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Abstract

Stochastic optimization algorithms with variance reduction have proven successful
for minimizing large finite sums of functions. Unfortunately, these techniques are
unable to deal with stochastic perturbations of input data, induced for example by
data augmentation. In such cases, the objective is no longer a finite sum, and the
main candidate for optimization is the stochastic gradient descent method (SGD).
In this paper, we introduce a variance reduction approach for these settings when
the objective is composite and strongly convex. The convergence rate outperforms
SGD with a typically much smaller constant factor, which depends on the variance
of gradient estimates only due to perturbations on a single example.

1 Introduction

Many supervised machine learning problems can be cast as the minimization of an expected loss
over a data distribution with respect to a vector x in Rp of model parameters. When an infinite
amount of data is available, stochastic optimization methods such as SGD or stochastic mirror descent
algorithms, or their variants, are typically used (see [5, 11, 24, 34]). Nevertheless, when the dataset is
finite, incremental methods based on variance reduction techniques (e.g., [2, 8, 15, 17, 18, 27, 29])
have proven to be significantly faster at solving the finite-sum problem

min
x∈Rp

{
F (x) := f(x) + h(x) =

1

n

n∑
i=1

fi(x) + h(x)
}
, (1)

where the functions fi are smooth and convex, and h is a simple convex penalty that need not be
differentiable such as the `1 norm. A classical setting is fi(x) = `(yi, x

>ξi) + (µ/2)‖x‖2, where
(ξi, yi) is an example-label pair, ` is a convex loss function, and µ is a regularization parameter.

In this paper, we are interested in a variant of (1) where random perturbations of data are introduced,
which is a common scenario in machine learning. Then, the functions fi involve an expectation over
a random perturbation ρ, leading to the problem

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

fi(x) + h(x)
}
. with fi(x) = Eρ[f̃i(x, ρ)]. (2)

Unfortunately, variance reduction methods are not compatible with the setting (2), since evaluating
a single gradient ∇fi(x) requires computing a full expectation. Yet, dealing with random pertur-
bations is of utmost interest; for instance, this is a key to achieve stable feature selection [23],
improving the generalization error both in theory [33] and in practice [19, 32], obtaining stable
and robust predictors [36], or using complex a priori knowledge about data to generate virtually
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Table 1: Iteration complexity of different methods for solving the objective (2) in terms of number of
iterations required to find x such that E[f(x)−f(x∗)] ≤ ε. The complexity of N-SAGA [14] matches
the first term of S-MISO but is asymptotically biased. Note that we always have the perturbation
noise variance σ2

p smaller than the total variance σ2
tot and thus S-MISO improves on SGD both in the

first term (linear convergence to a smaller ε̄) and in the second (smaller constant in the asymptotic
rate). In many application cases, we also have σ2

p � σ2
tot (see main text and Table 2).

Method Asymptotic error Iteration complexity

SGD 0 O

(
L

µ
log

1

ε̄
+

σ2
tot

µε

)
with ε̄ = O

(
σ2

tot

µ

)
N-SAGA [14] ε0 = O

(
σ2
p

µ

)
O

((
n+

L

µ

)
log

1

ε

)
with ε > ε0

S-MISO 0 O

((
n+

L

µ

)
log

1

ε̄
+

σ2
p

µε

)
with ε̄ = O

(
σ2
p

µ

)

larger datasets [19, 26, 30]. Injecting noise in data is also useful to hide gradient information for
privacy-aware learning [10].

Despite its importance, the optimization problem (2) has been littled studied and to the best of our
knowledge, no dedicated optimization method that is able to exploit the problem structure has been
developed so far. A natural way to optimize this objective when h=0 is indeed SGD, but ignoring the
finite-sum structure leads to gradient estimates with high variance and slow convergence. The goal of
this paper is to introduce an algorithm for strongly convex objectives, called stochastic MISO, which
exploits the underlying finite sum using variance reduction. Our method achieves a faster convergence
rate than SGD, by removing the dependence on the gradient variance due to sampling the data points i
in {1, . . . , n}; the dependence remains only for the variance due to random perturbations ρ.

To the best of our knowledge, our method is the first algorithm that interpolates naturally between in-
cremental methods for finite sums (when there are no perturbations) and the stochastic approximation
setting (when n=1), while being able to efficiently tackle the hybrid case.

Related work. Many optimization methods dedicated to the finite-sum problem (e.g., [15, 29])
have been motivated by the fact that their updates can be interpreted as SGD steps with unbiased
estimates of the full gradient, but with a variance that decreases as the algorithm approaches the
optimum [15]; on the other hand, vanilla SGD requires decreasing step-sizes to achieve this reduction
of variance, thereby slowing down convergence. Our work aims at extending these techniques to the
case where each function in the finite sum can only be accessed via a first-order stochastic oracle.

Most related to our work, recent methods that use data clustering to accelerate variance reduction
techniques [3, 14] can be seen as tackling a special case of (2), where the expectations in fi are
replaced by empirical averages over points in a cluster. While N-SAGA [14] was originally not
designed for the stochastic context we consider, we remark that their method can be applied to (2).
Their algorithm is however asymptotically biased and does not converge to the optimum. On the other
hand, ClusterSVRG [3] is not biased, but does not support infinite datasets. The method proposed
in [1] uses variance reduction in a setting where gradients are computed approximately, but the
algorithm computes a full gradient at every pass, which is not available in our stochastic setting.

Paper organization. In Section 2, we present our algorithm for smooth objectives, and we analyze
its convergence in Section 3. For space limitation reasons, we present an extension to composite
objectives and non-uniform sampling in Appendix A. Section 4 is devoted to empirical results.

2 The Stochastic MISO Algorithm for Smooth Objectives

In this section, we introduce the stochastic MISO approach for smooth objectives (h = 0), which
relies on the following assumptions:

• (A1) global strong convexity: f is µ-strongly convex;
• (A2) smoothness: f̃i(·, ρ) is L-smooth for all i and ρ (i.e., with L-Lipschitz gradients).
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Table 2: Estimated ratio σ2
tot/σ

2
p, which corresponds to the expected acceleration of S-MISO over

SGD. These numbers are based on feature vectors variance, which is closely related to the gradient
variance when learning a linear model. ResNet-50 denotes a 50 layer network [12] pre-trained on
the ImageNet dataset. For image transformations, the numbers are empirically evaluated from 100
different images, with 100 random perturbations for each image. R2

tot (respectively, R2
cluster) denotes

the average squared distance between pairs of points in the dataset (respectively, in a given cluster),
following [14]. The settings for unsupervised CKN and Scattering are described in Section 4. More
details are given in the main text.

Type of perturbation Application case Estimated ratio σ2
tot/σ

2
p

Direct perturbation of
linear model features

Data clustering as in [3, 14] ≈ R2
tot/R

2
cluster

Additive Gaussian noise N (0, α2I) ≈ 1 + 1/α2

Dropout with probability δ ≈ 1 + 1/δ
Feature rescaling by s in U(1− w, 1 + w) ≈ 1 + 3/w2

Random image
transformations

ResNet-50 [12], color perturbation 21.9
ResNet-50 [12], rescaling + crop 13.6
Unsupervised CKN [22], rescaling + crop 9.6
Scattering [6], gamma correction 9.8

Note that these assumptions are relaxed in Appendix A by supporting composite objectives and
by exploiting different smoothness parameters Li on each example, a setting where non-uniform
sampling of the training points is typically helpful to accelerate convergence (e.g., [35]).

Complexity results. We now introduce the following quantity, which is essential in our analysis:

σ2
p :=

1

n

n∑
i=1

σ2
i , with σ2

i := Eρ
[
‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2

]
,

where x∗ is the (unique) minimizer of f . The quantity σ2
p represents the part of the variance of the

gradients at the optimum that is due to the perturbations ρ. In contrast, another quantity of interest is
the total variance σ2

tot, which also includes the randomness in the choice of the index i, defined as

σ2
tot = Ei,ρ[‖∇f̃i(x∗, ρ)‖2] = σ2

p + Ei[‖∇fi(x∗)‖2] (note that ∇f(x∗) = 0).

