UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE MICROBIOLOGIA, IMUNOLOGIA E PARASITOLOGIA

> Programa de Pós-Graduação em BIOTECNOLOGIA & BIOCIÊNCIAS mestrado & doutorado

AVALIAÇÃO DO PERFIL PROTEICO DE Trypanosoma rangeli DURANTE O PROCESSO DE DIFERENCIAÇÃO CELULAR in vitro

Débora Denardin Lückemeyer

Florianópolis 2014

Débora Denardin Lückemeyer

AVALIAÇÃO DO PERFIL PROTEICO DE Trypanosoma rangeli DURANTE O PROCESSO DE DIFERENCIAÇÃO CELULAR in vitro

Tese submetida ao Programa de Pós-Graduação em Biotecnologia e Biociências da Universidade Federal de Santa Catarina para a obtenção do Grau de Doutor em Biotecnologia e Biociências Orientador: Prof. Dr. Edmundo Carlos Grisard

Florianópolis 2014

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Lückemeyer, Débora Denardin Avaliação do perfil proteico de Trypanosoma rangeli durante o processo de diferenciação celular in vitro / Débora Denardin Lückemeyer ; orientador, Edmundo Carlos Grisard - Florianópolis, SC, 2014. 247 p. Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas. Programa de Pós-Graduação em Biotecnologia e Biociências. Inclui referências 1. Biotecnologia e Biociências. 2. Trypanosoma rangeli. 3. Diferenciação celular in vitro. 4. Proteômica. I. Grisard, Edmundo Carlos. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Biotecnologia e Biociências. III. Título.

"Desenvolver força, coragem e paz interior demanda tempo. Não espere resultados rápidos e imediatos, sob o pretexto de que decidiu mudar. Cada ação que você executa permite que essa decisão se torne efetiva dentro do seu coração."

Dalai Lama

Aos meus pais, Ademir e Angelina, às minhas irmãs, Juliana e Graziela, e ao meu sobrinho Bruno, que são a base e a razão de tudo!

AGRADECIMENTOS

A Deus, por conceder a oportunidade de acordar a cada dia e recomeçar. Por ser meu guia e estar sempre presente.

Aos meus pais, Ademir e Angelina, que são meu alicerce e exemplo de caráter. Sempre batalharam para que nada faltasse e realmente nada faltou. Obrigada pela dedicação e amor durante todos esses anos, pelos telefonemas, pelo apoio, pelo incentivo e por serem pais maravilhosos. Amo vocês.

As minhas irmãs, Juliana e Graziela, pelo amor, amizade, companheirismo, pelas palavras de incentivo quando tudo pareceria perdido. Obrigada por sempre estarem de mão estendida para me ajudar.

Ao meu sobrinho Bruno, agradeço pelo exemplo de superação desde bebezinho. É indescritível meu amor por ele e a forma com o qual "recarrega minhas baterias" para seguir adiante.

Ao meu orientador, Prof. Dr. Edmundo Grisard, agradeço a oportunidade de trabalhar no Laboratório de Protozoologia, pela orientação deste trabalho, pela confiança e paciência durante todos esses anos. Além de orientador, professor, sempre esteve à disposição para uma conversa amiga, conselhos e ensinamentos sobre a vida. És um exemplo de profissional e sem dúvida alguma aprendi lições profissionais e pessoais muito valiosas.

Ao meu "pai científico", Flávio Reginatto, agradeço por ter aberto meus olhos para a vida científica, por ter apresentado oportunidades valiosas, pela confiança depositada e por ter ajudado e continuar ajudando em cada obstáculo.

Ao Prof. Mário Steindel por todos os ensinamentos científicos ou não. Por sempre estar disponível para ajudar e discutir um protocolo, por ser um exemplo de profissional comprometido com a ciência e educação. Obrigada também por ensinar que "frango assado não entra pela janela".

Ao Prof. Alvaro Romanha, Prof. André Bafica, Prof. Daniel Mansur, Prof. Oscar Bruna-Romero, Prof. Carlos Pinto, Prof. Carlos Zanetti, Prof. Aguinaldo Pinto, Profa. Cláudia e Prof. Célia por toda colaboração científica, conversas de corredor e risadas. Com certeza foram muito importantes. Ao Glauber Wagner agradeço pela amizade e principalmente pela colaboração para a realização deste trabalho que com certeza foi fundamental.

