subtree still maintain the same semantic as the original.

• In addition to the vertical paths that express symbol names (c opaths arg

and c upaths arg), we extract vertical paths expressing the symbol types

(c opaths type and c upaths type).

The idea is to allow an exact match by capturing the symbol name, and a

partial match by capturing the symbol type. For instance, given a query

x + y, we can now obtain a + b in a higher rank than 1 + 2, because both

the query and a+ b represent an addition of two identifiers (x, y, a, and b

are represented as <ci>). On the other hand, 1 + 2 is an addition of two

numbers (<cn>).

• We overlook sisters field for Content MathML, because it will store very

similar information as p sisters, only the tag names of the MathML ele-

ments are different.

The <mi> and <mn> elements in Presentation MathML correspond to <ci>

and <cn> in Content MathML, respectively.

Figure 3.4 presents x + y, written in Content MathML. First, we use the

element name of <plus/> to replace <apply>. Next, we extract the vertical paths
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<math>

<apply >

<plus/>

<ci>x</ci>

<ci>y</ci>

</apply >

</math>

Figure 3.4: Content MathML example: x+ y

c opaths type: plus#1#ci

c opaths type: plus#2#ci

c opaths type: ci

c opaths type: cn

c opaths arg: plus#1#ci#x

c opaths arg: plus#2#ci#y

c opaths arg: ci#x

c opaths arg: ci#y

c upaths type: plus##ci

c upaths type: plus##ci

c upaths type: ci

c upaths type: cn

c upaths arg: plus##ci#x

c upaths arg: plus##ci#y

c upaths arg: ci#x

c upaths arg: ci#y

Figure 3.5: Encoding result of x+ y (Content MathML)

from the new root <plus/> (in the place of the previous <apply>), to all children.

The c opaths type: plus#1#ci describes that the first argument of operator

plus is an identifier. In addition, c opaths arg: plus#1#ci#x describes that

the first argument of this operator is variable x. The procedure for generating

c upaths fields is the same as the one for c opaths fields, only with the ordering

information removed.

The example above illustrates the operators-arguments relationships captured

by path-based encoding from Content MathML. Such relationships can be cap-

tured from content markup, because this markup represents mathematical objects

as expression trees. Content MathML includes information about each operation

applied to a set of arguments. Therefore, we can extract the relationships of

37



operators and their arguments. This however, cannot be done in Presentation

MathML, because presentation markup focuses on how a math expression is vi-

sually rendered, not on the underlying mathematical meaning of an expression.

Hash-based Encoding Technique

In addition to the path-based technique, we consider extracting subtrees from

math expressions. To do so, we apply hash-based technique (Ohashi et al., 2016)

to encode math expressions. There are three algorithms we use here, namely

subtree hash, modular trick, and SIGURE hash, and their brief descriptions are

as follows.

• subtree hash is designed to capture the implicit semantics represented by

variable names. This algorithm is intuitively a depth-first pre-order traver-

sal to construct hash codes, visiting each node once, and at each node

having to combine (already computed) hash codes from children. The out-

put from this algorithm is a feature set consisting of all the subtrees of the

input tree.

• modular trick is designed to capture the semantics of structures or patterns

in the formulae. For instance, the structure of y = x2 indicates a quadratic

equation, which in this example the left-hand side variable (y) is defined as

the square of another variable (x). Based on this modular trick algorithm,

both y = x2 and b = a2 have the same semantics. The output of this

algorithm is a feature set consisting of all the substructures of a specified

depth d rooted on any node of the tree.

• SIGURE hash is an algorithm to provide a metric which is invariant to

variable names. In a math expression, alpha equivalent transformation

corresponds to renaming of variables. For instance, this algorithm can

capture the mathematician’s intuition that x = x has fundamentally a

similar meaning to y = y, but not to x = y, for any value of x and y. The

feature set obtained from this algorithm consists of subtrees of the input tree

where all the variables are renamed according to their appearance order.

For an example, given math expression
∑n

i=k ai, whose Presentation MathML

format is shown in Fig. 3.6, its hashing results are shown in Fig. 3.7. Each subtree

from the subtree hashing is rooted at a certain node from the original tree and

contains all of its descendants. Meanwhile, each subtree from the modular trick

hashing (with d = 2 in the example) is rooted at a certain node from the original
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Figure 3.6: Presentation MathML of
∑n

i=k ai

tree and contains all of its descendants that are d hops away from it. Subtrees

produced by SIGURE hashing is very similar to ones from subtree hashing. The

main difference is that each of these subtrees has its identifiers renamed according

to their appearance order. In Fig. 3.7, the third subtree produced by SIGURE

hashing renames a and i into ∗1∗ and ∗2∗, respectively. On the other hand,

the last produced subtree renames i into ∗1∗, because i is the first identifier

encountered by SIGURE during the traversal.

In this dissertation, we apply this hashing technique to both Presentation

and Content MathML of each math expression. In this technique, each leaf of a

MathML tree will be hashed based on either the literal it contains or its own tag

name. The hash value of each inner node will be computed based on the hash

values of its children.

3.3 Extracting Textual Information

To capture the meaning of each math expression, we extract its textual informa-

tion in three different levels of detail as follows.

• Math-level

– words in context window are obtained by taking ten words preceding

and following each math expression,

– descriptions are sets of terms that precisely denote the target math

expression and are automatically extracted for each math expression

using a machine learning model,

– noun phrases in the same sentence as the target math expression.

• Paragraph-level
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Figure 3.7: Hashing results of
∑n

i=k ai

– all words in the paragraph

• Document-level

– title of the document,

– abstract of the document,

– keywords found in the document, which are extracted using RAKE

(Rose et al., 2010),

– descriptions from all math expressions in the document,
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– noun phrases in the document,

– all words in the document.

Except for descriptions, all these types of textual information can be easily ex-

tracted. “Words in context window” and “noun phrase” are extracted from the

tokenization and parsing results of the sentence containing target math expres-

sion. “Title” and “abstract” are obtained by analyzing the tagging information

in the document To extract “keywords”, we use RAKE (Rose et al., 2010), and

accompany each extracted keyword with a RAKE’s score, which is in the interval

of [1.0,∞). We later utilize the logarithm of this score, i.e. 1 + log(rakeScore),

to boost the similarity score of each matching keyword.

Extracting Descriptions for Mathematical Expressions

The description extraction task is treated as a binary classification problem.

We first pair each mathematical expression with each noun phrase that exists

in the same sentence as the expression. Subsequently, for each pair, we extract

several features based on sentence patterns, POS tags, parse trees, and predicate-

argument structures. Next, using these features, we classify the pairs as correct

(i.e. the noun phrase is the description of the expression) or incorrect.

The complete list of them are shown in Table 3.1. Features 1 to 6 are obtained

by applying the six sentence patterns. MATH, DESC, and OTHERMATH

represent the target mathematical expression, description of the target expres-

sion, and other expressions in the same sentence as the target, respectively.

Features 7 to 10 check for the existence of punctuation marks, such as colon,

comma, and parentheses, and other mathematical expressions between candidate

and paired expression. Intuitively, the existence of such elements in the interven-

ing text may decrease the possibility that the candidate is a description of the

expression.

Features 11 and 12 describe the location of the description candidate rela-

tive to the paired expression. Long word-distance between them may reduce the

possibility that they are in the description-expression relationship. Furthermore,

features 13 to 16 investigate the textual information surrounding the candidate

and expression. Moreover, based on the observation over the training data, math-

ematical expressions and their descriptions are often separated by particular verbs

usually appearing as a definitor in definition statements, e.g. denote, represent,

and define. Therefore, checking the first verb that appears between the candidate

and the expression is reasonable, and this is implemented as feature 17.
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Table 3.1: List of machine learning features for description extraction

No. Feature
1 . . . (let|set) MATH (denote|denotes|be) DESC

. . .
2 . . . DESC (is|are) (denoted|defined|given)

(as|by) MATH . . .
3 . . . MATH (denotes|denote|(stand|stands)

for|mean|means) DESC . . .
4 . . . MATH (is|are) DESC . . .
5 . . . DESC (is|are) MATH . . .
6 . . . DESC (OTHERMATH,)* MATH . . .
7 If there is a colon between the desc candidate and

the paired expr
8 If there is a comma between the desc candidate

and the paired expr
9 If there is another math expr between the desc

candidate and the paired expr
10 If the desc candidate is inside parentheses and the

paired expr is outside parentheses
11 Word-distance between the desc candidate and

the paired expr
12 Position of the desc candidate relative to the

paired expr (after or before)
13 Surface text and POS tag of two preceding and

following tokens around the desc candidate
14 Surface text and POS tag of the first and last

tokens of the desc candidate
15 Surface text and POS tag of three preceding and

following tokens around the paired math expr
16 Unigram, bigram, and trigram of features 15 and

13 that is combined with feature 14
17 Surface text of the first verb that appears between

the desc candidate and the target math expr
18 Hop-distance (in the predicate-argument struc-

ture) between the desc candidate and the paired
math expr

19 Dependencies with length of 3 hops, that is from
an undirected path connecting desc candidate
with paired math expr and starts from the desc
candidate

20 Direction of feature 19 with respect to the candi-
date (incoming or outgoing)

21 Dependencies with length of 3 hops, that is from
an undirected path connecting desc candidate
with paired math expr and starts from the paired
expr

22 Direction of feature 21 with respect to the expres-
sion (incoming or outgoing)

23 Unigram, bigram, and trigram of features 19 and
21

Prior to extraction of features 18 to 23, a graph traversal algorithm is applied

to the predicate-argument structure to find the shortest path between the de-

scription candidate and the paired expression. Feature 18 then counts the graph

distance between the candidate and expression. Finally, features 19 to 23 are uti-

lizing the result from the shortest path computation to examine the dependency

of a mathematical expression and paired description candidate.
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To measure the performance of this description extraction method, we con-

duct a brief description extraction experiment on 50 mathematical papers ob-

tained from the NTCIR Math Understanding Subtask (Aizawa et al., 2013). We

set 40 papers to be the training set and 10 papers to be the test set. In addition,

this experiment uses three metrics to measure the extraction performance: preci-

sion, recall, and F1-score. Furthermore, the extraction performance is measured

using two different matching scenarios, namely strict matching and soft matching.