The relation between σ2
tot and σ2

p is obtained by simple algebraic manipulations.

The goal of our paper is to exploit the potential imbalance σ2
p � σ2

tot, occurring when perturbations
on input data are small compared to the sampling noise. The assumption is reasonable: given a data
point, selecting a different one should lead to larger variation than a simple perturbation. From a
theoretical point of view, the approach we propose achieves the iteration complexity presented in
Table 1, see also Appendix D and [4, 5, 24] for the complexity analysis of SGD. The gain over SGD
is of order σ2

tot/σ
2
p, which is also observed in our experiments in Section 4. We also compare against

the method N-SAGA; its convergence rate is similar to ours but suffers from a non-zero asymptotic
error.

Motivation from application cases. One clear framework of application is the data clustering
scenario already investigated in [3, 14]. Nevertheless, we will focus on less-studied data augmentation
settings that lead instead to true stochastic formulations such as (2). First, we consider learning a
linear model when adding simple direct manipulations of feature vectors, via rescaling (multiplying
each entry vector by a random scalar), Dropout, or additive Gaussian noise, in order to improve the
generalization error [33] or to get more stable estimators [23]. In Table 2, we present the potential
gain over SGD in these scenarios. To do that, we study the variance of perturbations applied to
a feature vector ξ. Indeed, the gradient of the loss is proportional to ξ, which allows us to obtain
good estimates of the ratio σ2

tot/σ
2
p, as we observed in our empirical study of Dropout presented

in Section 4. Whereas some perturbations are friendly for our method such as feature rescaling (a
rescaling window of [0.9, 1.1] yields for instance a huge gain factor of 300), a large Dropout rate
would lead to less impressive acceleration (e.g., a Dropout with δ = 0.5 simply yields a factor 2).

Second, we also consider more interesting domain-driven data perturbations such as classical im-
age transformations considered in computer vision [26, 36] including image cropping, rescaling,
brightness, contrast, hue, and saturation changes. These transformations may be used to train a linear
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Algorithm 1 S-MISO for smooth objectives
Input: step-size sequence (αt)t≥1;
initialize x0 = 1

n

∑
i z

0
i for some (z0

i )i=1,...,n;
for t = 1, . . . do

Sample an index it uniformly at random, a perturbation ρt, and update

zti =

{
(1− αt)zt−1

i + αt(xt−1 − 1
µ∇f̃it(xt−1, ρt)), if i = it

zt−1
i , otherwise.

(3)

xt =
1

n

n∑
i=1

zti = xt−1 +
1

n
(ztit − z

t−1
it

). (4)

end for

classifier on top of an unsupervised multilayer image model such as unsupervised CKNs [22] or
the scattering transform [6]. It may also be used for retraining the last layer of a pre-trained deep
neural network: given a new task unseen during the full network training and given limited amount
of training data, data augmentation may be indeed crucial to obtain good prediction and S-MISO
can help accelerate learning in this setting. These scenarios are also studied in Table 2, where the
experiment with ResNet-50 involving random cropping and rescaling produces 224× 224 images
from 256× 256 ones. For these scenarios with realistic perturbations, the potential gain varies from
10 to 20.

Description of stochastic MISO. We are now in shape to present our method, described in Algo-
rithm 1. Without perturbations and with a constant step-size, the algorithm resembles the MISO/Finito
algorithms [9, 18, 21], which may be seen as primal variants of SDCA [28, 29]. Specifically, MISO
is not able to deal with our stochastic objective (2), but it may address the deterministic finite-sum
problem (1). It is part of a larger body of optimization methods that iteratively build a model of the
objective function, typically a lower or upper bound on the objective that is easier to optimize; for
instance, this strategy is commonly adopted in bundle methods [13, 25].

More precisely, MISO assumes that each fi is strongly convex and builds a model using lower bounds
Dt(x) = 1

n

∑n
i=1 d

t
i(x), where each dti is a quadratic lower bound on fi of the form

dti(x) = cti,1 +
µ

2
‖x− zti‖2 = cti,2 − µ〈x, zti〉+

µ

2
‖x‖2. (5)

These lower bounds are updated during the algorithm using strong convexity lower bounds at xt−1 of
the form lti(x) = fi(xt−1) + 〈∇fi(xt−1), x− xt−1〉+ µ

2 ‖x− xt−1‖2 ≤ fi(x):

dti(x) =

{
(1− αt)dt−1

i (x) + αtl
t
i(x), if i = it

dt−1
i (x), otherwise,

(6)

which corresponds to an update of the quantity zti :

zti =

{
(1− αt)zt−1

i + αt(xt−1 − 1
µ∇fit(xt−1)), if i = it

zt−1
i , otherwise.

The next iterate is then computed as xt = arg minxDt(x), which is equivalent to (4). The original
MISO/Finito algorithms use αt = 1 under a “big data” condition on the sample size n [9, 21],
while the theory was later extended in [18] to relax this condition by supporting smaller constant
steps αt = α, leading to an algorithm that may be interpreted as a primal variant of SDCA (see [28]).

Note that when fi is an expectation, it is hard to obtain such lower bounds since the gradient
∇fi(xt−1) is not available in general. For this reason, we have introduced S-MISO, which can
exploit approximate lower bounds to each fi using gradient estimates, by letting the step-sizes αt
decrease appropriately as commonly done in stochastic approximation. This leads to update (3).

Separately, SDCA [29] considers the Fenchel conjugates of fi, defined by f∗i (y) = supx x
>y−fi(x).

When fi is an expectation, f∗i is not available in closed form in general, nor are its gradients, and in
fact exploiting stochastic gradient estimates is difficult in the duality framework. In contrast, [28]
gives an analysis of SDCA in the primal, aka. “without duality”, for smooth finite sums, and our
work extends this line of reasoning to the stochastic approximation and composite settings.
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Relationship with SGD in the smooth case. The link between S-MISO in the non-composite
setting and SGD can be seen by rewriting the update (4) as

xt = xt−1 +
1

n
(ztit − z

t−1
it

) = xt−1 +
αt
n
vt,

where
vt := xt−1 −

1

µ
∇f̃it(xt−1, ρt)− zt−1

it
. (7)

Note that E[vt|Ft−1] = − 1
µ∇f(xt−1), where Ft−1 contains all information up to iteration t; hence,

the algorithm can be seen as an instance of the stochastic gradient method with unbiased gradients,
which was a key motivation in SVRG [15] and later in other variance reduction algorithms [8, 28]. It
is also worth noting that in the absence of a finite-sum structure (n=1), we have zt−1

it
=xt−1; hence

our method becomes identical to SGD, up to a redefinition of step-sizes. In the composite case (see
Appendix A), our approach yields a new algorithm that resembles regularized dual averaging [34].

Memory requirements and handling of sparse datasets. The algorithm requires storing the
vectors (zti)i=1,...,n, which takes the same amount of memory as the original dataset and which
is therefore a reasonable requirement in many practical cases. In the case of sparse datasets, it is
fair to assume that random perturbations applied to input data preserve the sparsity patterns of the
original vectors, as is the case, e.g., when applying Dropout to text documents described with bag-of-
words representations [33]. If we further assume the typical setting where the µ-strong convexity
comes from an `2 regularizer: f̃i(x, ρ) = φi(x

>ξρi ) + (µ/2)‖x‖2, where ξρi is the (sparse) perturbed
example and φi encodes the loss, then the update (3) can be written as

zti =

{
(1− αt)zt−1

i − αt

µ φ
′
i(x
>
t−1ξ

ρt
i )ξρti , if i = it

zt−1
i , otherwise,

which shows that for every index i, the vector zti preserves the same sparsity pattern as the examples ξρi
throughout the algorithm (assuming the initialization z0

i = 0), making the update (3) efficient. The
update (4) has the same cost since vt = ztit − z

t−1
it

is also sparse.