A Dra. Thaís Sincero e ao Dr. Rafael Rosa, Dr. Marcelo Maraschin, Dr. Stenio Perdigão Fragoso, Dr. Henrique B. Ferreira, Dr. Guilherme Razzera Maciel e Dr. Daniel Mansur pela disponibilidade em avaliar este trabalho e por todas as valiosas contribuições.

Ao Dr. Hercules Moura do Laboratório de Espectrometria de Massas do CDC pela colaboração e troca de ideias e conhecimento.

A Patricia Hermes Stoco, pessoa que não tenho como descrever em poucas palavras, obrigada pelo exemplo que és de profissional, dedicação e honestidade. Obrigada por sempre acreditar em mim, ter confiado no meu potencial e acima de tudo por ser uma amiga sempre presente. Obrigada pelo apoio nas horas boas e ruins, por ser um pouquinho de tudo, mãe, amiga, orientadora, desorientadora (risos). Com certeza sem você o caminho seria completamente diferente. Obrigada pelo colo, risadas, lágrimas, broncas, conselhos, brigas, carinho, jantares, almoços, roupas de festa junina e muitas outras coisas mais.

A Milene Hoehr de Moraes, uma pequena grande mulher, agradeço a amizade, companheirismo, conselhos e ensinamentos. Apesar do curto tempo que nos conhecemos, sempre mostrou possuir uma incontestável competência e caráter. Obrigada por estar sempre por perto e partilhar risadas, choros, jantares, almoços..... Ah, não podia esquecer, obrigada por compartilhar as TPMs.

Aos "pequenos" diamantes que a vida colocou no meu caminho. A Carime, em primeiro lugar pela paciência e jogo de cintura para me aturar dizendo "vai ler, depois a gente conversa", por todo carinho e ajuda na realização deste trabalho realizando inúmeros Bradford, géis... A Laís Yamanaka por a cada dia me surpreender e mostrar que a vida é pura e simples e que merece ser vivida desta forma. A Thaynara Pereira por ser um exemplo de determinação mesmo sendo tão jovem. Por ter um caráter exemplar e por ser simples a cada gesto e por cuidar de mim como a sua "primeira paciente". Meninas, muito obrigada pelo amor, conversas, riso, choro e é claro, pelas fofocas.

Aos amigos, que são a família que temos o privilégio de escolher, não tenho palavras para expressar minha eterna gratidão por todos os momentos que passamos juntos. Foram tantas risadas, tantas conversas,

desabafos, choros, alegrias, boas e más notícias. Obrigada pelo afago, pelos braços abertos, pelo carinho e amor, pelos pensamentos e palavras positivas e PRINCIPALMENTE, pela paciência que todos tiveram comigo. Os de perto, os de longe, os de longa data, os de curta data são todos muito especiais. Thaís Bróglio, Fernando Fagundes, Aline Oliveira, Denise Decker, Rodrigo Colleto, Ricardo Zimmerman, Luana Capellari, Monia Schaurich, Renan Marques, Thiago Caon, Jéssica Bertol, Patrícia Hermes Stoco, Milene Hoehr de Moraes, Carime Lessa Mansur, Laís Yamanaka, Thaynara Pereira, Ninna Granucci, Virgínia Demarchi Kappel Trichez, Ieda Friederich, André Manabu Kaneoya, Carla Mari Kamia, Igor Harada, Sílvia Endo, Mayara Rabello, Naira Schneider, Sanmara Franco, Fernanda Madoglio, Cassandra Aresi, Ana Luiza Franco, Greicy Malaquias Dias, Gustavo Campagnaro, Vagner Portes, Thaise Ferronato obrigada por tudo que vocês representam na minha vida!

As minhas colegas de apartamento, Vanessa Moresco, Gislaine Fongaro e Paola Navas por dividir o lar quando nossa família está tão longe e pelo bom convívio.

Ao pessoal do Laboratório de Protozoologia, alunos e ex-alunos, agradeço pelo convívio de cada dia, pelas conversas científicas ou papo furado, pelas risadas e principalmente pela contribuição para a realização deste trabalho.

Aos colegas do LVA, LIDI e LIA, pelo bom convívio, conversas de corredor e ajuda.

Um agradecimento especial a Dona Nica que mantinha nosso laboratório e dependências sempre limpo e bem arrumado para que fosse possível a realização do trabalho.

Aos servidores técnico administrativos que de forma direta ou indireta colaboraram para a realização deste trabalho, em especial ao Orlando, Marcelo, Fernanda e Joice que sempre foram muito solicitos e amáveis.

A todos os colegas e professores do curso de Pós-Graduação em Biotecnologia e Biociências, pelo convívio e ensinamentos.