An extracted description will pass the strict matching evaluation if its position,

i.e. start index and length, is the same as that of a gold-standard description

for the same target mathematical expression. On the other hand, an extracted

description will pass the soft matching evaluation if its position contains, is con-

tained in, or overlaps with the position of a gold-standard description for the

same expression. Table 3.2 displays the results of the performance measurement.

Table 3.2: Performance of the description extraction model

Matching Scenarios P R F1
Strict 73.72 45.88 41.40
Soft 80.80 72.77 76.58

Table 3.3 shows an example of words in context window and description.

Before indexing the extracted textual information, several processes are applied

to it, such as tokenizing the string, eliminating stop words and any mathematical

expression, and stemming the remaining words.

Table 3.3: An example of textual information extracted for a target math expres-
sion.

Sentence: “For several applications, it is often computationally convenience to
work with the natural logarithm of the likelihood function p(x|θ), called the
log-likelihood.”
Target math expression: p(x|θ)

Type Example of Textual Information
context to work with the natural logarithm

of the likelihood function called the
log-likelihood

description likelihood function

3.4 Indexing Math Expressions

We adopt Apache Solr as the search platform of our system. There are three

indexes used by our system, each of which contains math-, paragraph-, and

document-level information. Each index contains multiple fields, which are shown
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in the Table 3.4.

Table 3.4: List of fields in each index

Index Name Field

Math

p opaths op
p opaths arg
p upaths op
p upaths arg
p sisters
c opaths type
c opaths arg
c upaths type
c upaths arg
p stree
p mtrick
p sigure
c stree
c mtrick
c sigure
contexts
descriptions
noun phrases
contexts depgraph (for Chapter 4)
descriptions depgraph (for Chapter 4)
noun phrases depgraph (for Chapter 4)

Paragraph all words

Document

title
abstract
keywords
descriptions
noun phrases
all words

The math index contains both encoded math expressions and textual infor-

mation explaining the expressions. In Table 3.4, fields p opaths op to p sister

represent encoded math expressions using path-based encoding technique applied

to MathML Presentation format, while c opaths type to c upaths arg represent

the results from the same encoding technique applied to MathML Content. Fields

p stree to p sigure and c stree to c sigure are the result from hash-based encod-

ing techniques applied to MathML Presentation and Content format. The rest

of fields in the math index represent the textual information found surround-

ing the math expressions. The textual information contained by these textual

fields, together with ones in paragraph and document indexes, are described in

the Chapter 3.3.
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3.5 Combining All Types of Information for Searching

Most of the math search systems combine math expressions and textual keywords

using Lucene scoring (Libbrecht and Melis, 2006; Munavalli and Miner, 2006;

Růžička et al., 2016):

score(q, f) = coord(q, f)× queryNorm(q)×
∑

t ∈ q

(tf (t, f)× idf (t)2 × norm(t, f))

(3.1)

The scores from (3.1), however, may not be optimal for ranking when the query

contains both math and text. For instance, our results for text-only queries

are occasionally better than those for queries with both math and text. Our

investigation showed that this happens because, in our system, the number of

terms generated from math encodings are often much higher than the number of

terms from text. Therefore, we need to normalize score obtained from each field.

We use

norm(score) =
score

1 + score
(3.2)

as the normalization function.

In addition, we suggest that different fields may have different importance.

Since the proper weights will strongly depend on the implementation of math

search system, we suggest that a learning method is required to obtain these

weights. We consider applying learning to rank methods, which refers to machine

learning techniques for constructing ranking models. There are four different

learning to rank methods we take into consideration, which are briefly described

as follows. Multiple linear regression estimates the weight of each feature using

least square technique (Wu et al., 2011). LambdaMART (Burges, 2010) combines

the strengths of boosted tree classification and LambdaRank. AdaRank (Xu

and Li, 2007) linearly combines weak rankers for making ranking predictions.

ListNet (Cao et al., 2007) uses different probability distributions to define the

loss function.

Multiple linear regression is considered as pointwise approach, because it tries

to predict the score for each single query-retrieved unit pair. LambdaMART,

on the other hand, is a pairwise approach, because it transforms ranking into

pairwise classification or pairwise regression. AdaRank and ListNet are listwise

approaches, since they try to directly optimize the value of a chosen evaluation

measures (e.g. NDCG, MAP, or P@k).
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3.6 Unification

The motivation of applying unification as post-processing module in our search

system is to put math expressions that can be instantiated from the query to

the rank higher than the one that cannot. The unification module treats each

symbol (i.e. operator, identifier, and number) found in math expressions as a

constant. Only free variables found in query math expressions are treated as

variables. Given two terms, each of which can be either a constant or a variable,

they unify if they are the same term or if they contain variables that can be

uniformly instantiated with terms in such a way that the resulting terms are

equal. For instance, query p = mv (all terms are constants and there is no free

variable) will only unify to math expressions that have the same presentation, i.e.

p = mv. On the other hand, query y = 5x+?C (?C is a free variable) will unify

to y = 5x+9, since variable ?C can be instantiated to constant 9. The unification

by variable instantiations is allowed when the instantiations are compatible. For

an example, query ?X =?X (?X is a free variable) will not unify to a = b. This

rule makes sense considering the query asks for an equality where the terms in

the left- and right-hand side of the equality symbol are the same.

We implement this module using the SWI-Prolog (Wielemaker, 2015) imple-

mentation for unificatoin. To use this feature, we transform each math expression

into its functor form (prefix notation). This functor form is obtained by utilizing

the semantic provided by Content MathML representation of the math expres-

sion. For instance, given a math expression a+b∗c, its functor form is: apply(plus,

a, apply(times, b, c)).

We use this unification module to boost the similarity score from the math

index. If a query and the math expression (or any subexpression of the expression)

returned by our search system unify, we double the math-level similarity score of

the expression while keep its paragraph- and document-level scores as they are.

3.7 Experiment using NTCIR-11 Math-2 Dataset

We test our math search module in NTCIR-12 MathIR task, which is the only

available shared task for MIR. This task however, allows only four submissions. In

addition, since we expect to achieve the best possible performance of our system,

we cannot enumerate all possible settings of our system.

Prior to the NTCIR-12 MathIR task, we use the available dataset and topics

from NTCIR-11 Math-2 task (Aizawa et al., 2014) to find several best settings of

our system. This NTCIR-11 dataset has the same profile as the NTCIR-12 task.
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They have the same corpus and the same information contained in the topics (i.e.

combination of math expressions and textual keywords).

3.7.1 Objective

Here, we do a quick experiment to investigate:

• whether our score normalization works well, and

• which of the learning to rank methods (multiple linear regression, Lamb-

daMART, AdaRank, and ListNet) performs best.

3.7.2 Dataset

The dataset released by NTCIR-11 Math-2 task consists of 105,120 scientific

papers (8,301,578 retrieval units (paragraphs)) that contain around 60M math

expression, 50 topics each of which includes a list of math expressions and a list

of keywords, and result of pool assessment (50 retrieval units per topic, manually

assessed with a relevancy score 0-4). The relevancy score 0 denotes non-relevant

unit, 1-2 partially relevant, and 3-4 highly relevant.

In the evaluation, we first generated a ranked list of all retrieval units that

match the query. Next, we created a condensed list from the raw ranked list

by removing all unjudged retrieval units. We used the condensed list for the

evaluation because the number of assessed units per topic is very small compared

to the total number of retrieval units in the dataset (incomplete assessment)

3.7.3 Experiment Settings

For this brief experiment, we use only a subset of the fields we have in our math-

level database, namely five fields storing path-based encoding applied to Presen-

tation MathML, and fields storing descriptions and context window. We suggest

that this setting has already resembled our situation if we use all databases and

all fields, that is we have two types of information: math encoding and textual

information.

We evaluated the ranking performance of Lucene’s tf-idf (specified by Eq. 3.1)

and learning to rank methods for combining math expressions and textual key-

words for math searching. Here, as suggested by the NTCIR-11 Math-2 re-

quirement, we use paragraph as the retrieval unit. For Lucene scoring, the

score(q, pi) of each retrieval unit (paragraph) pi for a given query q is calcu-

lated using step 1.1. in Procedure 1. For learning to rank methods, since the
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retrieval unit in our database (math) is different from what the assessment result

expects (paragraph), we use Procedure 1 for constructing the training set.

Procedure 1 (Training Set Construction)

1. Get a math expression f∗
i to represent each retrieval unit (paragraph) pi in

the training set.

1.1. Set f∗
i = argmaxfij∈pi score(q, fij) and score(q, pi) = score(q, f∗

i ),

where q is a query that contains math and keywords and score(q =

query, f = math) is defined by (3.1).

2. Get features for each retrieval unit pi in the training set.

2.1. For each topic, compose math query qf and textual query qt.

2.2. Features: sf = norm(score(qf , f∗
i )) and st = norm(score(qt, f∗

i ))

2.3. Response: binary relevancy score (depends on either high or partial

relevancy setting).

For LambdaMART and AdaRank, we set Mean Average Precision (MAP)

as the metric to optimize on training data. For testing, the learned models are

applied to rank all math found in all retrieval units. We use the step 1.1. in

Procedure 1 to obtain score(q, pi) of each retrieval unit, then rank the retrieval

units based on this score. The evaluation metrics are Precision-at-5, Precision-

at-10, and Mean Average Precision (MAP), which are defined as:

P@n =
#(relevant paragraphs retrieved in top n)

n
(3.3)

MAP =
1

Nq

Nq∑

i=1

MAPi (3.4)

MAPi =
1

|Ri|

|Ri|∑

k=1

P (Ri[ki]) (3.5)

where MAPi is the mean value precision for query qi, Ri is the set of relevant

paragraphs for query qi, |Ri| refers to its size, Ri[ki] is a reference to the k-th

paragraph in Ri, P (Ri[k]) is the precision where Ri[k] paragraph is observed

in the ranking of qi, and Nq is the total number of queries. The learning to

rank methods are evaluated using nested cross validation (5-inner-fold for tuning

hyperparameters and 10-outer-fold for reporting performance).
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Table 3.5: Performance of reranking method in NTCIR-11 Math-2 task

1−9 statistically significant (p < 0.05 in ANOVA with post-hoc Tukey HSD) compared
to model with the specified ID.