Limitations and alternative approaches. Since our algorithm is uniformly better than SGD in
terms of iteration complexity, its main limitation is in terms of memory storage when the dataset
cannot fit into memory (remember that the memory cost of S-MISO is the same as the input dataset).
In these huge-scale settings, SGD should be preferred; this holds true in fact for all incremental
methods when one cannot afford to perform more than one (or very few) passes over the data. Our
paper focuses instead on non-huge datasets, which are those benefiting most from data augmentation.

We note that a different approach to variance reduction like SVRG [15] is able to trade off storage
requirements for additional full gradient computations, which would be desirable in some situations.
However, we were not able to obtain any decreasing step-size strategy that works for these methods,
both in theory and practice, leaving us with constant step-size approaches as in [1, 14] that either
maintain a non-zero asymptotic error, or require dynamically reducing the variance of gradient
estimates. One possible way to explain this difficulty is that SVRG and SAGA [8] “forget” past
gradients for a given example i, while S-MISO averages them in (3), which seems to be a technical
key to make it suitable to stochastic approximation. Nevertheless, the question of whether it is
possible to trade-off storage with computation in a setting like ours is open and of utmost interest.

3 Convergence Analysis of S-MISO

We now study the convergence properties of the S-MISO algorithm. For space limitation reasons,
all proofs are provided in Appendix B. We start by defining the problem-dependent quantities
z∗i := x∗ − 1

µ∇fi(x
∗), and then introduce the Lyapunov function

Ct =
1

2
‖xt − x∗‖2 +

αt
n2

n∑
i=1

‖zti − z∗i ‖2. (8)

Proposition 1 gives a recursion on Ct, obtained by upper-bounding separately its two terms, and
finding coefficients to cancel out other appearing quantities when relating Ct to Ct−1. To this end, we
borrow elements of the convergence proof of SDCA without duality [28]; our technical contribution
is to extend their result to the stochastic approximation and composite (see Appendix A) cases.
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Proposition 1 (Recursion on Ct). If (αt)t≥1 is a positive and non-increasing sequence satisfying

α1 ≤ min

{
1

2
,

n

2(2κ− 1)

}
, (9)

with κ = L/µ, then Ct obeys the recursion

E[Ct] ≤
(

1− αt
n

)
E[Ct−1] + 2

(αt
n

)2 σ2
p

µ2
. (10)

We now state the main convergence result, which provides the expected rate O(1/t) on Ct based on
decreasing step-sizes, similar to [5] for SGD. Note that convergence of objective function values is
directly related to that of the Lyapunov function Ct via smoothness:

E[f(xt)− f(x∗)] ≤ L

2
E
[
‖xt − x∗‖2

]
≤ LE[Ct]. (11)

Theorem 2 (Convergence of Lyapunov function). Let the sequence of step-sizes (αt)t≥1 be defined
by αt = 2n

γ+t with γ ≥ 0 such that α1 satisfies (9). For all t ≥ 0, it holds that

E[Ct] ≤
ν

γ + t+ 1
where ν := max

{
8σ2

p

µ2
, (γ + 1)C0

}
. (12)

Choice of step-sizes in practice. Naturally, we would like ν to be small, in particular independent
of the initial condition C0 and equal to the first term in the definition (12). We would like the
dependence on C0 to vanish at a faster rate than O(1/t), as it is the case in variance reduction
algorithms on finite sums. As advised in [5] in the context of SGD, we can initially run the algorithm
with a constant step-size ᾱ and exploit this linear convergence regime until we reach the level of
noise given by σp, and then start decaying the step-size. It is easy to see that by using a constant
step-size ᾱ, Ct converges near a value C̄ := 2ᾱσ2

p/nµ
2. Indeed, Eq. (10) with αt = ᾱ yields

E[Ct − C̄] ≤
(

1− ᾱ

n

)
E[Ct−1 − C̄].

Thus, we can reach a precision C ′0 with E[C ′0] ≤ ε̄ := 2C̄ in O(nᾱ logC0/ε̄) iterations. Then, if we
start decaying step-sizes as in Theorem 2 with γ large enough so that α1 = ᾱ, we have

(γ + 1)E[C ′0] ≤ (γ + 1)ε̄ = 8σ2
p/µ

2,

making both terms in (12) smaller than or equal to ν = 8σ2
p/µ

2. Considering these two phases, with
an initial step-size ᾱ given by (9), the final work complexity for reaching E[‖xt − x∗‖2] ≤ ε is

O

((
n+

L

µ

)
log

C0

ε̄

)
+O

(
σ2
p

µ2ε

)
. (13)

We can then use (11) in order to obtain the complexity for reaching E[f(xt)− f(x∗)] ≤ ε. Note that
following this step-size strategy was found to be very effective in practice (see Section 4).

Acceleration by iterate averaging. When one is interested in the convergence in function values,
the complexity (13) combined with (11) yields O(Lσ2

p/µ
2ε), which can be problematic for ill-

conditioned problems (large condition number L/µ). The following theorem presents an iterate
averaging scheme which brings the complexity term down to O(σ2

p/µε), which appeared in Table 1.

Theorem 3 (Convergence under iterate averaging). Let the step-size sequence (αt)t≥1 be defined by

αt =
2n

γ + t
for γ ≥ 1 s.t. α1 ≤ min

{
1

2
,

n

4(2κ− 1)

}
.

We have

E[f(x̄T )− f(x∗)] ≤ 2µγ(γ − 1)C0

T (2γ + T − 1)
+

16σ2
p

µ(2γ + T − 1)
,

where

x̄T :=
2

T (2γ + T − 1)

T−1∑
t=0

(γ + t)xt.
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Figure 1: Impact of conditioning for data augmentation on STL-10 (controlled by µ, where µ=10−4

gives the best accuracy). Values of the loss are shown on a logarithmic scale (1 unit = factor 10).
η = 0.1 satisfies the theory for all methods, and we include curves for larger step-sizes η = 1. We
omit N-SAGA for η = 1 because it remains far from the optimum. For the scattering representation,
the problem we study is `1-regularized, and we use the composite algorithm of Appendix A.
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Figure 2: Re-training of the last layer of a pre-trained ResNet 50 model, on a small dataset with
random color perturbations (for different values of µ).

The proof uses a similar telescoping sum technique to [16]. Note that if T � γ, the first term,
which depends on the initial condition C0, decays as 1/T 2 and is thus dominated by the second
term. Moreover, if we start averaging after an initial phase with constant step-size ᾱ, we can consider
C0 ≈ 4ᾱσ2

p/nµ
2. In the ill-conditioned regime, taking ᾱ = α1 = 2n/(γ + 1) as large as allowed

by (9), we have γ of the order of κ = L/µ� 1. The full convergence rate then becomes

E[f(x̄T )− f(x∗)] ≤ O

(
σ2
p

µ(γ + T )

(
1 +

γ

T

))
.

When T is large enough compared to γ, this becomesO(σ2
p/µT ), leading to a complexityO(σ2

p/µε).

4 Experiments

We present experiments comparing S-MISO with SGD and N-SAGA [14] on four different scenarios,
in order to demonstrate the wide applicability of our method: we consider an image classification
dataset with two different image representations and random transformations, and two classification
tasks with Dropout regularization, one on genetic data, and one on (sparse) text data. Figures 1 and 3
show the curves for an estimate of the training objective using 5 sampled perturbations per example.
The plots are shown on a logarithmic scale, and the values are compared to the best value obtained
among the different methods in 500 epochs. The strong convexity constant µ is the regularization
parameter. For all methods, we consider step-sizes supported by the theory as well as larger step-sizes
that may work better in practice. Our C++/Cython implementation of all methods considered in this
section is available at https://github.com/albietz/stochs.

