6 research outputs found

    Hyper-Spectral Communications, Networking and ATM as Foundation for Safe and Efficient Future Flight: Transcending Aviation Operational Limitations with Diverse and Secure Multi-Band, Multi-Mode, and mmWave Wireless Links: Project Overview, Aviation Communications and New Signaling

    Get PDF
    NASA's Aeronautics Research Mission Directorate (ARMD) has recently solicited proposals and awarded funds for research and development to achieve and exceed the goals envisioned in the ARMD Strategic Implementation Plan (SIP). The Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is the only University Leadership Initiative (ULI) program to address communications and networking (and to a degree, navigation and surveillance). This paper will provide an overview of the HSCNA project, and specifically describe two of the project's technical challenges: comprehensive aviation communications and networking assessment, and proposed multi-band and multimode communications and networking. The primary goals will be described, as will be research and development aimed to achieve and exceed these goals. Some example initial results are also provided

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    C-Band Airport Surface Communications System Standards Development, Phase I

    Get PDF
    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." The proposed future C-band (5091- to 5150-MHz) airport surface communication system, referred to as the Aeronautical Mobile Airport Communications System (AeroMACS), is anticipated to increase overall air-to-ground data communications systems capacity by using a new spectrum (i.e., not very high frequency (VHF)). Although some critical services could be supported, AeroMACS will also target noncritical services, such as weather advisory and aeronautical information services as part of an airborne System Wide Information Management (SWIM) program. AeroMACS is to be designed and implemented in a manner that will not disrupt other services operating in the C-band. This report defines the AeroMACS concepts of use, high-level system requirements, and architecture; the performance of supporting system analyses; the development of AeroMACS test and demonstration plans; and the establishment of an operational AeroMACS capability in support of C-band aeronautical data communications standards to be advanced in both international (International Civil Aviation Organization, ICAO) and national (RTCA) forums. This includes the development of system parameter profile recommendations for AeroMACS based on existing Institute of Electrical and Electronics Engineering (IEEE) 802.16e- 2009 standard

    L-Band System Engineering - Concepts of Use, Systems Performance Requirements, and Architecture

    Get PDF
    This document is being provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-band and L-band Communications Standard Development. Task 7 was motivated by the five year technology assessment performed for the Federal Aviation Administration (FAA) under the joint FAA-EUROCONTROL cooperative research Action Plan (AP-17), also known as the Future Communications Study (FCS). It was based on direction provided by the FAA project-level agreement (PLA FY09_G1M.02-02v1) for "New ATM Requirements-Future Communications." Task 7 was separated into two distinct subtasks, each aligned with specific work elements and deliverable items. Subtask 7-1 addressed C-band airport surface data communications standards development, systems engineering, test bed development, and tests/demonstrations to establish operational capability for what is now referred to as the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2, which is the subject of this report, focused on preliminary systems engineering and support of joint FAA/EUROCONTROL development and evaluation of a future L-band (960 to 1164 MHz) air/ground (A/G) communication system known as the L-band digital aeronautical communications system (L-DACS), which was defined during the FCS. The proposed L-DACS will be capable of providing ATM services in continental airspace in the 2020+ timeframe. Subtask 7-2 was performed in two phases. Phase I featured development of Concepts of Use, high level functional analyses, performance of initial L-band system safety and security risk assessments, and development of high level requirements and architectures. It also included the aforementioned support of joint L-DACS development and evaluation, including inputs to L-DACS design specifications. Phase II provided a refinement of the systems engineering activities performed during Phase I, along with continued joint FAA/EUROCONTROL L-DACS development and evaluation support

    C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Get PDF
    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers

    Avaliação do perfil proteico de Trypanosoma rangeli durante o processo de diferenciação celular in vitro

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Programa de Pós-Graduação em Biotecnologia e Biociências, Florianópolis, 2014.O Trypanosoma rangeli é um parasito hemoflagelado amplamente distribuído nas Américas onde ocorre em simpatria com o Trypanosoma cruzi, o agente etiológico da doença de Chagas. Apesar da ampla distribuição geográfica e da diversidade de hospedeiros invertebrados e mamíferos, incluindo seres humanos, as informações a respeito do ciclo biológico do T. rangeli nestes hospedeiros são ainda controversas. Ainda que o genoma do T. rangeli esteja em fase de publicação, são raras as abordagens proteômicas no estudo dos sistemas biológicos, permitindo o estudo de proteínas isoladas a partir da análise do proteoma total. Desta forma, a demanda por estudos de proteômica objetivando abordar o complexo e desconhecido ciclo de vida deste parasita nos levou a avaliar neste estudo o perfil de proteínas de T. rangeli durante o processo de diferenciação celular in vitro e selecionar algumas proteínas de interesse para uma análise molecular inicial. Extratos de proteínas solúveis foram obtidos durante o processo de diferenciação celular in vitro de formas epimastigotas a tripomastigotas. Três estratégias proteômicas foram utilizadas e um total de 1.455 proteínas não redundantes de T. rangeli foram identificadas, das quais quatro foram exclusivamente identificadas por eletroforese 2DE, 724 por eletroforese 1DE e 41 através uma abordagem sem o uso de gel. Entre essas proteínas, foram selecionadas 13 para dar continuidade ao estudo e, destas, quatro apresentaram regulação na expressão durante o período de diferenciação celular e podem se tornar marcadores importantes que irão auxiliar a entender a biologia de T. rangeli e os mecanismos moleculares durante o processo de diferenciação.Abstract : Trypanosoma rangeli is a hemoflagelate parasite occurring in sympatry with Trypanosoma cruzi, agent of Chagas disease, in a wide area in Central and South America. Despite this sympatric distribution and the diversity of invertebrate and mammalian hosts, including humans, information about the biological cycle of T. rangeli on these hosts is still scarce and controversial. The T. rangeli genome has been sequenced and is about to be published by our group but little proteomic data is so far available to address the complex and unknown life cycle this parasite. Thus, the aim of this study was to evaluate the protein profile of T. rangeli during the in vitro cellular differentiation and select some proteins of interest for an initial molecular analysis. Soluble protein extracts were obtained from parasites during the in vitro differentiation process of epimastigotes forms to trypomastigotes. Three proteomic approaches were used and a total of 1,455 non-redundant T. rangeli proteins were identified. Among these, four were identified exclusively by 2DE electrophoresis, 724 by 1DE gel based and 41 proteins via a gelfree approach. Several proteins revealing variation on their expression profiles were selected to continue this study, among which, four showed regulation of expression during cell differentiation and may become important stage-specific proteins that could help to understand T. rangeli biology and the molecular mechanisms during the differentiation process
    corecore