ID Model
Highly Relevant Partially Relevant

MAP P@5 P@10 MAP P@5 P@10

1. math .4108 .4440 .3820 .5085 .6800 .6220
2. keywords .49531 .54401 .52601 .58761 .940013 .904013

3. lucene scoring .53701 .57601 .48801 .621312 .78401 .73401

4. Linear Regr. .6259123 .652012 .566013 .7471123 .952013 .914013

5. λMART .6198123 .6640123 .546013 .7478123 .940013 .924013

6. AdaRank .6151123 .652012 .550013 .7520123 .952013 .924013

7. ListNet .591312 .61601 .53401 .7529123 .956013 .924013

st + sf .6245123 .656012 .566013 .7248123 .936013 .872013

3.7.4 Experiment Result

Table 3.5 shows the ranking performance from learning to rank, Lucene scoring

(without score normalization), and searching using either only math or keywords

as queries. First, the learning to rank methods outperform Lucene scoring ap-

proach at all metrics. The highest performance obtained by learning to rank

methods improves MAP, P@5, and P@10 by 21.18%, 21.94%, and 25.89%, re-

spectively.

Compared to the search that uses only textual keywords as queries, the Lucene

scoring method, which combines math and text, surprisingly performs lower, es-

pecially at P@10. This happens because, on average, a query generated from each

topic contained 94.82 math terms and 3.1 textual terms, and as a consequence,

text has a low impact on the score of each retrieval unit.

On the other hand, all learning to rank methods give improvements over text-

only search in both relevancy settings. Among the learning to rank methods,

however, there is no statistically significant difference among them.

The linear regression method, albeit simple, is quite impressive since it delivers

performance close to the highest one. In addition, unlike the other learning to

rank methods, the linear regression method does not need to be implemented

as a post-process reranking module. We can modify the queries we send to Solr

to reflect the weights we want to set in the linear regression. Thus, we have a

simpler pipeline for our search system.

The final row of Table 3.5 shows the performance of applying score normal-

ization without any weighting. This approach surprisingly performs well. The

produced precision is close to the performances of the learning to rank methods.
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Conclusion

From the results given above, we decide to implement the score normalization in

the next experiment. Furthermore, because of all the benefits of linear regression,

we prefer multiple linear regression to the other learning to rank methods for our

NTCIR-12 MathIR submissions.

3.8 Evaluation in NTCIR-12 MathIR

3.8.1 Objective

The objective of this experiment is to investigate the effectiveness of multiple

linear regression and unification modules in our math search system.

3.8.2 Dataset

The corpus for this experiment is the same as the one from previous experiment,

namely 8,301,578 retrieval units (paragraphs) that contain around 60M math

expression. There are 29 topics in this task.

Formulae Query Variables (Wildcards). Formulae in the query may con-

tains query variables (<qvar>) that act as wildcards, which can be matched to

arbitrary subexpressions on the retrieved formulae. Query variables are named

and indicated by a question mark (e.g. ?v). To handle this, we make several

adjustments to our math search pipeline as follows.

• Path-based encoding module. This module handles each wildcard found in

the queries by simply omitting any vertical paths, i.e. opaths and upaths

directing to it and excluding it from any p sisters.

• Hash-based encoding module. The algorithms in this module generate hash

values based on the name of the wildcard. For instance, given the query

variable ?v, this module produce a hash value from literal v.

• Unification. The wildcards are the only elements of the queries that are

treated as free variables.

3.8.3 Experiment Setup

There are four main features we apply for obtaining the ranked list, which are as

follows.

• score normalization
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• use cold-start weights obtained by multiple linear regression

• apply unification to boost the math-level score

• utilize textual information obtained from exploiting dependency graph (this

will be explained in Chapter 4)

The list of features we used for each submission in this task is depicted by Ta-

ble 3.6. Even though dependency graph is the subject of the Chapter 4, we include

it here because the evaluation of the linear regression and unification modules in-

volves our submissions that utilize dependency graph. We will however, limit the

involvement of dependency graph in our discussion here.

Table 3.6: Features used in each NTCIR12-MathIR submission

Run ID norm. dep. graph cold-start unif.
nodep lr unif (nd-lr-u) O O O
allfields nowgt unif (a-nw-u) O O O
allfields lr (a-lr) O O O
allfields lr unif (a-lr-u) O O O O

To obtain the set of cold-start weights, we construct a training set using the

relevance judgment result released by the NTCIR-11 Math-2 task (Aizawa et al.,

2014). The procedure for the training set construction is very similar to the

Procedure 1 in the previous experiment. The only difference is that now we

set weights for all fields we have (see Table 3.4), instead of only two fields. The

Procedure 2 specifies the complete steps to construct the training set. This differs

from Procedure 1 at the Step 2.

Procedure 2 (Training Set Construction for NTCIR-12 MathIR)

1. Get a math expression f∗
i to represent each retrieval unit (paragraph) pi in

the training set.

1.1. Set f∗
i = argmaxfij∈pi score(q, fij) and score(q, pi) = score(q, f∗

i ),

where q is a query that contains math and keywords, and score(q =

query, f = math) is defined by Lucene’s default TF-IDF similarity

with the subscore from each field being normalized using Eq. 3.2.

2. Get features for each retrieval unit pi in the training set.

2.1. For each topic, compose a query qfield for each field we have in all

indexes.
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2.2. Features: sfield =

⎧
⎪⎪⎨

⎪⎪⎩

score(qfield, f∗
i ) for field in math index

score(qfield, pi) for field in paragraph index

score(qfield, di) for field in document index

where di is the document where pi lies.

2.3. Response: relevancy score (0 to 4) provided in judgment result.

For the searching procedure, both score normalization and cold-start weights

are specified in the query using FunctionQuery provided by Solr. We obtain

initial ranked lists of 2,000 units from math, paragraph, and document indexes.

For the math index, we expand the ranked list in increments of 2,000 until the

number of unique paragraphs referred to by the list is at least 2,000.

3.8.4 Experiment Results and Discussion

The performance of our system in this task, which is measured using trec eval, is

shown in Table 3.7. Our system achieves the best precision among other teams.

Table 3.7: Search performances in NTCIR-12 MathIR

RunID P@5 P@10 P@15 P@20
Relevant

nodep lr unif (nd-lr-u) .2345 .1966 .1747 .1586
allfields nowgt unif (a-nw-u) .2828 .2379 .2184 .1948
allfields lr (a-lr) .2552 .2379 .2092 .1828
allfields lr unif (a-lr-u) .2621 .2448 .2046 .1810
ICST (Gao et al., 2016) .2276 .1862 .1632 .1362
MIRMU (Růžička et al., 2016) .1241 .1345 .1218 .1069
RITUW (Davila et al., 2016) .2069 .1517 .1126 .0948
SMSG5 (Thanda et al., 2016) .0690 .0931 .0874 .0810

Partially Relevant
nodep lr unif (nd-lr-u) .4828 .4793 .4690 .4552
allfields nowgt unif (a-nw-u) .5448 .5345 .5149 .4897
allfields lr (a-lr) .5586 .5379 .5034 .4690
allfields lr unif (a-lr-u) .5586 .5483 .5126 .4707
ICST .5517 .4966 .4299 .4000
MIRMU .3931 .3655 .3402 .3207
RITUW .4966 .3966 .3310 .2879
SMSG5 .3517 .3724 .3586 .3397

Here, we will not use our allfields * submissions to compare our system to

other participating systems. We defer the explanation for the Chapter 4. We will

use them only for comparing the effectiveness of cold-start weight (all fields nowgt

unif v. all fields lr unif ) and unification module (all fields lr unif v. all fields lr).
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The performance of our system that utilize fields shown in Table 3.4 is given

by the submission nodep lr unif (nd-lr-u). We examine the effectiveness of the

components as follows.

Cold-Start Weight (Learning to Rank by Multiple Linear Regression)

does not perform well enough. The submission a-lr-u, which uses cold-start

weights, does not outperform a-nw-u consistently. It outperforms a-nw-u only

in three occasions, namely P@5 (in partial relevance judgment) and P@10 (both

in relevance and partial relevance), while the opposite happens in the other five

occasions. The underperforming cold-start weights indicates that the linear re-

gression model learned from NTCIR-11 Math-2 dataset does not generalize well.

This may happen due to several reasons. First, the relevance assessors, which are

third-year and graduate students of mathematics, in Math-2 and MathIR tasks

may have different criteria in determining if a retrieval unit is relevant to a given

query. While an assessor may expect a relevant paragraph to simply contain

math expression with presentation similar to the query, another assessor may be

less strict with the presentation but expect the context of the retrieved paragraph

matching the query keywords. Moreover, in these two tasks, no specific instruc-

tions were given as to how the relevance was to be judged. Thus, the assessors

had to rely on their mathematical intuition, the described information need, and

the query itself.

The second reason is the multicollinearity issue in the regression model. The

introductions of too many fields that are correlated to each other causes this is-

sue. This did not appear in our previous experiment (see Chapter 3.7, because

we utilized coarser granularity of scores, i.e., math and text similarities. Multi-

collinearity is less likely to happen when there are less variables. Therefore, a

possible solution is to reduce the number of the variables (i.e. field scores) by

grouping them into more meaningful entities, such as, math similarity score, text

similarity in math-level database, paragraph-level similarity, and document-level

similarity. This may help us to eliminate the multicollinearity issue and also to

better understand the importance of each field.

We can also reconsider the implementation of cold-start weight by examining

other learning-to-rank algorithms, such as SVMrank (Joachims, 2006) and List-

Net (Cao et al., 2007), in handling our various fields. These algorithms however,

will add complexity to the math search pipeline, since we will have to implement

them as a post-processing module.
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Table 3.8: System configurations in NTCIR-12 MathIR

Team Pres. MathML Cont. MathML Query Variables (Unif.)
Our System YES YES YES/NO
ICST YES NO YES
MIRMU YES YES NO
RITUW YES NO YES
SMSG5 YES NO YES

Unification performs well enough. The submission a-lr-u outperforms a-lr in

most of the measurements. At P@15 and P@20, unification performs well for par-

tial relevance, but does not for relevance judgment. This suggests that unification

module obtains several partially relevant math expressions that were previously

outside of the top-20 and boosts their scores. As a consequence, these expressions

may now be ranked higher than several highly-relevant expressions that were pre-

viously already in the top-20. If these highly-relevant expressions (and all of its

subexpressions) and the query do not unify, then they may be now out of the

top-20.