Choices of step-sizes. For both S-MISO and SGD, we use the step-size strategy mentioned in
Section 3 and advised by [5], which we have found to be most effective among many heuristics
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Figure 3: Impact of perturbations controlled by the Dropout rate δ. The gene data is `2-normalized;
hence, we consider similar step-sizes as Figure 1. The IMDB dataset is highly heterogeneous;
thus, we also include non-uniform (NU) sampling variants of Appendix A. For uniform sampling,
theoretical step-sizes perform poorly for all methods; thus, we show a larger tuned step-size η = 10.

we have tried: we initially keep the step-size constant (controlled by a factor η ≤ 1 in the figures)
for 2 epochs, and then start decaying as αt = C/(γ + t), where C = 2n for S-MISO, C = 2/µ
for SGD, and γ is chosen large enough to match the previous constant step-size. For N-SAGA, we
maintain a constant step-size throughout the optimization, as suggested in the original paper [14].
The factor η shown in the figures is such that η = 1 corresponds to an initial step-size nµ/(L− µ)
for S-MISO (from (19) in the uniform case) and 1/L for SGD and N-SAGA (with L̄ instead of L in
the non-uniform case when using the variant of Appendix A).

Image classification with “data augmentation”. The success of deep neural networks is often
limited by the availability of large amounts of labeled images. When there are many unlabeled
images but few labeled ones, a common approach is to train a linear classifier on top of a deep
network learned in an unsupervised manner, or pre-trained on a different task (e.g., on the ImageNet
dataset). We follow this approach on the STL-10 dataset [7], which contains 5K training images
from 10 classes and 100K unlabeled images, using a 2-layer unsupervised convolutional kernel
network [22], giving representations of dimension 9 216. The perturbation consists of randomly
cropping and scaling the input images. We use the squared hinge loss in a one-versus-all setting. The
vector representations are `2-normalized such that we may use the upper bound L = 1 + µ for the
smoothness constant. We also present results on the same dataset using a scattering representation [6]
of dimension 21 696, with random gamma corrections (raising all pixels to the power γ, where γ is
chosen randomly around 1). For this representation, we add an `1 regularization term and use the
composite variant of S-MISO presented in Appendix A.

Figure 1 shows convergence results on one training fold (500 images), for different values of µ,
allowing us to study the behavior of the algorithms for different condition numbers. The low variance
induced by data transformations allows S-MISO to reach suboptimality that is orders of magnitude
smaller than SGD after the same number of epochs. Note that one unit on these plots corresponds to
one order of magnitude in the logarithmic scale. N-SAGA initially reaches a smaller suboptimality
than SGD, but quickly gets stuck due to the bias in the algorithm, as predicted by the theory [14],
while S-MISO and SGD continue to converge to the optimum thanks to the decreasing step-sizes. The
best validation accuracy for both representations is obtained for µ ≈ 10−4 (middle column), and we
observed relative gains of up to 1% from using data augmentation. We computed empirical variances
of the image representations for these two strategies, which are closely related to the variance in
gradient estimates, and observed these transformations to account for about 10% of the total variance.

Figure 2 shows convergence results when training the last layer of a 50-layer Residual network [12]
that has been pre-trained on ImageNet. Here, we consider the common scenario of leveraging a deep
model trained on a large dataset as a feature extractor in order to learn a new classifier on a different
small dataset, where it would be difficult to train such a model from scratch. To simulate this setting,
we consider a binary classification task on a small dataset of 100 images of size 256x256 taken
from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012, which we crop to
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224x224 before performing random adjustments to brightness, saturation, hue and contrast. As in the
STL-10 experiments, the gains of S-MISO over other methods are of about one order of magnitude in
suboptimality, as predicted by Table 2.

Dropout on gene expression data. We trained a binary logistic regression model on the breast
cancer dataset of [31], with different Dropout rates δ, i.e., where at every iteration, each coordinate ξj
of a feature vector ξ is set to zero independently with probability δ and to ξj/(1− δ) otherwise. The
dataset consists of 295 vectors of dimension 8 141 of gene expression data, which we normalize
in `2 norm. Figure 3 (top) compares S-MISO with SGD and N-SAGA for three values of δ, as a
way to control the variance of the perturbations. We include a Dropout rate of 0.01 to illustrate the
impact of δ on the algorithms and study the influence of the perturbation variance σ2

p, even though
this value of δ is less relevant for the task. The plots show very clearly how the variance induced by
the perturbations affects the convergence of S-MISO, giving suboptimality values that may be orders
of magnitude smaller than SGD. This behavior is consistent with the theoretical convergence rate
established in Section 3 and shows that the practice matches the theory.

Dropout on movie review sentiment analysis data. We trained a binary classifier with a squared
hinge loss on the IMDB dataset [20] with different Dropout rates δ. We use the labeled part of
the IMDB dataset, which consists of 25K training and 250K testing movie reviews, represented as
89 527-dimensional sparse bag-of-words vectors. In contrast to the previous experiments, we do not
normalize the representations, which have great variability in their norms, in particular, the maximum
Lipschitz constant across training points is roughly 100 times larger than the average one. Figure 3
(bottom) compares non-uniform sampling versions of S-MISO (see Appendix A) and SGD (see
Appendix D) with their uniform sampling counterparts as well as N-SAGA. Note that we use a large
step-size η = 10 for the uniform sampling algorithms, since η = 1 was significantly slower for
all methods, likely due to outliers in the dataset. In contrast, the non-uniform sampling algorithms
required no tuning and just use η = 1. The curves clearly show that S-MISO-NU has a much faster
convergence in the initial phase, thanks to the larger step-size allowed by non-uniform sampling, and
later converges similarly to S-MISO, i.e., at a much faster rate than SGD when the perturbations are
small. The value of µ used in the experiments was chosen by cross-validation, and the use of Dropout
gave improvements in test accuracy from 88.51% with no dropout to 88.68± 0.03% with δ = 0.1
and 88.86± 0.11% with δ = 0.3 (based on 10 different runs of S-MISO-NU after 400 epochs).

Finally, we also study the effect of the iterate averaging scheme of Theorem 3 in Appendix E.
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Algorithm 2 S-MISO for composite objectives, with non-uniform sampling.
Input: step-sizes (αt)t≥1, sampling distribution q;
Initialize x0 = proxh/µ(z̄0) with z̄0 = 1

n

∑
i z

0
i for some (z0

i )i=1,...,n that safisfies (16);
for t = 1, . . . do

Sample an index it ∼ q, a perturbation ρt, and update (with αit = αt

qin
):

zti =

{
(1− αit)zt−1

i + αit(xt−1 − 1
µ∇f̃it(xt−1, ρt)), if i = it

zt−1
i , otherwise

(14)

z̄t =
1

n

n∑
i=1

zti = z̄t−1 +
1

n
(ztit − z

t−1
it

)

xt = proxh/µ(z̄t). (15)

end for

A Extension to Composite Objectives and Non-Uniform Sampling

In this section, we study extensions of S-MISO to different situations where our previous smoothness
assumption (A2) is not suitable, either because of a non-smooth term h in the objective or because it
ignores additional useful knowledge about each fi such as the norm of each example.

In the presence of non-smooth regularizers such as the `1-norm, the objective is no longer smooth,
but we can leverage its composite structure by using proximal operators. To this end, we assume that
one can easily compute the proximal operator of h, defined by

proxh(z) := arg min
x∈Rp

{
1

2
‖x− z‖2 + h(x)

}
.

When the smoothness constants Li vary significantly across different examples (typically through the
norm of the feature vectors), the uniform upper bound L = Lmax = maxi Li can be restrictive. It
has been noticed (see, e.g., [27, 35]) that when the Li are known, one can achieve better convergence
rates—typically depending on the average smoothness constant L̄ = 1

n

∑
i Li rather than Lmax—by

sampling examples in a non-uniform way. For that purpose, we now make the following assumptions:

• (A3) strong convexity: f̃i(·, ρ) is µ-strongly convex for all i, ρ;
• (A4) smoothness: f̃i(·, ρ) is Li-smooth for all i, ρ;

Note that our proof relies on a slightly stronger assumption (A3) than the global strong convexity
assumption (A1) made above, which holds in the situation where strong convexity comes from an `2
regularization term. In order to exploit the different smoothness constants, we allow the algorithm to
sample indices i non-uniformly, from any distribution q such that qi ≥ 0 for all i and

∑
i qi = 1.

