9 research outputs found

    A decidable weakening of Compass Logic based on cone-shaped cardinal directions

    Get PDF
    We introduce a modal logic, called Cone Logic, whose formulas describe properties of points in the plane and spatial relationships between them. Points are labelled by proposition letters and spatial relations are induced by the four cone-shaped cardinal directions. Cone Logic can be seen as a weakening of Venema's Compass Logic. We prove that, unlike Compass Logic and other projection-based spatial logics, its satisfiability problem is decidable (precisely, PSPACE-complete). We also show that it is expressive enough to capture meaningful interval temporal logics - in particular, the interval temporal logic of Allen's relations "Begins", "During", and "Later", and their transposes

    Satisfiability and Model Checking for the Logic of Sub-Intervals under the Homogeneity Assumption

    Get PDF
    The expressive power of interval temporal logics (ITLs) makes them really fascinating, and one of the most natural choices as specification and planning language. However, for a long time, due to their high computational complexity, they were considered not suitable for practical purposes. The recent discovery of several computationally well-behaved ITLs has finally changed the scenario. In this paper, we investigate the finite satisfiability and model checking problems for the ITL D featuring the sub-interval relation, under the homogeneity assumption (that constrains a proposition letter to hold over an interval if and only if it holds over all its points). First we prove that the satisfiability problem for D, over finite linear orders, is PSPACE-complete; then we show that its model checking problem, over finite Kripke structures, is PSPACE-complete as well. The paper enrich the set of tractable interval temporal logics with a meaningful representative.Comment: arXiv admin note: text overlap with arXiv:1901.0388

    PSPACE-completeness of the temporal logic of sub-intervals and suffixes

    Get PDF
    In this paper, we prove PSPACE-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality 〈E〉, for the “suffix” relation on pairs of intervals, and modality 〈D〉, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the EXPSPACE upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (〈E〉) or, symmetrically, the modality for prefixes (〈B〉) to the logic of sub-intervals (featuring only 〈D〉)

    A decidable weakening of Compass Logic based on cone-shaped cardinal directions

    Get PDF
    We introduce a modal logic, called Cone Logic, whose formulas describeproperties of points in the plane and spatial relationships between them.Points are labelled by proposition letters and spatial relations are induced bythe four cone-shaped cardinal directions. Cone Logic can be seen as a weakeningof Venema's Compass Logic. We prove that, unlike Compass Logic and otherprojection-based spatial logics, its satisfiability problem is decidable(precisely, PSPACE-complete). We also show that it is expressive enough tocapture meaningful interval temporal logics - in particular, the intervaltemporal logic of Allen's relations "Begins", "During", and "Later", and theirtransposes

    Tableaux for Logics of Subinterval Structures over Dense Orderings

    No full text
    In this article, we develop tableau-based decision procedures for the logics of subinterval structures over dense linear orderings. In particular, we consider the two difficult cases: the relation of strict subintervals (with both endpoints strictly inside the current interval) and the relation of proper subintervals (that can share one endpoint with the current interval). For each of these logics, we establish a small pseudo-model property and construct a sound, complete and terminating tableau that searches systematically for existence of such a pseudo-model satisfying the input formulas. Both constructions are non-trivial, but the latter is substantially more complicated because of the presence of beginning and ending subintervals which require special treatment. We prove PSPACE completeness for both procedures and implement them in the generic tableau-based theorem prover Lotrec

    Tableaux for Logics of Subinterval Structures over Dense Orderings

    No full text

    Tableaux for logics of subinterval structures over dense orderings

    No full text
    In this article,we develop tableau-based decision procedures for the logics of subinterval structures over dense linear orderings. In particular, we consider the two dif\ufb01cult cases: the relation of strict subintervals (with both endpoints strictly inside the current interval) and the relation of proper subintervals (that can share one endpointwith the current interval). For each of these logics, we establish a small pseudo-model property and construct a sound, complete and terminating tableau that searches systematically for existence of such a pseudo-model satisfying the input formulas. Both constructions are non-trivial, but the latter is substantially more complicated because of the presence of beginning and ending subintervals which require special treatment. We prove PSPACE completeness for both procedures and implement them in the generic tableau-based theorem prover Lotrec
    corecore