Feature Comparison with Other Systems. For further analysis, we observe

the participant system configuration as shown in Table 3.8, which is compiled by

the task organizer (Zanibbi et al., 2016). We suggest that the main reason why our

system can significantly outperforms most other systems are the use of multiple

types of textual information and score normalization. We do not think our use of

unification to overcome query variables is the main reason because other systems,

such as ICST , RITUW, and SMSG5, also handle the query variables.

• Multiple types of textual information. Unlike ours, other systems do not

extensively utilize textual information. They simply store one or two types

of textual information, e.g., all words in each paragraph or text surround-

ing math expressions. As a result, we can outperform all systems at all

measurements in highly relevant judgment. We can have better P@5 than

others, because of the use of the math-level textual information, which is

designed to help improve precision of our system. If we limit our analysis

up to the top 20 retrieval units, the result of P@20 indicates that our use

of paragraph and document level text enable our system to have higher

recall than other participants. We found that this performance of our sys-

tem is impressive, considering that the second place system, ICST, perform

extensive reranking process using 255 dimension features.
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In the partially relevant judgment, ICST perform better than us at P@5 and

P@10 measurements. We suggest that their reranking procedure is the key

reason here. However, next, our system is better at P@15 and P@20. This

again shows that our paragraph and document level textual information

allows our system to have a good recall, that is by retrieving more relevant

retrieval units. Given this analysis, we suggest that our multiple types of

textual information is one of the key features of our system.

• Score Normalization in Eq. 3.2 that we applied during searching allows our

system to utilize many fields for searching without any concern regarding

whether scores from certain fields will improperly dominate the final score,

especially when the number of terms generated for each of these certain

fields is much larger than the number of terms generated for other fields.

As a result, the submission a-nw-u of our system (no weighting, but with

normalization) can finish at the top in this task.

We also observe that the use of Content MathML may not be useful enough.

ICST and RITUW, which do not use Content MathML, give performances close

to ours. We suggest that this happens because the tool (Miller, 2016) used in this

task to produce content markup does not always return correct Content MathML.

When this tool cannot read the semantic of a math expression (hence the wrong

content markup), it will produce a content markup that expresses the math

expression in the way similar to presentation markup, i.e., how the expression

is visually rendered. Furthermore, this tool can give correct content markup for

simple math expressions, but not for the complex ones or when there is a mistake

in the math expression. Yet, the corpus in this task contains scientific papers

from arXiv, which majority of them include long and complex math expressions.

Some examples of imperfect Content MathML are shown in Fig. 3.8. Both of

the obtained Content MathML contains error elements <cerror>, denoting one

or multiple mistakes detected in the math expressions. As a consequence, these

content markups express the math expressions in infix notation, similar to the

presentation markup.

3.9 Space Utilization and Processing Time

The execution environment of our system is two Linux servers, each of which

has 64 processors. We use one server to store math indexes, and another server

to store paragraph and document indexes. The sizes of math, paragraph, and

document indexes are 426.39GB, 898.18MB, and 1.26GB, respectively.
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F =

{
1 iff word is in sentence

0 else

Expected Content MathML Obtained Content MathML

<math>
<apply >

<eq/>
<ci>F</ci>
<piecewise >

<piece>
<cn>1</cn>

</piece>
<piece>

<cn>0</cn>
</piece>

</piecewise >
</apply >
</math>

<math>
<cerror >

<csymb >fragments </csymb >
<ci>F</ci>
<eq/>
<cerror >

<csymb>fragments </csymb>
<ci>normal -{</ci>
<mtext>

1iffwordisinsentence0else
</mtext>

</cerror >
</math>

a > b < c) (a wrong extra parentheses in the end)
Expected Content MathML Obtained Content MathML

(of a > b < c)

<math>
<apply >

<and/>
<apply>

<gt/>
<ci>a</ci>
<ci>b</ci>

</apply>
<apply>

<lt/>
<share/>
<ci>c</ci>

</apply>
</apply >

</math>

<math>
<cerror >

<csymbol >fragments </csymbol >
<csymbol >a</csymbol >
<gt/>
<csymbol >b</csymbol >
<lt/>
<csymbol >c</csymbol >
<ci>normal -)</ci>

</cerror >
</math>

Figure 3.8: Examples of wrong content markup. Both cases express the presen-
tations, not the semantics, of math expressions.

In addition, the processing time required by our system for each submission

is shown in Figure 3.9. The first three plots depict the time needed to obtain

initial ranked lists from document, paragraph, and math indexes, respectively.

For each plot, the first four boxplots correspond to our four submissions. These

submissions utilize score normalization step and some of them use also cold-

start weights. As a comparison, we put the fourth boxplot “all (default),” which

denotes the query time when none of these two features are implemented.

The order of the query time from the shortest to the longest is document,

paragraph, and then math index. Two factors influencing the query time are:

• the more retrieval units an index stores, the longer the query time is, and

• the more query terms and fields we specify for searching in a certain index,
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Figure 3.9: Query time of our math search system in the NTCIR-12 MathIR task

the longer the query time is.

Among our four submissions, the a-nw-u has the shortest query time. This hap-

pens because without the use of cold-start weights, the query (i.e. Function-

Query) becomes simpler and less calculation is performed by Solr. This reasoning

also explains why all our four submissions require query time that is significantly

longer than the “all (default)” case. All our four submissions use FunctionQuery

to apply score normalization to each field specified in the query. The more fields

a query specifies, the more score normalization step Solr has to perform, thus the

longer the query time is. This observation shows that the positive impact of score

normalization procedure, i.e. ensures that none of the scores from certain fields

will improperly dominate the final score, comes at the cost of the query time.

The last plot in Fig. 3.9 displays the wall-clock time taken by our system

to complete the unification procedure that is parallelized into 50 processes. All

four submissions have the same median of unification time. However, the time

distribution of submission a-nw-u is more skewed than the other two submissions.

Since all these submissions contain the same number of math expressions in the

initial ranked list, this difference in skewness indicates that the initial ranked list

of a-nw-u contains more complex math expressions, i.e. have deeper levels of

MathML representations and contain more sub-expressions, than the ranked lists

from nd-lr-u and a-lr-u. As unification step is performed between math query and
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each sub-expression of the retrieved math expressions, the more sub-expressions

a math expression contains, the longer the unification time is.

3.10 Conclusion

We have presented the detail of our math search system. We implemented two

types of encoding technique (path- and hash-based), several types of textual

information to cover three levels of information granularity (math expression,

paragraph, and document levels), score normalization, cold-start weights, and

unification.

Among our submissions, we found out that score normalization and unification

are integral parts of our search system. The cold start weights, however, do not

have a good impact on the search performance due to a possible multicollinearity

issue. Furthermore, by comparing to the other available math search systems,

we suggest that our multiple types of textual information are useful and the key

features in our system.

A possible future work is to set the unification module to vary the boosting

score based on the depth location of the subexpression inside the retrieved math

expression to which the query unifies. By doing so, however will also increase the

search time, since unification is an expensive feature. The effectiveness of cold-

start weights should also be reconsidered if we remove multicollinearity issue by

grouping the field scores into more meaningful entities. In addition, an application

of other learning to rank algorithms can also be further examined.

58



Chapter 4

Utilizing Dependency Relationships between

Mathematical Expressions in Mathematical

Search System

(This chapter is censored because it is under review in Information Retrieval

Journal)
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Chapter 5

Linking Mathematical Expressions to

Wikipedia

5.1 Introduction

Entity linking (EL) is the task of linking entity mentions in text to corresponding

entities in a knowledge base. One variant of entity linking is wikification (Bunescu

and Paşca, 2006; Cucerzan, 2007; Mihalcea and Csomai, 2007; Milne and Witten,

2008; Ferragina and Scaiella, 2010; Han et al., 2011; Ratinov et al., 2011; Cheng

and Roth, 2013; Guo and Barbosa, 2014), which identifies a set of entity mentions

in a document and then locates the most accurate mapping from these mentions

to corresponding Wikipedia articles. Current work on wikification has focused

on natural language mentions, often expressed in the form of noun phrases. Such

an approach, however, may not be sufficient for the wikification of technical

documents.

Important concepts in technical documents are often found not only in the

form of natural language text, but also in mathematical expressions. Therefore,

to wikify all important concepts in scientific documents, especially those from

science, technology, engineering, and mathematics (STEM), we need to consider

both forms. To the best of our knowledges, there is no previous study has at-

tempted to wikify math expressions found in technical documents. Hereinafter,

we refer to the task of wikifying math expressions as math entity linking (MEL).

The possible applications of MEL include computer-assisted learning, unsu-

pervised concept graph generation (Agrawal et al., 2012), and document represen-

tation (Ni et al., 2016). For example, in computer-assisted learning, MEL enables

us to develop an educational application that can suggest supplementary infor-

mation for math formulae unknown to a reader. In unsupervised concept graph

generation, one significant challenge is to identify informative concepts within

documents. We suggest that the important concepts in a scientific document are
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often denoted with math expressions; thus, we can exploit math expressions to

identify these concepts.

The challenges we encountered in developing an MEL system are as follows.

1. The semantics of math expressions are often difficult to identify from their

surface level representations because of their abstract notation (Kohlhase

and Sucan, 2006). This challenge is shared by MEL task and math formula

search.

2. Math expressions that match a given math mention are likely to be impor-

tant in the containing Wikipedia articles. This is a unique challenge that

appears in MEL, but not in math searches, which arises because the nature

of the wikification task is to assign Wikipedia titles to mentions. Hence, we

expect that given a math mention, an MEL system will return a Wikipedia

article that contains math expression(s) similar to the mention and, more

importantly, whose title precisely describes the math mention.

3. There is no available MEL dataset that is large enough to allow us to

implement a supervised-learning-based MEL system.