The extension of S-MISO to this setting is given in Algorithm 2. Note that the step-sizes vary
depending on the example, with larger steps for examples that are sampled less frequently (typically
“easier” examples with smaller Li). Note that when h = 0, the update directions are unbiased
estimates of the gradient: we have E[xt − xt−1|Ft−1] = − αt

nµ∇f(xt−1) as in the uniform case.
However, in the composite case, the algorithm cannot be written in a proximal stochastic gradient
form like Prox-SVRG [35] or SAGA [8].

Relationship with RDA. When n = 1, our algorithm performs similar updates to Regularized Dual
Averaging (RDA) [34] with strongly convex regularizers. In particular, if f̃1(x, ρ) = φ(x>ξ(ρ)) +
(µ/2)‖x‖2, the updates are the same when taking αt = 1/t, since

proxh/µ(z̄t) = arg min
x

{
〈−µz̄t, x〉+

µ

2
‖x‖2 + h(x)

}
,

and −µz̄t is equal to the average of the gradients of the loss term up to t, which appears in the
same way in the RDA updates [34, Section 2.2]. However, unlike RDA, our method supports
arbitrary decreasing step-sizes, in particular keeping the step-size constant, which can lead to faster
convergence in the initial iterations (see Section 3).
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Lower-bound model and convergence analysis. Again, we can view the algorithm as iteratively
updating approximate lower bounds on the objective F of the form Dt(x) = 1

n

∑
i d
t
i(x) + h(x)

analogously to (6), and minimizing the new Dt in (15). Similar to MISO-Prox, we require that
d0
i is initialized with a µ-strongly convex quadratic such that f̃i(x, ρ̃i) ≥ d0

i (x) with the random
perturbation ρ̃i. Given the form of dti in (5), it suffices to choose z0

i that satisfies

f̃i(x, ρ̃i) ≥
µ

2
‖x− z0

i ‖+ c, (16)

for some constant c. In the common case of an `2 regularizer with a non-negative loss, one can simply
choose z0

i = 0 for all i, otherwise, z0
i can be obtained by considering a strong convexity lower bound

on f̃i(·, ρ̃i). Our new analysis relies on the minimum Dt(xt) of the lower bounds Dt through the
following Lyapunov function:

Cqt = F (x∗)−Dt(xt) +
µαt
n2

n∑
i=1

1

qin
‖zti − z∗i ‖2. (17)

The convergence of the iterates xt is controlled by the convergence in Cqt thanks to the next lemma:
Lemma 4 (Bound on the iterates). For all t, we have

µ

2
E[‖xt − x∗‖2] ≤ E[F (x∗)−Dt(xt)]. (18)

The following proposition gives a recursion on Cqt similar to Proposition 1.
Proposition 5 (Recursion on Cqt ). If (αt)t≥1 is a positive and non-increasing sequence of step-sizes
satisfying

α1 ≤ min

{
nqmin

2
,
nµ

4Lq

}
, (19)

with qmin = mini qi and Lq = maxi
Li−µ
qin

, then Cqt obeys the recursion

E[Cqt ] ≤
(

1− αt
n

)
E[Cqt−1] + 2

(αt
n

)2 σ2
q

µ
, (20)

with σ2
q = 1

n

∑
i
σ2
i

qin
.

Note that if we consider the quantity E[Cqt /µ], which is an upper bound on 1
2 E[‖xt − x∗‖2] by

Lemma 4, we have the same recursion as (10), and thus can apply Theorem 2 with the new condi-
tion (19). If we choose

qi =
1

2n
+

Li − µ
2
∑
i(Li − µ)

, (21)

we have qmin ≥ 1/2n and Lq ≤ 2(L̄ − µ), where L̄ = 1
n

∑
i Li. Then, taking α1 =

min(1/4, nµ/8(L̄− µ)) satisfies (19), and using similar arguments to Section 3, the complexity for
reaching E[‖xt − x∗‖2] ≤ ε is

O

((
n+

L̄

µ

)
log

Cq0
ε̄

)
+O

(
σ2
q

µ2ε

)
,

where ε̄ = 4ᾱσ2
q/nµ, and ᾱ is the initial constant step-size. For the complexity in function sub-

optimality, the second term becomes O(σ2
q/µε) by using the same averaging scheme presented in

Theorem 3 and adapting the proof. Note that with our choice of q, we have σ2
q ≤ 2

n

∑
i σ

2
i = 2σ̄p

2,
for general perturbations, where σ̄p2 = 1

n

∑
i σ

2
i is the variance in the uniform case. Additionally,

it is often reasonable to assume that the variance from perturbations increases with the norm of
examples, for instance Dropout perturbations get larger when coordinates have larger magnitudes.
Based on this observation, if we make the assumption that σ2

i ∝ Li − µ, that is σ2
i = σ̄p

2 Li−µ
L̄−µ ,

then for both qi = 1/n (uniform case) and qi = (Li − µ)/n(L̄− µ), we have σ2
q = σ̄p

2, and thus
we have σ2

q ≤ σ̄p
2 for the choice of q given in (21), since σ2

q is convex in q. Thus, we can expect
that the O(1/t) convergence phase behaves similarly or better than for uniform sampling, which is
confirmed by our experiments (see Section 4).
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B Proofs for the Smooth Case (Section 3)

B.1 Proof of Proposition 1 (Recursion on Lyapunov function Ct)

We begin by stating the following lemma, which extends a key result of variance reduction methods
(see, e.g., [15]) to the situation considered in this paper, where one only has access to noisy estimates
of the gradients of each fi.
Lemma B.1. Let i be uniformly distributed in {1, . . . , n} and ρ according to a perturbation distri-
bution Γ. Under assumption (A2) on the functions f̃1, . . . , f̃n and their expectations f1, . . . , fn, we
have, for all x ∈ Rp,

Ei,ρ[‖∇f̃i(x, ρ)−∇fi(x∗)‖2] ≤ 4L(f(x)− f(x∗)) + 2σ2
p.

Proof. We have

‖∇f̃i(x, ρ)−∇fi(x∗)‖2

≤ 2‖∇f̃i(x, ρ)−∇f̃i(x∗, ρ)‖2 + 2‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2

≤ 4L(f̃i(x, ρ)− f̃i(x∗, ρ)− 〈∇f̃i(x∗, ρ), x− x∗〉) + 2‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2.
The first inequality comes from the simple relation ‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2. The
second inequality follows from the smoothness of f̃i(·, ρ), in particular we used the classical relation

g(y) ≥ g(x) + 〈∇g(x), y − x〉+
1

2L
‖∇g(y)−∇g(x)‖2,

which is known to hold for any convex and L-smooth function g (see, e.g., [25, Theorem 2.1.5]). The
result follows by taking expectations on i and ρ and noting that Ei,ρ[∇f̃i(x∗, ρ)] = ∇f(x∗) = 0, as
well as the definition of σ2

p.

We now proceed with the proof of Proposition 1.

Proof. Define the quantities

At =
1

n

n∑
i=1

‖zti − z∗i ‖2

and Bt =
1

2
‖xt − x∗‖2.

The proof successively describes recursions on At, Bt, and eventually Ct.

Recursion on At. We have

At−At−1 =
1

n
(‖ztit − z

∗
it‖

2 − ‖zt−1
it
− z∗it‖

2)

=
1

n

(∥∥∥∥(1− αt)(zt−1
it
− z∗it) + αt

(
xt−1−

1

µ
∇f̃it(xt−1, ρt)−z∗it

)∥∥∥∥2

−‖zt−1
it
−z∗it‖

2

)

=
1

n

(
−αt‖zt−1

it
− z∗it‖

2 + αt

∥∥∥∥xt−1 −
1

µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2

− αt(1− αt)‖vt‖2
)
,

(22)

where we first use the definition of zti in (3), then the relation ‖(1− λ)u+ λv‖2 = (1− λ)‖u‖2 +
λ‖v‖2 − λ(1− λ)‖u− v‖2, and the definition of vt given in (7). A similar relation is derived in the
proof of SDCA without duality [28]. Using the definition of z∗i , the second term can be expanded as∥∥∥∥xt−1 −

1

µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2

=

∥∥∥∥xt−1 − x∗ −
1

µ
(∇f̃it(xt−1, ρt)−∇fit(x∗))

∥∥∥∥2

= ‖xt−1 − x∗‖2 −
2

µ
〈xt−1 − x∗,∇f̃it(xt−1, ρt)−∇fit(x∗)〉

+
1

µ2

∥∥∥∇f̃it(xt−1, ρt)−∇fit(x∗))
∥∥∥2

. (23)
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We then take conditional expectations with respect to Ft−1, defined in Section 2. Unless otherwise
specified, we will simply write E[·] instead of E[·|Ft−1] for these conditional expectations in the rest
of the proof.

