6,781 research outputs found

    Electrospun Bundled Carbon Nanofibers for Skin-Inspired Tactile Sensing, Proprioception and Gesture Tracking Applications

    Get PDF
    Abstract In this work, we report a class of wearable, stitchable, and sensitive carbon nanofiber (CNF)-polydimethylsiloxane (PDMS) composite-based piezoresistive sensors realized by carbonizing electrospun polyacrylonitrile (PAN) nanofibers and subsequently embedding in PDMS elastomeric thin films. Electro-mechanical tactile sensing characterization of the resulting piezoresistive strain sensors revealed a linear response with an average force sensitivity of ~1.82 kN−1 for normal forces up to 20 N. The real-time functionality of the CNF-PDMS composite sensors in wearable body sensor networks and advanced bionic skin applications was demonstrated through human motion and gesture monitoring experiments. A skin-inspired artificial soft sensor capable of demonstrating proprioceptive and tactile sensory perception utilizing CNF bundles has been shown. Furthermore, a 16-point pressure-sensitive flexible sensor array mimicking slow adapting low threshold mechanoreceptors of glabrous skin was demonstrated. Such devices in tandem with neuromorphic circuits can potentially recreate the sense of touch in robotic arms and restore somatosensory perception in amputees

    Active End-Effector Pose Selection for Tactile Object Recognition through Monte Carlo Tree Search

    Full text link
    This paper considers the problem of active object recognition using touch only. The focus is on adaptively selecting a sequence of wrist poses that achieves accurate recognition by enclosure grasps. It seeks to minimize the number of touches and maximize recognition confidence. The actions are formulated as wrist poses relative to each other, making the algorithm independent of absolute workspace coordinates. The optimal sequence is approximated by Monte Carlo tree search. We demonstrate results in a physics engine and on a real robot. In the physics engine, most object instances were recognized in at most 16 grasps. On a real robot, our method recognized objects in 2--9 grasps and outperformed a greedy baseline.Comment: Accepted to International Conference on Intelligent Robots and Systems (IROS) 201

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    Active End-Effector Pose Selection for Tactile Object Recognition through Monte Carlo Tree Search

    Full text link
    This paper considers the problem of active object recognition using touch only. The focus is on adaptively selecting a sequence of wrist poses that achieves accurate recognition by enclosure grasps. It seeks to minimize the number of touches and maximize recognition confidence. The actions are formulated as wrist poses relative to each other, making the algorithm independent of absolute workspace coordinates. The optimal sequence is approximated by Monte Carlo tree search. We demonstrate results in a physics engine and on a real robot. In the physics engine, most object instances were recognized in at most 16 grasps. On a real robot, our method recognized objects in 2--9 grasps and outperformed a greedy baseline.Comment: Accepted to International Conference on Intelligent Robots and Systems (IROS) 201
    • …
    corecore