5.2 Problem Definition

We formalize the problem of linking mathematical expressions to Wikipedia

as follows. Given a document d containing a set of math expressions M =

{m1, . . . ,mn}, our goal is to assign each math mention mi a Wikipedia arti-

cle ti. This problem formulation is analogous to that of a wikification task. The

set of important math expression M is comparable to the set of mentions in

wikification.

The overview of our MEL framework is given in Algorithm 1. In this study,

we make an assumption as follows.

Assumption 1 The set of math mentions M has already been discovered.

Since we further assume in this paper that all math expressions (math mentions

and math expressions in the knowledge base) are in MathML format, we can

detect math mentions from a document by simply identifying the appearances

of <math> tag in the document. We take mention detection to be outside this

study’s scope and instead focus on (i) enriching math mentions, (ii) generating

candidates for each mention, and (iii) disambiguating these candidates.
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Figure 5.1 shows an example of our framework and demonstrates the re-

quirements of an MEL task. The matching math expressions for a given men-

tion must be important in the containing documents. The Wikipedia article on

Maxwell’s equation is the correct link for the math mention ∇ × B = µ0J +

µ0ϵ0
∂
∂tE. The other articles, such as Weibel instability and Magnetic field, are

not the correct answers. Although these articles contain math expressions that

are similar to the mention, they are not the representatives of the articles in

which they appear. In the Weibel instability article, the matching expression ap-

pears only to derive a simple example of Weibel instability. In the Magnetic field

article, the matching math expression appears to explain relationships between

magnetic (the main concept in the article) and electric fields.

Figure 5.1: Producing a correct link for equation ∇×B = µ0J+ µ0ϵ0
∂
∂tE

Algorithm 1: Math Entity Linking Framework

Input: document d with mentions M = {m1, . . . ,mn}
Output: links Γ = {t1, . . . , tn}

1 Mention Enrichment: For each mi ∈ M , construct a tuple (mi, texti)
where mi is the subexpressions extracted from mi and texti is the textual
information of mi

2 Candidate Generation: For each mention mi, generate link candidates
Ti = {ti,1, . . . , ti,k} by exploiting the enrichment results

3 Disambiguation: Find a link solution Γ = {t1, . . . , tn} where ti ∈ Ti is
the best non-null link for mi

5.3 Mention Enrichment

In the enrichment module, our system takes the input set of math mentions M

and performs math and text enrichment to each math mention mi. The output
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of the enrichment module for a given math mention mi is (mi, texti), where mi

and texti are the results of math and text enrichment, respectively.

5.3.1 Math Enrichment

A given math mention mi may describe (in)equalities. This enrichment module

finds the top-level (in)equality relation symbols, and then splits the math mention

on these symbols. The output of this step is a set mi = {mi, sub1i , sub
2
i , . . . },

which contains the original math mention mi and a set of split subexpressions

{sub1i , sub2i , . . . }.

For an example, given math mention mi

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n− 1)sxsy
=

n∑
i=1

(xi − x̄)(yi − ȳ)

√
n∑

i=1
(xi − x̄)2

n∑
i=1

(yi − ȳ)2

,

the returned set mi contains mi and the following three subexpressions:

• rxy

•

n∑
i=1

(xi−x̄)(yi−ȳ)

(n−1)sxsy

•

n∑
i=1

(xi−x̄)(yi−ȳ)
√

n∑
i=1

(xi−x̄)2
n∑

i=1
(yi−ȳ)2

This math enrichment technique is also applied to the math expressions we store

in our database.

5.3.2 Text Enrichment

For each given math mention mi, this module returns texti = concat(desci, npi),

which is a bag-of-words representation of the textual information in mi. It is ob-

tained by concatenating the descriptions desci and the concatenated noun phrases

npi of mi. Each description, which is a phrase in document d that refers directly

to mi, is automatically extracted using a machine learning based model (see

Chapter 3.3). On the other hand, noun phrases are extracted by parsing the

sentences that contain mi. We further enrich these two types of textual infor-

mation using dependency graph (Chapter 4), that is we also include the noun

phrases and descriptions of each symbol found within mi in the desci and npi,

respectively.
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5.4 Candidate Generation

To identify Wikipedia articles ti that may correspond to math mention mi, the

enrichment results mi and texti are used to construct query qi. The candidate

generation module outputs a ranked list of Wikipedia articles that contain math

expressions similar to the math mention in both presentation and meaning. In

addition, as a requirement of the MEL task, we must ensure that the math

mention can be described by the titles of the Wikipedia articles. Due to this

constraint, we measure not only the math-level similarity, but also the document-

level similarity for the link candidates.

5.4.1 Math-Level Similarity

The similarity between math mention mi and a math expression v in a knowledge

base is calculated as follows:

simm(mi, v) = simmath(mi, v) + simtext(mi, v) (5.1)

To measure the presentation similarity betweenmi and v, we first encode these

math expressions using path-based and hash-based math representations that

were described in Chapter 3.2. This encoding process produces several features for

each input math expression. The function simmath exploits the features generated

for mi and v, and then measures the tf-idf similarity φmf for each feature mf .

simmath(mi, v) = max
m′∈mi

∑

mf

φmf (m
′, v) (5.2)

To measure the semantic similarity between math expressions, we use simtext

to measure the tf-idf similarity of their textual information. Function simtext

utilizes the textual information texti of math mention mi and textv of math

expression v. Textual information texti and textv contain explanations of not

only their corresponding math expressions, but also several symbols found within

these expressions. Therefore, simtext measures not only the semantic similarity

between mi and v, but also the agreement between textual information about

symbols in mi and symbols in v.
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5.4.2 Document-Level Similarity

The document-level similarity between math mention mi and a math expression

v found in Wikipedia article t is calculated as follows.

simd(mi, v) =
∑

df

φdf (texti, t) (5.3)

Function simd measures the tf-idf similarity φdf between textual information texti

from a math mention and each textual feature df of the Wikipedia article ti,j .

The textual features of each Wikipedia article include its title, summary, body,

anchor text, weighted keywords (Rose et al., 2010), and text (i.e., descriptions

and noun phrases) surrounding the math expressions found in the article.

5.5 Disambiguation

For disambiguation purposes, our system reranks the link candidate list Ti ob-

tained in the previous step. Prior to reranking, we extract two disambiguation

features for each returned candidate, namely the match location and the im-

portance of the math expression. Disambiguation utilizes these two features in

addition to the math-level and document-level similarity measures obtained in

the previous step.

5.5.1 Matching Location

Given two math expressions v1 and v2, we define a feature loc(v1, v2) that de-

termines if math expression v1 or any of its split subexpressions can be found

in v2; if so, this feature returns a score that reflects the corresponding location,

weighted by the similarity between v1 and v2.

This feature is described in Algorithm 2. We first apply math enrichment to

v1 and v2 (lines 3–4) to obtain v1 and v2. Given these enrichment results, we

determine if any split subexpression of v′1 ∈ v1 can be found in v2 (line 5). If there

are several split subexpressions of v1 that appear in some split subexpressions of

v2, we obtain the pair of split subexpressions v′1 and v′2 that maximize the scoring

function match(v′1, v
′
2).

The function match(v′1, v
′
2) counts the weighted frequency of v′1 appearing

in v′2. This is reflected by the use of indicator function I(·) on line 8. Each

appearance of v′1 in v′2 is weighted by the location at which v′1 appears in v′2. The

deeper the subtree location of v′1 in v′2, the lower the assigned weight ( 1
1+depth2,j

).

In addition, the weight
|nodes(v′1)|
|nodes(v′2)|

reflects the ratio of the number of XML elements
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found in the MathML Presentation format of v′1 to that of v′2. The output of

function match(·, ·) is a number in the range [0..1]; an output of 1 expresses that

v′1 perfectly matches v′2.

Algorithm 2: Defining loc(v1, v2) feature

1 Function loc(v1, v2)
2 //MathEnrich() is defined in Chapter 5.3
3 v1 = MathEnrich(v1)
4 v2 = MathEnrich(v2)
5 return maxv′1∈v1

v′2∈v2

match(v′1, v
′
2)

6 Function match(v′1, v
′
2)

7 {(depth2,1, v′2,1), . . . , (depth2,r, v′2,r)} = ExtractSubtrees(v′2)

8 return
|nodes(v′1)|
|nodes(v′2)|

∑
j I(v

′
1 = v′2,j)

1
1+depth2,j

5.5.2 Importance of Math Expressions

The second disambiguation feature is the importance measure of math expression

v contained in link candidate t. This feature, together with simd, is used to ensure

that the title of link candidate t can describe the meaning of the math mention.

Algorithm 3 describes the procedure for obtaining this feature.

Algorithm 3: Defining the Importance of Math Expressions

Input: a set of math expressions V = {vi} in a Wikipedia article
Output: a vector of importance scores w

1 Generating a Math Expression Dependency Graph: Obtain a
directed graph G(V,E)

2 Applying Personalized PageRank to G(V,E): Obtain a vector c,
where ci represents the PageRank estimate of vi in article

3 Clustering: Cluster the vertices in the dependency graph. All math
expressions in cluster C will share the same weight: weight(C) =

∑
vi∈C ci

4 return importance vector w, where the weight wi of each math expression
vi is equal to weight(C) of cluster C into which vi is clustered.

Generating Dependency Graph.

We generate dependency graph using our heuristic method that was described in

the Chapter ??.

Applying Personalized PageRank to a Dependency Graph

We obtain the importance measure of each math expression (i.e., each ver-

tex in the dependency graph) by applying the Personalized PageRank algo-
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rithm (Haveliwala, 2003) to the dependency graph. Prior to applying the PageR-

ank algorithm, we flip the directions of all edges in the dependency graph. Hence,

a directed edge e12 from vertex (math expression) v1 to v2 now indicates that

the string representation of the Presentation MathML-formatted v1 contains the

string representation of the Presentation MathML-formatted v1. The idea here is

that a math expression is considered to be important in a document if there are

many math expressions in the document appearing as its symbols or its subex-

pressions.