E

[∥∥∥∥xt−1 −
1

µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2
]
≤ ‖xt−1 − x∗‖2 −

2

µ
〈xt−1 − x∗,∇f(xt−1)〉

+
4L

µ2
(f(xt−1)− f(x∗)) +

2σ2
p

µ2

≤ ‖xt−1 − x∗‖2 −
2

µ
(f(xt−1)− f(x∗)+

µ

2
‖xt−1−x∗‖2)

+
4L

µ2
(f(xt−1)− f(x∗)) +

2σ2
p

µ2

=
2(2κ− 1)

µ
(f(xt−1)− f(x∗)) +

2σ2
p

µ2
,

where we used E[∇fit(x∗)] = ∇f(x∗) = 0, Lemma B.1, and the µ-strong convexity of f . Taking
expectations on the previous relation on At yields

E[At −At−1] = −αt
n
At−1 +

αt
n

E

[∥∥∥∥xt−1 −
1

µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2
]
− αt(1− αt)

n
E[‖vt‖2]

≤ −αt
n
At−1 +

2αt(2κ− 1)

nµ
(f(xt−1)− f(x∗))− αt(1− αt)

n
E[‖vt‖2] +

2αtσ
2
p

nµ2
.

(24)

Recursion on Bt. Separately, we have

‖xt − x∗‖2 =
∥∥∥xt−1 − x∗ +

αt
n
vt

∥∥∥2

= ‖xt−1 − x∗‖2 +
2αt
n
〈xt−1 − x∗, vt〉+

(αt
n

)2

‖vt‖2

E[‖xt − x∗‖2] = ‖xt−1 − x∗‖2 −
2αt
nµ
〈xt−1 − x∗,∇f(xt−1)〉+

(αt
n

)2

E[‖vt‖2]

≤ ‖xt−1 − x∗‖2 −
2αt
nµ

(f(xt−1)− f(x∗) +
µ

2
‖xt−1 − x∗‖2) +

(αt
n

)2

E[‖vt‖2],

using that E[vt] = − 1
µ∇f(xt−1) and the strong convexity of f . This gives

E[Bt −Bt−1] ≤ −αt
n
Bt−1 −

αt
nµ

(f(xt−1)− f(x∗)) +
1

2

(αt
n

)2

E[‖vt‖2]. (25)

Recursion on Ct. If we consider Ct = ptAt + Bt and C ′t−1 = ptAt−1 + Bt−1, combining (24)
and (25) yields

E[Ct − C ′t−1] ≤

−αt
n
C ′t−1+

2αt
nµ

(pt(2κ−1)−1

2
)(f(xt−1)−f(x∗))+

αt
n

(αt
2n
− pt(1− αt)

)
E[‖vt‖2]+

2αtptσ
2
p

nµ2
.

If we take pt = αt

n , and if (αt)t≥1 is a decreasing sequence satisfying (9), then the factors in front of
f(xt−1)− f(x∗) and E[‖vt‖2] are non-positive and we get

E[Ct] ≤
(

1− αt
n

)
C ′t−1 + 2

(αt
n

)2 σ2
p

µ2
.

Finally, since αt ≤ αt−1, we have C ′t−1 ≤ Ct−1. After taking total expectations on Ft−1, we are
left with the desired recursion.

15



B.2 Proof of Theorem 2 (Convergence of Ct under decreasing step-sizes)

We prove the theorem with more general step-sizes:
Theorem B.1 (Convergence of Lyapunov function). Let the sequence of step-sizes (αt)t≥1 be defined
by αt = βn

γ+t with β > 1 and γ ≥ 0 such that α1 satisfies (9). For all t ≥ 0, it holds that

E[Ct] ≤
ν

γ + t+ 1
where ν := max

{
2β2σ2

p

µ2(β − 1)
, (γ + 1)C0

}
. (26)

In particular, taking β = 2 as in Theorem 2 can only improve the constant ν in the convergence rate.

Proof. Let us proceed by induction. We have C0 ≤ ν/(γ + 1) by definition of ν. For t ≥ 1,

E[Ct] ≤
(

1− αt
n

)
E[Ct−1] + 2

(αt
n

)2 σ2
p

µ2

≤
(

1− β

t̂

)
ν

t̂
+

2β2σ2
p

t̂2µ2
(with t̂ := γ + t)

=

(
t̂− β
t̂2

)
ν +

2β2σ2
p

t̂2µ2

=

(
t̂− 1

t̂2

)
ν −

(
β − 1

t̂2

)
ν +

2β2σ2
p

t̂2µ2

≤
(
t̂− 1

t̂2

)
ν ≤ ν

t̂+ 1
,

where the last two inequalities follow from the definition of ν and from t̂2 ≥ (t̂+ 1)(t̂− 1).

B.3 Proof of Theorem 3 (Convergence in function values under iterate averaging)

Proof. From the proof of Proposition 1, we have

E[Ct] ≤
(

1− αt
n

)
E[Ct−1] +

2αt
nµ

(
αt
n

(2κ− 1)− 1

2

)
E[f(xt−1)− f(x∗)] + 2

(αt
n

)2 σ2
p

µ2
.

The result holds because the choice of step-sizes (αt)t≥1 safisfies the assumptions of Proposition 1.
With our new choice of step-sizes, we have the stronger bound

αt
n

(2κ− 1)− 1

2
≤ −1

4
.

After rearranging, we obtain

αt
2nµ

E[f(xt−1)− f(x∗)] ≤
(

1− αt
n

)
E[Ct−1]− E[Ct] + 2

(αt
n

)2 σ2
p

µ2
. (27)

Dividing by αt

2nµ gives

E[f(xt−1)− f(x∗)] ≤ 2µ

[(
n

αt
− 1

)
E[Ct−1]− n

αt
E[Ct]

]
+ 4

αt
n

σ2
p

µ

= µ ((γ + t− 2)E[Ct−1]− (γ + t)E[Ct]) +
8

γ + t

σ2
p

µ
.

Multiplying by (γ + t− 1) yields

(γ + t− 1)E[f(xt−1)− f(x∗)]

≤ µ ((γ + t− 1)(γ + t− 2)E[Ct−1]− (γ + t)(γ + t− 1)E[Ct]) +
8(γ + t− 1)

γ + t

σ2
p

µ

≤ µ ((γ + t− 1)(γ + t− 2)E[Ct−1]− (γ + t)(γ + t− 1)E[Ct]) +
8σ2

p

µ
.
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By summing the above inequality from t = 1 to t = T , we have a telescoping sum that simplifies as
follows:

E

[
T∑
t=1

(γ + t− 1)(f(xt−1)− f(x∗))

]
≤ µ (γ(γ − 1)C0 − (γ + T )(γ + T − 1)E[CT ]) +

8Tσ2
p

µ

≤ µγ(γ − 1)C0 +
8Tσ2

p

µ
.

Dividing by
∑T
t=1(γ + t− 1) = (2Tγ + T (T − 1))/2 and using Jensen’s inequality on f(x̄T ) gives

the desired result.

C Proofs for Composite Objectives and Non-Uniform Sampling
(Appendix A)

We recall here the updates to the lower bounds dti in the setting of this section, which are analogous
to (6) but with non-uniform weights and stochastic perturbations,: for i = it, we have

dti(x) =
(

1− αt
qin

)
dt−1
i (x)+

αt
qin

(
f̃i(xt−1, ρt)+〈∇f̃i(xt−1, ρt), x−xt−1〉+

µ

2
‖x−xt−1‖2

)
, (28)

and dti(x) = dt−1
i (x) otherwise.

