471 research outputs found

    Learning the Quality of Machine Permutations in Job Shop Scheduling

    Get PDF
    In recent years, the power demonstrated by Machine Learning (ML) has increasingly attracted the interest of the optimization community that is starting to leverage ML for enhancing and automating the design of algorithms. One combinatorial optimization problem recently tackled with ML is the Job Shop scheduling Problem (JSP). Most of the works on the JSP using ML focus on Deep Reinforcement Learning (DRL), and only a few of them leverage supervised learning techniques. The recurrent reasons for avoiding supervised learning seem to be the difficulty in casting the right learning task, i.e., what is meaningful to predict, and how to obtain labels. Therefore, we first propose a novel supervised learning task that aims at predicting the quality of machine permutations. Then, we design an original methodology to estimate this quality, and we use these estimations to create an accurate sequential deep learning model (binary accuracy above 95%). Finally, we empirically demonstrate the value of predicting the quality of machine permutations by enhancing the performance of a simple Tabu Search algorithm inspired by the works in the literature

    Approximate Methods For Solving Flowshop Problems

    Get PDF
    The flow shop scheduling problem is a classical combinatorial problem being studied for years. The focus of this research is to study two variants of the flow shop scheduling problem in order to minimize makespan by scheduling n jobs on m machines. A solution approach is developed for the modified flow shop problem with due dates and release times. This algorithm is an attempt to contribute to the limited literature for the problem. Another tabu search-based solution approach is developed to solve the classical flow shop scheduling problem. This meta-heuristic (called 3XTS) allows an efficient search of the neighboring solutions leading to a fast solution procedure. Several control parameters affecting the quality of the algorithm are experimentally tested, and certain rules are established for different problem instances. The 3XTS is compared to another tabu search method (that seems to be a champion) in terms of solution quality and computation time

    A multi-objective GA-based optimisation for holistic Manufacturing, transportation and Assembly of precast construction

    Get PDF
    Resource scheduling of construction proposals allows project managers to assess resource requirements, provide costs and analyse potential delays. The Manufacturing, transportation and Assembly (MtA) sectors of precast construction projects are strongly linked, but considered separately during the scheduling phase. However, it is important to evaluate the cost and time impacts of consequential decisions from manufacturing up to assembly. In this paper, a multi-objective Genetic Algorithm-based (GA-based) searching technique is proposed to solve unified MtA resource scheduling problems (which are equivalent to extended Flexible Job Shop Scheduling Problems). To the best of the authors' knowledge, this is the first time that a GA-based optimisation approach is applied to a holistic MtA problem with the aim of minimising time and cost while maximising safety. The model is evaluated and compared to other exact and non-exact models using instances from the literature and scenarios inspired from real precast constructions

    Tabu Search: A Comparative Study

    Get PDF

    Scheduling in assembly type job-shops

    Get PDF
    Assembly type job-shop scheduling is a generalization of the job-shop scheduling problem to include assembly operations. In the assembly type job-shops scheduling problem, there are n jobs which are to be processed on in workstations and each job has a due date. Each job visits one or more workstations in a predetermined route. The primary difference between this new problem and the classical job-shop problem is that two or more jobs can merge to foul\u27 a new job at a specified workstation, that is job convergence is permitted. This feature cannot be modeled by existing job-shop techniques. In this dissertation, we develop scheduling procedures for the assembly type job-shop with the objective of minimizing total weighted tardiness. Three types of workstations are modeled: single machine, parallel machine, and batch machine. We label this new scheduling procedure as SB. The SB procedure is heuristic in nature and is derived from the shifting bottleneck concept. SB decomposes the assembly type job-shop scheduling problem into several workstation scheduling sub-problems. Various types of techniques are used in developing the scheduling heuristics for these sub-problems including the greedy method, beam search, critical path analysis, local search, and dynamic programming. The performance of SB is validated on a set of test problems and compared with priority rules that are normally used in practice. The results show that SB outperforms the priority rules by an average of 19% - 36% for the test problems. SB is extended to solve scheduling problems with other objectives including minimizing the maximum completion time, minimizing weighted flow time and minimizing maximum weighted lateness. Comparisons with the test problems, indicate that SB outperforms the priority rules for these objectives as well. The SB procedure and its accompanying logic is programmed into an object oriented scheduling system labeled as LEKIN. The LEKIN program includes a standard library of scheduling rules and hence can be used as a platform for the development of new scheduling heuristics. In industrial applications LEKIN allows schedulers to obtain effective machine schedules rapidly. The results from this research allow us to increase shop utilization, improve customer satisfaction, and lower work-in-process inventory without a major capital investment

    DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    Get PDF

    ADAPTIVE, MULTI-OBJECTIVE JOB SHOP SCHEDULING USING GENETIC ALGORITHMS

    Get PDF
    This research proposes a method to solve the adaptive, multi-objective job shop scheduling problem. Adaptive scheduling is necessary to deal with internal and external disruptions faced in real life manufacturing environments. Minimizing the mean tardiness for jobs to effectively meet customer due date requirements and minimizing mean flow time to reduce the lead time jobs spend in the system are optimized simultaneously. An asexual reproduction genetic algorithm with multiple mutation strategies is developed to solve the multi-objective optimization problem. The model is tested for single day and multi-day adaptive scheduling. Results are compared with those available in the literature for standard problems and using priority dispatching rules. The findings indicate that the genetic algorithm model can find good solutions within short computational time

    Research on a multilevel scheduling model for multi variety and variable batch production environments based on machine learning

    Get PDF
    Traditional manufacturing enterprises cannot adjust their production line structure in the short term. They face significant challenges in adapting to the rapidly changing market environment and meeting various variable batch production requirements. Building a suitable and convenient multi-layer planning and scheduling model is an important goal to solve the efficient operation of manufacturing enterprises. This paper proposes a planning and scheduling design that meets the needs of enterprise and the production workshop using the APERT-VC model through a top-down design methodology. APERT is an enterprise-level plan that uses attention mechanisms to collect job plan time and decomposes project plans into workshop plans through PERT technology. virtual command is workshop level plan management, which converts workshop plans into time series vectors and achieves rapid and comprehensive guidance of workshop resource planning for enterprises through multiple classification and decision-making. Through experiments, the algorithm achieved production scheduling accuracy improvement of over 30% compared to previous algorithms and a decision accuracy rate of over 90%. The first half of the new model solves the problem of collecting work time for multi variety and variable batch products, and improves the accuracy of algorithm input. The second half of the new algorithm innovatively combines image recognition technology with dispatcher behavior, achieving efficient simulation results

    Literature Review on Big Data Analytics Methods

    Get PDF
    Companies and industries are faced with a huge amount of raw data, which have information and knowledge in their hidden layer. Also, the format, size, variety, and velocity of generated data bring complexity for industries to apply them in an efficient and effective way. So, complexity in data analysis and interpretation incline organizations to deploy advanced tools and techniques to overcome the difficulties of managing raw data. Big data analytics is the advanced method that has the capability for managing data. It deploys machine learning techniques and deep learning methods to benefit from gathered data. In this research, the methods of both ML and DL have been discussed, and an ML/DL deployment model for IOT data has been proposed

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving
    • …
    corecore