The Personalized PageRank algorithm exploits the linkage structure of the

graph to compute the score of each vertex. The higher the score of a vertex,

the more important it is. Let A be the transition matrix of the dependency

graph, with Aij being the probability of reaching vertex vj from vi, which can be

computed as follows:

Aij =
1

out degree(vi)
(5.4)

The iterative step, in which we compute a new PageRank vector estimate c′ from

the current PageRank estimate c and the transition matrix A is

c′ = βAc+ (1− β)p (5.5)

where p is a preference vector used to avoid sinks and guarantee convergence. We

define the preference vector p as follows:

pi =
prefi∑
i prefi

(5.6)

There are two factors we consider when establishing preference scoring func-

tion prefi, namely the location and display of math expression vi in the article.

Based on our observation, important math expressions often appear in the early

sections of a Wikipedia article, since later sections usually contain derivations

or applications of the primary math expressions. Furthermore, important math

expressions are frequently displayed on their own lines. To reflect this, we set the

scoring function prefi as follows.

prefi =

⎧
⎪⎨

⎪⎩

1
1+section(vi)

if display(vi) ̸= inline

10−5 otherwise
(5.7)

in which function section(vi) returns the section number of the location of vi in

the article. If vi appears in the summary prior to the table of contents, section(vi)

returns 0.
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PageRank over Weighted Dependency Graph. PageRank was originally

designed to exploit only graph structures. Later, several studies, such as Tex-

tRank (Mihalcea and Tarau, 2004) and LexRank (Erkan and Radev, 2004), ap-

plied PageRank to weighted graphs. For instance, LexRank introduced a simi-

larity graph between sentences. Each vertex represents a sentence, and each edge

has a weight representing the similarity between two connected sentences. These

studies motivate us to apply the PageRank algorithm to weighted dependency

graphs. Here, we set loc(v1, v2) as the weight of edge e12 (from math expression

v1 to v2).

Clustering

We then cluster vertices V in dependency graph G(V,E). Each constructed

cluster C is defined as

C = {vi|(∀a, b)[va, vb ∈ C ∧ eab, eba ∈ E ∧ a ̸= b]}.

Each cluster C is assigned a weight that is equal to the sum of the PageRank

estimates of the contained math expression: weight(C) =
∑

vi∈C ci. Finally,

instead of taking ci, we take the weight(C) of cluster C, into which vi is clustered,

as the importance score wi of vi. We adopt this strategy because a distinct math

expression may appear multiple times in an article. By using this approach, given

two math expressions with the same PageRank estimates, the one that appears

more often in the source article will have a higher importance weight.

As an example of the importance measurement, we obtain the PageRank (i.e.,

the importance score) of each math expression contained in the Wikipedia article

titled “Supervised learning” using the unweighted dependency graph. An excerpt

of the result is shown in Table 5.1.

Table 5.1: A list of math expressions from the Wikipedia article titled “Super-
vised learning” in descending order of importance score.

Math Expression Meaning Impt. Score
J(g) = Remp(g) + λC(g) cost function 0.4324
L(yi, ŷ) loss of predicting the value ŷ 0.3360
P (y|x) probabilistic model of learn-

ing algorithms
0.1066

R(g) risk of function g 0.0682
· · · · · · · · ·
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Learning to Rank

The final step in the disambiguation process is to rerank the list Ti of link can-

didates using the features extracted for each candidate ti,j ∈ Ti. The list of

features we use in this study are displayed in Table 5.2. Our system utilizes

LambdaMART (Wu et al., 2010; Burges, 2010) as its reranker. LambdaMART is

trained using data collected from the NTCIR-12 MathIR Wikipedia task (Zanibbi

et al., 2016). The method for compiling the training data is described in the next

section.

After obtaining the reranking model, we can apply it to list Ti and acquire

the top link, ti ∈ Ti , which is the best non-null link for mention mi.

Table 5.2: Features for Learning to Rank.

math-level similarity : simm(mi, v)
doc-level similarity : simd(mi, v)
matching location : loc(mi, v) and loc(v,mi)
math importance : w1

v (importance score using unweighted dependency
graph) and
w2
v (importance score using weighted dependency

graph)

5.6 Experiment

5.6.1 Dataset

We evaluate our MEL framework on a dataset constructed from the NTCIR-12

MathIR Wikipedia subtask (Zanibbi et al., 2016). Unlike the dataset we used in

the previous chapters, which provides scientific documents as corpus, this subtask

used the Wikipedia articles as corpus. The Wikipedia articles were initially in

MediaWiki format. The NTCIR organizers extracted the math expressions by

first converting the MediaWiki math templates to LaTeX and then converted

them together with LaTeX formulae demarcated by <math> tags in the articles

to MathML format using LaTeXML (Miller, 2016).

We index all math expressions and the textual information found in the

Wikipedia dataset in a configuration shown in Table 5.3. Since the NTCIR-

12 MathIR Wikipedia task consider a Wikipedia article as the retrieval unit, we

set up two databases to store math-level and document-level information. In ad-

dition, we apply math enrichment to each math expression found in the corpus,

by splitting the expression on its top-level (in)equality relation symbols, as de-
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scribed in Chapter 5.3.1. We then index the original and the split subexpressions

into our database. Furthermore, since the output of the splitting is in the Pre-

sentation MathML format, we encode only the presentation markup of the math

expressions (and subexpressions).

Table 5.3: The index system storing Wikipedia dataset for math entity linking

Index Name Field

Math

p opaths op
p opaths arg
p upaths op
p upaths arg
p sisters
p stree
p mtrick
p sigure
contexts
descriptions
noun phrases
contexts depgraph
descriptions depgraph
noun phrases depgraph

Document

title
abstract
keywords
descriptions
noun phrases
all words

We utilize 20 topics released by the NTCIR-12 MathIR Wikipedia task, each

of which includes a math expression (in MathML format) and the Wikipedia

article that contains the query math expression. The latter information was

provided only for the assessor. Figure 5.2 shows an example of a topic. After

the evaluation, this task also released the result of a pool assessment; on average,

there were 67 retrieval units (i.e., math expressions) per topic, manually assessed

with a relevancy score 0-4. A relevancy score of 0 denotes non-relevance, 1–

2 partial relevance, and 3–4 high relevance. For each topick = (mk, tk) that

contains math expression mk and the source Wikipedia article tk, we manually

annotate each retrieval unit v assessed for the topick as:

• Matching: v has both presentation and meaning similar to mk, and/or

• Representative: v is an important math expression contained in Wikipedia

article t and is representative of its title.

Once we annotated the assessed retrieval units of topick, we create a set MRk of

retrieval units that are annotated as matching and representative, a set MNk of
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(NTCIR12-MathWikiFormula-20) Correlation and dependence

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n− 1)sxsy
=

n∑
i=1

(xi − x̄)(yi − ȳ)

√
n∑

i=1
(xi − x̄)2

n∑
i=1

(yi − ȳ)2

Query Source: Correlation and dependence:1

Figure 5.2: An example of a topic from the NTCIR-12 MathIR Wikipedia task

matching-but-nonrepresentative retrieval units, and a set NNk of nonmatching

and nonrepresentative retrieval units. Subsequently, for each topick, we construct

a set of math mentions Mk = MRk ∪ MNk. Our training data provides a list

POSk,i of correct links and a list NEGk,i of incorrect links for each math mention

mk,i ∈ Mk. The link candidates Tk,i for each mention mk,i are defined as Tk,i =

POSk,i ∪NEGk,i.

POSk,i = {vj |vj ∈ MRk ∪ {mk} ∧ title(tk,i) ̸= title(vj)}

NEGk,i = {vj |vj ∈ MNk ∪NNk ∧ title(tk,i) ̸= title(vj)}
(5.8)

The notation title(vj) represents the title of Wikipedia article from which the

math expression vj comes.

From the initial 20 topics, we utilize 16 topics for which |MRk|+ |MNk| > 0.

From these 16 topics, we generate 241 math mentions (|MRk|+ |MNk|).

5.6.2 Experimental Design

In the experiment, we investigate the performance of several MEL approaches:

1. MIR (baseline)

ti = title(argmax
v′

(simm(mi, v
′) + simd(mi, v

′))) (5.9)

2. w1
v-weighted MIR

ti = title(argmax
v′

(w1
v′ ∗ simm(mi, v

′) + simd(mi, v
′))) (5.10)

3. v2v-weighted MIR

ti = title(argmax
v′

(w2
v′ ∗ simm(mi, v

′) + simd(mi, v
′))) (5.11)
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4. Learning to Rank with MIR features: math-level and document-level simi-

larities

5. Learning to Rank with three features: math-level similarity, document-level

similarity, and math importance

6. Learning to Rank with all features (proposed approach): math-level simi-

larity, document-level similarity, math importance, and matching location

In the learning to rank approach, we utilized RankLib (The Lemur Project, 2015)

to train a LambdaMART model using NDCG@1 as the metric to optimize on the

training data. This metric is defined as:

NDCG@n =
DCG@n

IDCG@n

DCG@n =
p∑

i=1

2reli − 1

log2(i+ 1)

(5.12)

where p is the number of candidates, reli is the graded relevance of the result

at position i, and ideal DCG@n (IDCG@n) is the maximum possible DCG until

position p.

The performance of the LambdaMART model is is evaluated using 10-fold

cross validation. For each model, we report the highest performance under a

single combination of hyperparameters. The hyperparameter space involves the

number of trees (5000, 1000), the number of leaves for each tree (8, 10, 16), the

learning rate (0.001, 0.01, 0.1), and minimum leaf support (1, 10, 100, 1000).

To evaluate the disambiguation performance, we used trec eval (NIST, 2009) to

report the precision-at-1 (P@1) metric.

We utilized our final math search system developed in Chapter 4, as a baseline.

The second and third approaches investigate whether our proposed importance

feature is effective in improving the disambiguation performance of the MIR sys-

tem. These first three approaches are considered to be unsupervised method. The

final technique is our proposed supervised learning approach. To further evaluate

our two proposed features, we compare the performance this final technique to

the other learning approaches with less features.

5.6.3 Experimental Results and Discussion

The disambiguation performance of each approach is shown in Table 5.4. The

results show that a straightforward application of MIR is ineffective for MEL,

which delivers merely 6.22% precision. Interestingly, we found that by simply
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Table 5.4: Disambiguation performance.