C.1 Proof of Lemma 4 (Bound on the iterates)

Proof. Let Ft(x) := 1
n

∑n
i=1 f

t
i (x) + h(x), where f0

i (x) = f̃i(x, ρ̃i) (where ρ̃i is used in (16)),
and f ti is updated analogously to dti as follows:

f ti (x) =

{
(1− αt

qin
)f t−1
i (x) + αt

qin
f̃i(x, ρt), if i = it

f t−1
i (x), otherwise.

By induction, we have

Ft(x
∗) ≥ Dt(x

∗) ≥ Dt(xt) +
µ

2
‖xt − x∗‖2, (29)

where the last inequality follows from the µ-strong convexity of Dt and the fact that xt is its
minimizer.

Again by induction, we now show that E[Ft(x
∗)] = F (x∗). Indeed, we have E[F0(x∗)] = F (x∗) by

construction, then

Ft(x
∗) = Ft−1(x∗) +

αt
qin2

(f̃it(x
∗, ρt)− f t−1

it
(x∗))

E[Ft(x
∗)|Ft−1] = Ft−1(x∗) +

αt
n

(f(x∗)− 1

n

n∑
i=1

f t−1
i (x∗))

= Ft−1(x∗) +
αt
n

(F (x∗)− Ft−1(x∗)),

After taking total expectations and using the induction hypothesis, we obtain E[Ft(x
∗)] = F (x∗),

and the result follows from (29).

C.2 Proof of Proposition 5 (Recursion on Lyapunov function Cqt )

We begin by presenting a lemma that plays a similar role to Lemma B.1 in our proof, but considers the
composite objective and takes into account the new strong convexity and non-uniformity assumptions.
Lemma C.1. Let i ∼ q, where q is the sampling distribution, and ρ be a random perturbation.
Under assumptions (A4-5) on the functions f̃1, . . . , f̃n and their expectations f1, . . . , fn, we have,
for all x ∈ Rp,

Ei,ρ
[

1

(qin)2
‖∇f̃i(x, ρ)− µx− (∇fi(x∗)− µx∗)‖2

]
≤ 4Lq(F (x)− F (x∗)) + 2σ2

q ,

with Lq = maxi
Li−µ
qin

and σ2
q = 1

n

∑
i
σ2
i

qin
.
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Proof. Since f̃i(·, ρ) is µ-strongly convex and Li-smooth, we have that f̃i(·, ρ)− µ
2 ‖ · ‖

2 is convex
and (Li − µ)-smooth (this is a straightforward consequence of [25, Eq. 2.1.9 and 2.1.22]). Then, by
denoting by Fi the quantity 2‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2, we have

‖∇f̃i(x, ρ)− µx− (∇fi(x∗)− µx∗)‖2

≤ 2‖∇f̃i(x, ρ)− µx− (∇f̃i(x∗, ρ)− µx∗)‖2 + 2‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2

≤ 4(Li − µ)
(
f̃i(x, ρ)− µ

2
‖x‖2 − f̃i(x∗, ρ) +

µ

2
‖x∗‖2 − 〈∇f̃i(x∗, ρ)− µx∗, x− x∗〉

)
+ Fi

= 4(Li − µ)
(
f̃i(x, ρ)− f̃i(x∗, ρ)− 〈∇f̃i(x∗, ρ), x− x∗〉 − µ

2
‖x− x∗‖2

)
+ Fi

≤ 4(Li − µ)
(
f̃i(x, ρ)− f̃i(x∗, ρ)− 〈∇f̃i(x∗, ρ), x− x∗〉

)
+ Fi.

The first inequality comes from the classical relation ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2. The
second inequality follows from the convexity and (Li−µ)-smoothness of f̃i(·, ρ)− µ

2 ‖ · ‖
2. Dividing

by (qin)2 and taking expectations yields

Ei,ρ
[

1

(qin)2
‖∇f̃i(x, ρ)− µx− (∇fi(x∗)− µx∗)‖2

]
≤ 4

n∑
i=1

qi(Li − µ)

(qin)2
(fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉) + 2

n∑
i=1

qi
(qin)2

σ2
i

= 4
1

n

n∑
i=1

Li − µ
qin

(fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉) + 2
1

n

n∑
i=1

σ2
i

qin

≤ 4Lq(f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉) + 2σ2
q

≤ 4Lq(f(x)− f(x∗) + h(x)− h(x∗)) + 2σ2
q = 4Lq(F (x)− F (x∗)) + 2σ2

q ,

where the last inequality follows from the optimality of x∗, which implies that −∇f(x∗) ∈ ∂h(x∗),
and in turn implies 〈−∇f(x∗), x− x∗〉 ≤ h(x)− h(x∗) by convexity of h.

We can now proceed with the proof of Proposition 5.

Proof. Define the quantities

At =
1

n

n∑
i=1

1

qin
‖zti − z∗i ‖2

and Bt = F (x∗)−Dt(xt).

The proof successively describes recursions on At, Bt, and eventually Ct (we drop the superscript
in Cqt for simplicity), using the same approach as for the proof of Proposition 1.

Recursion on At. Using similar techniques as in the proof of Proposition 1, we have
At −At−1

=
1

n

(
1

qitn
‖ztit − z

∗
it‖

2 − 1

qitn
‖zt−1
it
− z∗it‖

2

)
=

1

n

(
1

qitn

∥∥∥∥(1− αt
qitn

)
(zt−1
it
−z∗it) +

αt
qitn

(
xt−1−

1

µ
∇f̃it(xt−1, ρt)−z∗it

)∥∥∥∥2

− 1

qitn
‖zt−1
it
−z∗it‖

2

)

=
1

n

(
− αt

(qitn)2
‖zt−1
it
−z∗it‖

2+
αt

(qitn)2

∥∥∥∥xt−1−
1

µ
∇f̃it(xt−1, ρt)−z∗it

∥∥∥∥2

− αt
(qitn)2

(
1− αt

qitn

)
‖vtit‖

2
)
,

where vti := xt−1 − 1
µ∇f̃i(xt−1, ρt)− zt−1

i . Taking conditional expectations w.r.t. Ft−1 and using
Lemma C.1 to bound the second term yields

E[At −At−1] ≤

− αt
n
At−1 +

4αtLq
nµ2

(F (xt−1)− F (x∗)) +
2αtσ

2
q

nµ2
− 1

n

n∑
i=1

(
αt
n

1

qin

(
1− αt

qin

)
‖vti‖2

)
(30)
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Recursion on Bt. We start by using a lemma from the proof of MISO-Prox [18, Lemma D.4],
which only relies on the form of Dt and the fact that xt minimizes it, and thus holds in our setting:

Dt(xt) ≥ Dt(xt−1)− µ

2
‖z̄t − z̄t−1‖2

= Dt(xt−1)− µ

2(qitn)2

(αt
n

)2

‖vtit‖
2 (31)

We then expand Dt(xt−1) using (28) as follows:

Dt(xt−1) = Dt−1(xt−1) +
αt
n

1

qitn

(
f̃it(xt−1, ρt)− dt−1

it
(xt−1)

)
= Dt−1(xt−1) +

αt
n

1

qitn

(
f̃it(xt−1, ρt) + h(xt−1)− dt−1

it
(xt−1)− h(xt−1)

)
.

After taking conditional expections w.r.t. Ft−1, (31) becomes

E[Dt(xt)] ≥ Dt−1(xt−1) +
αt
n

(F (xt−1)−Dt−1(xt−1))− µ

2n

n∑
i=1

(αt
n

)2 1

qin
‖vti‖2.

