The literature dealing with data-driven analysis and control problems has
significantly grown in the recent years. Most of the recent literature deals
with linear time-invariant systems in which the uncertainty (if any) is assumed
to be deterministic and bounded; relatively little attention has been devoted
to stochastic linear time-invariant systems. As a first step in this direction,
we propose to equip the recently introduced Data-enabled Predictive Control
algorithm with a data-based Extended Kalman Filter to make use of additional
available input-output data for reducing the effect of noise, without
increasing the computational load of the optimization procedure