Methods Precision (%)
Unsupervised approaches

MIR (baseline) 6.22
w1-weighted MIR 31.12
w2-weighted MIR 54.77

Supervised approaches
Learning to Rank – MIR feats. 52.85
Learning to Rank – 3 feats. 82.16
Learning to Rank – all feats. (proposed)* 83.40

weighting the math-level similarity of the MIR approach, we can improve its

precision significantly. Importance feature from unweighted and weighted depen-

dency graph increases the precision to 31.22% and 54.77%, respectively. This

demonstrates that our importance feature can detect important or representative

math expressions in Wikipedia articles. This finding agrees with our assumption

that important math expressions often appear in the early sections of articles and

are displayed on their own lines.

The use of supervised learning technique obviously gives better precision. By

using only two MIR features, we already obtain 52.85% precision. Furthermore,

the LambdaMART model with three features (two MIR features and importance

score) significantly outperforms the previous methods. The final approach how-

ever, only offers 1.51% precision improvement relative to the model with three

features.

Even though the use of matching location as a individual feature in supervised

approach only gives a marginal improvement, its use for generating weighted de-

pendency graph has an important impact. The results from the unsupervised

approaches (w1 v. w2-weighted MIR) shows that taking into account the similar-

ity between math expressions can produce more reliable importance scores. This

shows that our matching location feature has the potential to disambiguate link

candidates. One downside of this feature is that when two split subexpressions

(v′1 and v′2) are the same numeric literal, this feature will have high value. This

may cause two math expressions with different meanings to be marked as similar.

For instance, this feature will tell that an algebraic equation x5−3x+1 = 0 have

a similar meaning to the Dirac equation (h̄(γ0c ∂t+
∑3

k=1 γk∂k)+ imc)Φ(t, x) = 0,

because both expressions have the same split subexpression, that is the numeric

literal “0”. To overcome this issue in our next MEL system, we plan to disregard

the comparison between two split subexpressions that denote numeric literals or
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simple symbols.

Table 5.5: MEL output examples.

No. Math mention and the resulting link

Correct Links

1 Mention: cosC = − cosA cosB + sinA sinB cos c

Source: Spherical trigonometry

Link: Spherical law of cosines

Match: cos(A) = − cos(B) cos(C) +
sin(B) sin(C) cos(a)

2 Mention: r =
∑N

i=1(Xi−X̄)(Yi−Ȳ )√∑N
i=1(Xi−X̄)2

√∑N
i=1(Yi−Ȳ )2

Source: Fisher transformation

Link: Correlation and dependence

Match: rxy =

n∑

i=1
(xi−x̄)(yi−ȳ)

(n−1)sxsy
=

n∑

i=1
(xi−x̄)(yi−ȳ)

√
n∑

i=1
(xi−x̄)2

n∑

i=1
(yi−ȳ)2

3 Mention: (2N)!
k!(2N−k)!p

kq2N−k

Source: Genetic drift

Link: Poisson limit theorem

Match: (n)!
(n−k)!k!p

k(1− p)n−k → e−λ λk

k!

Incorrect Links

4 Mention: ax2 + bx+ c = 0

Source: Algebraic solution

Link: Bring radical

Match: x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0

5 Mention: as2 + bs+ c = 0

Source: Huzita-Hatori axioms

Link: Line-sphere intersection

Match: ad2 + bd+ c = 0

6 Mention:

⎡

⎣V1

I2

⎤

⎦ =

⎡

⎣h11 h12

h21 h22

⎤

⎦

⎡

⎣I1

V2

⎤

⎦

Source: Two-port network

Link: Invariant subspace

Match: T =

⎡

⎣T11 T12

0 T22

⎤

⎦

Table 5.5 shows examples returned by our method. Our system links mention

#1 to a correct Wikipedia article, which contains a math expression that has the

same structure as the mention. It also returns correct links for mentions 2 and

3, although the matching math expressions do not perfectly match the mentions.
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Our system can address this case because of the math enrichment results that

calculate math-level similarity. We found the result for mention 3 to be quite

interesting. The matching math expression is a partial match to the mention and

the body of the matched article does not contain most of the textual information

of the math mention (i.e., only the term “probability” is shared). Our system

detects that the article containing this matching expression is the correct link

based on two factors:

• The use of math enrichment boosts the math-level similarity between the

mention and the math expression in the knowledge base, indicating to the

system that both expressions have a similar structure.

• The matching expression appears on its own line early in the article. This

gives the expression a high importance score.

Our method, however, returns incorrect links for mentions 4–6. Mention 4 is

a quadratic equation, but the returned link is about the Bring radical, the unique

real root of polynomial x5+x+a. This happened because there is a partial match

between the mention and the returned expression, and the description “quadratic

equation” appears repeatedly in the returned Wikipedia article. Mention 5 per-

fectly matches the returned math expression and both represent the same con-

cept (a quadratic equation). However, the article “Line-sphere intersection” is

not judged to be a correct link, because the returned expression is an insignif-

icant entity in the article. For mention 6, the returned math expression has a

structure similar to that of the math mention, but we can easily assess that this

is an incorrect link, as these two math expressions represent different concepts,

i.e., hybrid parameters in electrical circuits (the math mention) and linear map-

ping (the returned expression). These negative results suggest that we need to

incorporate global coherence methods into our next MEL system to maximize

the agreement between candidate entities.

5.7 Conclusion

In this study, we addressed the challenge of math entity linking (MEL). We found

out that a straightforward application of a math search system is inadequate. We

then proposed a learning-based MEL system that utilizes features, such as math-

level similarity, document-level similarity, math importance, and matching loca-

tion. Evaluation of the proposed system show that it achieved 83.40% precision,

outperforming the straightforward application of a math search system (6.22%).
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More importantly, we found that our math importance feature can detect im-

portant math expressions in Wikipedia articles. Furthermore, this confirms our

assumption that important math expressions often appear near the beginning of

articles and are displayed on their own lines.

A possible future work is to enhance the matching location feature. Instead

of applying exact matching here, we can consider unification to find the match-

ing subtrees for each given math expression. However, since unification is an

expensive operation, we need to be careful with how many times it is applied

for disambiguating each mention. Another suggestion is to develop a module to

detect NIL mentions, i.e., mentions without corresponding Wikipedia title.
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Chapter 6

Discussion and Future Works

In this thesis, we developed a mathematical information access (MIA) system

that is composed from math search and math entity linking (MEL) modules. For

the first module, we proposed the extraction of multiple types of textual informa-

tion and the use of dependency relationships between math expressions. We then

implemented and examined the effectiveness of these two aspects in a math search

system. Later, for the purpose of formula browsing in MIA, we introduced a chal-

lenge of linking math expressions in documents to their corresponding Wikipedia

articles.

In this chapter, we first discuss the limitations of our math search and MEL

modules. We also discuss the roles of dependency relationships between math

expressions in these two modules. Then, we describe the limitations of our MIA

system and present possible future work to further advance the research in MIA.

6.1 Framework of Mathematical Search System

Math search systems are expected to allow math expressions within each docu-

ment to be queried using math expressions and keywords. Therefore, there are

several aspects to consider during developing a math search system, namely ex-

traction of textual information, encoding and indexing of math expressions and

their textual information, and the scoring function.

The encoding of math expressions is not our focus in this thesis. The major-

ity of current math search systems, even though they have their own encoding

implementations, the main idea is rather similar. Some search systems encode

math expressions by extracting the placement of symbols in the math expres-

sions, and some of the others extracting and generalizing the substructures of

math expressions. Our path-based and hash-based (or subtree-based) techniques

are in the former and latter categories, respectively. Unification, which brings

positive effect to our search system, also had been used in substitution tree based
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math search system.

For each math expression, we extracted and indexed several types of textual

information, which can be categorized into three different levels: math, para-

graph, and document. First, we extracted textual information describing each

math expression. For this category, we considered words within the same sen-

tence as the expression and also textual descriptions which are precisely define

the expression. Next, we extracted two categories of textual information, i.e. the

one that is shared by math expressions appearing the same paragraph and the

one by expressions in the same document. In this dissertation, while we have

performed several steps to obtain math-level textual information, the process-

ing steps applied to obtain paragraph- and document-level textual information is

however minimal. We suggest that there may not be much information we can

extract from a paragraph, but applying additional information extraction steps

to the documents can be useful for searching. For instance, the category of the

documents (e.g. technical or not) and the topic of the documents (e.g. related

scientific fields). In addition, we can also extract the relationships between docu-

ments. In the case of storing math expressions from scientific articles, we may use

the bibliometric information of the documents. Meanwhile, for web-based articles

(e.g. Wikipedia), we can exploit the links among them. This will enable us to

retrieve math expressions that appear in the highly cited or popular documents.

Another limitation is the bag-of-words representation we used to store the tex-

tual information. We can further enrich the representation of each indexed math

expression by constructing its vector representation using word2vec (Mikolov

et al., 2013) (i.e. becoming math2vec) and/or Latent Dirichlet Allocation (Blei

et al., 2003). We also found out that the architecture of our search system is not

yet reliable. The query time of our search system is too long, but sharding the

database should solve this issue.

In regard to the scoring and ranking in our search system, we pursued a tech-

nique that is simple to implement, so that it would not add complexity to our

math search pipeline. We applied cold-start weighting schema obtained from mul-

tiple linear regression. To implement this weighting, we modified the queries sent

to our database to take into account the cold-start weight information. Despite

its simplicity, we did not get a positive result from this scenario. We consider

multicollinearity as the main issue here, because we attempted to fit a regression

model using all variables (i.e. fields in our databases) that might be correlated

to each other. A possible solution here is to reduce the number of the scores

returned in searching process. For instance, we can group the scores from several

78



fields together, so that in addition to eliminate the multicollinearity issue, we

can also get scores that are easy to interpret, such as math similarity score, text

similarity in math-level database, paragraph similarity, and document similarity.

Another solution is the implementation of other learning to rank algorithms, such

as SVMrank (Joachims, 2006) and ListNet (Cao et al., 2007), to handle multiple

fields. The implementation of learning to rank technique as a post-processing

module will also open the possibilities to rerank initial ranked lists using features

other than the initial scores, such as the importance of math expression in the

containing document, the topic of the document, the similarity between math

expressions in the initial ranked list (a relevant math expression might be the

one that appears several times in the top-N of the ranked list), and whether the

query and the retrieved math expression are unifiable.