Subtracting F (x∗) and rearranging yields

E[Bt −Bt−1] ≤ −αt
n
Bt−1 −

αt
n

(F (xt−1)− F (x∗)) +
µ

2n

n∑
i=1

(αt
n

)2 1

qin
‖vti‖2. (32)

Recursion on Ct. If we consider Ct = µptAt +Bt and C ′t−1 = µptAt−1 +Bt−1, combining (30)
and (32) yields

E[Ct−C ′t−1] ≤ −αt
n
C ′t−1+

2αt
n

(2ptLq
µ
− 1

2

)
(F (xt−1)−F (x∗))+

µαt
n2

n∑
i=1

δti
qin
‖vti‖2+

2αtptσ
2
q

nµ
,

(33)
with

δti =
αt
2n
− pt

(
1− αt

qin

)
.

If we take pt = αt

n , and if (αt)t≥1 is a decreasing sequence satisfying (19), then we obtain the desired
recursion after noticing that C ′t−1 ≤ Ct−1 and taking total expectations on Ft−1.

Note that if we take

α1 ≤ min

{
nqmin

2
,
nµ

8Lq

}
,

then (33) yields

E
[
Cqt
µ

]
≤
(

1− αt
n

)
E
[
Cqt−1

µ

]
− αt

2nµ
(F (xt−1)− F (x∗)) + 2

(αt
n

)2 σ2
q

µ2
.

This relation takes the same form as Eq. (27), hence it is straightforward to adapt the proof of
Theorem 3 to this setting, and the same iterate averaging scheme applies.

D Complexity Analysis of SGD

In this section, we provide a proof of a simple result for SGD in the smooth case, giving a recursion
that depends on a variance condition at the optimum (in contrast to [5, 24] where this condition needs
to hold everywhere), for a more natural comparison with S-MISO.
Proposition D.1 (Simple SGD recursion with variance at optimum). Under assumptions (A1) and
(A2), if ηt ≤ 1/2L, then the SGD recursion xt := xt−1 − ηt∇f̃it(xt−1, ρt) satisfies

Bt ≤ (1− µηt)Bt−1 + η2
t σ

2
tot,

where Bt := 1
2 E[‖xt − x∗‖2] and σtot is such that

Ei,ρ
[
‖∇f̃i(x∗, ρ)‖2

]
≤ σ2

tot.

19



Proof. We have

‖xt − x∗‖2 = ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt), xt−1 − x∗〉+ η2
t ‖∇f̃it(xt−1, ρt)‖2

≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt), xt−1 − x∗〉
+ 2η2

t ‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2 + 2η2
t ‖∇f̃it(x∗, ρt)‖2

E
[
‖xt − x∗‖2

]
≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f(xt−1), xt−1 − x∗〉

+ 2η2
t Eit,ρt

[
‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2

]
+ 2η2

t Eit,ρt
[
‖∇f̃it(x∗, ρt)‖2

]
(∗) ≤ ‖xt−1 − x∗‖2 − 2ηt

(
f(xt−1)− f(x∗) +

µ

2
‖xt−1 − x∗‖2

)
+ 4Lη2

t (f(xt−1)− f(x∗)) + 2η2
t σ

2
tot

= (1− µηt)‖xt−1 − x∗‖2 − 2ηt(1− 2Lηt)(f(xt−1)− f(x∗)) + 2η2
t σ

2
tot,

where the expectation is taken with respect to the filtration Ft−1 and the inequality (∗) follows from
the strong convexity of f and Ei,ρ[‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2] is bounded by 2L(f(xt−1)−
f(x∗)) as in the proof of Lemma B.1. When ηt ≤ 1/2L, the second term is non-positive and we
obtain the desired result after taking total expectations.

Note that when ηt ≤ 1/4L, we have

E
[
‖xt − x∗‖2

]
≤ (1− µηt)E

[
‖xt−1 − x∗‖2

]
− ηt(f(xt−1)− f(x∗)) + 2η2

t σ
2
tot.

This takes a similar form to Eq. (27), and one can use the same iterate averaging scheme as Theorem 3
with step-sizes ηt = 2/µ(γ + t) by adapting the proof.

We now give a similar recursion for the proximal SGD algorithm (see, e.g., [11]). This allows us to
apply the results of Theorem 2 and the step-size strategy mentioned in Section 3.
Proposition D.2 (Simple recursion for proximal SGD with variance at optimum). Under assumptions
(A1) and (A2), if ηt ≤ 1/2L, then the proximal SGD recursion

xt := proxηth(xt−1 − ηt∇f̃it(xt−1, ρt))

satisfies
Bt ≤ (1− µηt)Bt−1 + η2

t σ
2
tot,

where Bt := 1
2 E[‖xt − x∗‖2] and σtot is such that

Ei,ρ
[
‖∇f̃i(x∗, ρ)−∇f(x∗)‖2

]
≤ σ2

tot.

Proof. We have
‖xt − x∗‖2

= ‖ proxηth(xt−1 − ηt∇f̃it(xt−1, ρt))− proxηth(x∗ − ηt∇f(x∗))‖2

≤ ‖xt−1 − ηt∇f̃it(xt−1, ρt)− x∗ + ηt∇f(x∗)‖2

= ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt)−∇f(x∗), xt−1 − x∗〉+ η2
t ‖∇f̃it(xt−1, ρt)−∇f(x∗)‖2

≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt)−∇f(x∗), xt−1 − x∗〉
+ 2η2

t ‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2 + 2η2
t ‖∇f̃it(x∗, ρt)−∇f(x∗)‖2,

where the first equality follows from the optimality of x∗ and the following inequality follows from
the non-expansiveness of proximal operators. Taking conditional expectations on Ft−1 yields

E
[
‖xt − x∗‖2|Ft−1

]
≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f(xt−1)−∇f(x∗), xt−1 − x∗〉

+ 2η2
t Eit,ρt

[
‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2

]
+ 2η2

t Eit,ρt
[
‖∇f̃it(x∗, ρt)−∇f(x∗)‖2

]
(∗) ≤ ‖xt−1 − x∗‖2 − 2ηt

(
f(xt−1)− f(x∗) +

µ

2
‖xt−1 − x∗‖2 − 〈∇f(x∗), xt−1 − x∗〉

)
+ 4Lη2

t (f(xt−1)− f(x∗)− 〈∇f(x∗), xt−1 − x∗〉) + 2η2
t σ

2
tot

= (1−µηt)‖xt−1−x∗‖2 − 2ηt(1−2Lηt)(f(xt−1)−f(x∗)−〈∇f(x∗), xt−1 − x∗〉) + 2η2
t σ

2
tot,
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Figure 4: Comparison of S-MISO and SGD with averaging, for different condition numbers (con-
trolled by µ) and different Dropout rates δ. We begin step-size decay and averaging at epoch 3 (top)
and 30 (bottom).

where inequality (∗) follows from the µ-strong convexity of f and Ei,ρ[‖∇f̃it(xt−1, ρt) −
∇f̃it(x∗, ρt)‖2] is bounded by 2L(f(xt−1) − f(x∗) − 〈∇f(x∗), xt−1 − x∗〉) as in the proof of
Lemma C.1. By convexity of f , we have f(xt−1)− f(x∗)− 〈∇f(x∗), xt−1 − x∗〉 ≥ 0, hence the
second term is non-positive when ηt ≤ 1/2L. We conclude by taking total expectations.

We note that Propositions D.1 and D.2 can be easily adapted to non-uniform sampling with sampling
distribution q and step-sizes ηt/qitn, leading to step-size conditions ηt ≤ 1/2Lq, with Lq =

maxi
Li

qin
and variance σ2

q,tot = Ei,ρ[ 1
(qin)2 ‖∇f̃i(x

∗, ρ)−∇f(x∗)‖2].

E Experiments with Averaging Scheme

Figure 4 shows a comparison of S-MISO and SGD with the averaging scheme proposed in Theorem 3
(see Appendix D for comments on how it applies to SGD), on the breast cancer dataset presented in
Section 4, for different values of the regularization µ (and thus of the condition number κ = L/µ),
and Dropout rates δ. We can see that the averaging scheme gives some small improvements for both
methods, and that the improvements are more significant when the problem is more ill-conditioned
(Figure 4, bottom). We note that the time at which we start averaging can have significant impact on
the convergence, in particular, starting too early can significantly slow down the initial convergence,
as commonly noticed for stochastic gradient methods (see, e.g., [24]).
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