7,661 research outputs found

    An Extended Kalman Filter for Data-enabled Predictive Control

    Full text link
    The literature dealing with data-driven analysis and control problems has significantly grown in the recent years. Most of the recent literature deals with linear time-invariant systems in which the uncertainty (if any) is assumed to be deterministic and bounded; relatively little attention has been devoted to stochastic linear time-invariant systems. As a first step in this direction, we propose to equip the recently introduced Data-enabled Predictive Control algorithm with a data-based Extended Kalman Filter to make use of additional available input-output data for reducing the effect of noise, without increasing the computational load of the optimization procedure

    Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes

    Get PDF
    Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone

    Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure

    Get PDF
    Stochastic optimization algorithms with variance reduction have proven successful for minimizing large finite sums of functions. Unfortunately, these techniques are unable to deal with stochastic perturbations of input data, induced for example by data augmentation. In such cases, the objective is no longer a finite sum, and the main candidate for optimization is the stochastic gradient descent method (SGD). In this paper, we introduce a variance reduction approach for these settings when the objective is composite and strongly convex. The convergence rate outperforms SGD with a typically much smaller constant factor, which depends on the variance of gradient estimates only due to perturbations on a single example.Comment: Advances in Neural Information Processing Systems (NIPS), Dec 2017, Long Beach, CA, United State
    • …
    corecore