Unification technique, which is the final step in our math search system, is

capable of improving the search precision, but prolongs the query time. Since

unification can be used to rerank the initial ranked lists, we should carefully

determine the number of retrieval units in the initial lists.

6.2 Linking Mathematical Expressions to Wikipedia

We introduced a challenge and a learning-based system to link math expressions

found in documents to their corresponding Wikipedia articles. We proposed a

technique to estimate the importance of math expressions in Wikipedia articles,

since the matching math expressions have to be important in the containing ar-

ticles. There are three factors we took into account in this technique: (i) the

location of the math expression in the document, (ii) the display of the math ex-

pression, and (iii) how similar the math expression to the other math expressions

in the document. We encode these three types of information into dependency

graph of math expressions, then apply Personalized PageRank algorithm to the

graph.

Our experimental results showed that this importance score works well in

identifying correct links. However, the factors used to compute the importance

score requires several assumption. First, it assumes that the later a math expres-

sion appears in an article, the less important it is. This assumption is reasonable

if an article explaining a certain concept puts majority of the definition of the

concept in the early sections, and put only extra information, such as examples,

applications, and derivation of the main math expressions, in the later sections.

However, some articles in Wikipedia have different formats. They explain a

general topic, and further describe more specific concepts in each section. For
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instance, the article titled “Information theory” contains several concepts, such

as entropy, mutual information, and coding theory, in different sections. Since

this article can be considered as a correct link to any math expressions from

these concepts, these concepts have the same importance in this article. Thus,

the order of the sections in which these concepts appear should not be taken into

account for computing the importance score. This issue is a challenging task to

tackle in the future, since we need to initially predict the role of each section in

each Wikipedia article. This role will be useful as a disambiguation feature.

Furthermore, regarding how math expressions are displayed, the math ex-

pressions in equation environment are often important, but math expressions

appearing inline are not necessarily insignificant. Additional information that

can be used to tell whether math expressions are important or not is to recognize

whether expressions are math formulae (i.e. holding (in)equalities) or not. In

addition, we can treat a simple symbol in a Wikipedia article as an important

concept if this article specifies a math formula to define it.

Despite the promising performance of our MEL module, we have not con-

sidered the effect of NIL link. In this dissertation, we assume that all math

expressions have their corresponding Wikipedia articles. This assumption was

also frequently used by wikification (or entity linking) work that focused on de-

veloping disambiguation algorithms. In the actual run, this assumption however,

may not hold. We consider this aspect as the main limitation of our MEL module.

The simplest way to solve this in the future is to implement a classifier to tell us

whether the disambiguation result of a math mention is the correct link or not.

For this classifier, we can use the confidence distribution of the disambiguation

candidates, link probability (Mihalcea and Csomai, 2007), and generality of each

disambiguation result.

An interesting extension of this work is to leverage the wikification result of

textual concepts. We can leverage the disambiguation results from current wiki-

fication (or entity linking) system, by considering them during the computation

of the global coherence of a disambiguation candidate of a math expression. Fur-

thermore, we can jointly disambiguate textual concepts and math expressions in

documents.

In addition, in this dissertation, we defined that the disambiguation result is

a Wikipedia article that contains math expression(s) similar to the math mention

and also mainly explain the same concept as the mention. For future direction,

we may relax the first rule, i.e. having a matching concept is more important

than a matching math expression, since this is more suitable to the definition of
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wikification or entity linking.

6.3 Utilizing Dependency Relationships between Mathematical

Expressions in Mathematical Information Access

Both our math search and MEL modules gain benefits from dependency graph.

Our math search system uses it to enrich the indexed textual information. Mean-

while, our MEL module utilizes it to derive the importance score of math expres-

sions in documents. As a consequence, we obtained satisfactory experimental

results from these modules. This reflects that to semantically disambiguate math

expressions, we need to take into account the textual meanings of those expres-

sions and their constituent symbols. The current condition in MIA, where has

not been able yet to automatically disambiguate math expressions from only their

presentations, may also back the importance of this textual enrichment.

Another interesting application of dependency graph is to capture relation-

ships between math expressions from multiple documents. While attempting to

do it in an arbitrary collection of technical documents might be exceptionally

difficult, especially due to variations in mathematical notation across scientific

fields, it is interesting to examine its possibility in a set of documents from closely

related topics. Furthermore, once we can capture the mathematical concept rep-

resented by each math expression reliably (Pagel and Schubotz, 2014; Schubotz

et al., 2016), we can transform a dependency graph of math expressions into a

knowledge graph of math concepts.

In this dissertation, we proposed a heuristic algorithm based on string match-

ing and extensive normalization of math expressions. Our method is based on

the assumption that two math expressions having the same (base) representation

or the same left-hand side subexpressions is equivalent to sharing the same mean-

ing. This assumption is reasonable if each dependency graph covers only a single

document. However, to develop a dependency graph that covers multiple docu-

ments, this assumption cannot be used, as different documents may use different

math symbols to represent the same math concept and the same math symbol to

represent different math concepts. As a workaround, we can consider extracting

a dependency graph by exploiting more information related to each math expres-

sion, for example, by exploiting both the structures of the math expressions and

the words surrounding each math expression.
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Chapter 7

Conclusion

The main challenge in developing the math search and math entity linking (MEL)

modules of a math information access (MIA) system is the ambiguity inherent in

math expressions. Most of the previous work on math search system focused on

establishing index systems, and have not yet fully exploited the text in the docu-

ments. Each of these systems utilized only a certain type of textual information.

However, each type of textual information has its own strength and weakness.

Chapter 3 describes the framework of our proposed math search system. This

framework includes the preprocessing step applied to each math expression, the

indexing step, and the post-processing module. In the preprocessing step, we

first encode math expressions, so that we can extract their structures. We ap-

plied two encoding techniques, i.e. path- and hash (or subtree)-based techniques,

to both the presentation and content markup of math expressions. Furthermore,

since we cannot acquire the semantics of math expressions only from their token

elements and structures, we extract multiple types of textual information to rep-

resent each math expression. This is the first unique feature of our math search

system. We have three different levels of detail of the textual information, namely

document-, paragraph-, and math-level textual information. The paragraph- and

document-level information is used to capture all textual concepts that appears

in the paragraph and document containing math expression. These types of infor-

mation support our search system to have a good recall. On the other hand, the

math-level textual information specifically describes the meaning of each math

expression. Extracting and indexing this information allows our math search to

have a good precision. Once we indexed both the encoded representation and

the textual information of math expressions, we setup the scoring component of

the search system to ensure that there is no scores from certain fields improperly

dominate the final score during searching. In addition, different database fields

may have different importance, i.e., certain fields may be more predictive of the
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relevance of math expressions. To meet this requirement, we implement score

normalization, which is surprisingly often overlooked by other search systems,

and a weighting scheme. While the score normalization successfully prevents

bias toward certain fields, the weighting scheme does not perform well. We sug-

gest that the underperforming weighting scheme, which is obtained by multiple

linear regression, is caused either by development set and test are constructed

by assessors using different relevancy criteria, or by the multicollinearity issue

in the regression model. This latter issues arise because the introduction of too

many fields (i.e. variables in the regression model) that are correlated to each

other. Finally, we implement unification as post-processing module in our search

system. Despite its time-costly operation, it delivers precision improvement to

our system. Our two key features, the use of multiple types of textual informa-

tion and score normalization, allow our system to outperform majority of the

participating systems in the NTCIR-12 MathIR task.

Chapter 4 discuss the extraction and impact of dependency graph of math

expressions in our math search system. We first describe our proposed heuris-

tic method to extract dependency graphs. We evaluate its effectiveness using

manually annotated data and show that the proposed method delivers an ac-

curacy of .8674 while the baseline (unification) method achieves an accuracy of

.7140. We then evaluate the effectiveness of the dependency graph in enriching

textual information related to math expressions and in improving the retrieval

results of math search system. The use of dependency graph to further enrich

the math-level textual information is another unique feature of our math search

system. We can interpret the textual enrichment by dependency graph as the

global context of math expressions. Prior to the use of dependency graph, our

search system attempts to retrieve only math expressions that have meanings

similar to the user queries. However, dependency graph allows us to also re-

trieve other math expressions expressing concepts that are related to the user

queries. Our experimental result shows that the use of dependency graph in the

math search system delivers 12.60% precision improvement. Furthermore, in the

recent NTCIR-12 MathIR task, we record that dependency graph significantly

improves precision of our search module by 24.52%. Overall, the best setting

of our math search system that incorporates this graph achieves precision-at-5

of .2828 and precision-at-20 of .1586 in relevant judgment, as well as .5448 and

.4897 in partially relevant judgment. On the other hand, the next best system

delivered .2276 and .1362 together with .5517 and .4000 in relevant and partially

relevant judgments, respectively.
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In Chapter 5, we introduce a challenge and a learning-based system to link

math expressions found in documents to their corresponding Wikipedia articles.

We first approached this problem using our math search system. However, the

result was unsatisfactory. We noticed that even though both math search and

this linking problems attempt to find math expressions semantically similar to

the query (or math mention), there is a unique challenge in this linking prob-

lem. The matching math expressions need to be not only semantically similar

to the mention, but also important in the containing documents. To solve this

unique challenge, we introduced a technique to estimate the importance of math

expressions in Wikipedia articles. There are three factors we took into account

in this technique: (i) the location of the math expression in the document, (ii)

the display of the math expression, and (iii) how similar the math expression to

the other math expressions in the document. We encode these three types of

information into dependency graph of math expressions, then apply Personalized

PageRank algorithm to the graph. Our experimental results showed that this

feature is crucial to solve this challenge. It allowed our unsupervised approach

to have a precision of 54.77% from previously 6.22%. The use of supervised

approach allowed us to have an even higher precision.

The cornerstone of our work was the dependency relationships between math

expressions. Both our math search module and math entity linking modules gain

benefits from these dependency relationships. This reflects that such dependency

relationships have potential to semantically disambiguate math expressions.

This work was our contribution towards enabling mathematics-aware informa-

tion retrieval and the disambiguation of mathematical knowledge in documents.

We hope that digital library practices in the near future integrate mathematical

information access modules into their implementation.
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