A CAPES, CNPq e FINEP pelo suporte financeiro.

Enfim, a todos que de forma direta ou indireta ajudaram na realização deste trabalho!

Muito obrigada!!!

RESUMO

O Trypanosoma rangeli é um parasito hemoflagelado amplamente distribuído nas Américas onde ocorre em simpatria com o Trypanosoma cruzi, o agente etiológico da doenca de Chagas. Apesar da ampla distribuição geográfica e da diversidade de hospedeiros invertebrados e mamíferos, incluindo seres humanos, as informações a respeito do ciclo biológico do T. rangeli nestes hospedeiros são ainda controversas. Ainda que o genoma do T. rangeli esteja em fase de publicação, são raras as abordagens proteômicas no estudo dos sistemas biológicos, permitindo o estudo de proteínas isoladas a partir da análise do proteoma total. Desta forma, a demanda por estudos de proteômica objetivando abordar o complexo e desconhecido ciclo de vida deste parasita nos levou a avaliar neste estudo o perfil de proteínas de T. rangeli durante o processo de diferenciação celular in vitro e selecionar algumas proteínas de interesse para uma análise molecular inicial. Extratos de proteínas solúveis foram obtidos durante o processo de diferenciação celular in vitro de formas epimastigotas a tripomastigotas. Três estratégias proteômicas foram utilizadas e um total de 1.455 proteínas não redundantes de T. rangeli das quais foram identificadas. quatro foram exclusivamente identificadas por eletroforese 2DE, 724 por eletroforese 1DE e 41 através uma abordagem sem o uso de gel. Entre essas proteínas, foram selecionadas 13 para dar continuidade ao estudo e, destas, quatro apresentaram regulação na expressão durante o período de diferenciação celular e podem se tornar marcadores importantes que irão auxiliar a entender a biologia de T. rangeli e os mecanismos moleculares durante o processo de diferenciação.

Palavras-chave: *Trypanosoma rangeli*; Proteômica; diferenciação celular.

ABSTRACT

Trypanosoma rangeli is a hemoflagelate parasite occurring in sympatry with Trypanosoma cruzi, agent of Chagas disease, in a wide area in Central and South America. Despite this sympatric distribution and the diversity of invertebrate and mammalian hosts, including humans, information about the biological cycle of T. rangeli on these hosts is still scarce and controversial. The T. rangeli genome has been sequenced and is about to be published by our group but little proteomic data is so far available to address the complex and unknown life cycle this parasite. Thus, the aim of this study was to evaluate the protein profile of T. rangeli during the in vitro cellular differentiation and select some proteins of interest for an initial molecular analysis. Soluble protein extracts were obtained from parasites during the in vitro differentiation process of epimastigotes forms to trypomastigotes. Three proteomic approaches were used and a total of 1,455 non-redundant T. rangeli proteins were identified. Among these, four were identified exclusively by 2DE electrophoresis, 724 by 1DE gel based and 41 proteins via a gelfree approach. Several proteins revealing variation on their expression profiles were selected to continue this study, among which, four showed regulation of expression during cell differentiation and may become important stage-specific proteins that could help to understand T. rangeli biology and the molecular mechanisms during the differentiation process.

Keywords: Trypanosoma rangeli; Proteome; cell differentiation

LISTA DE FIGURAS

Figura 7: Eletroforese de extratos proteicos totais durante a diferenciação celular da cepa Choachí de *Trypanosoma rangeli*. (A) Perfil unidimensional das amostras nos tempos T0, T2, T4, T6 e T8 de duas amostras biológicas (cultura 1 (30 ug) e 2 (50ug)). (B) Perfil bidimensional de extratos proteicos totais de *T. rangeli* nos tempos T0, T2, T4, T6, T8. Alíquotas de 2 mg de proteínas foram

Figura 11: Diagrama de Venn revelando o número total de proteínas (1.410) de *Trypanosoma rangeli* identificadas por espectrometria de massas utilizando como ferramenta de separação a técnica de eletroforese unidimensional (GeLC-MS/MS) conforme cada dia do processo de diferenciação *in vitro*. T0-epimastigota, T2- segundo dia de diferenciação celular, T4- quarto dia de diferenciação celular, T6-sexto dia de diferenciação celular e T8-tripomastigota.

Figura 13: Diagrama de Venn com a comparação entre as três abordagens proteômicas (2DE, 1DE e *gel free*) utilizando o número total de proteínas (1.455) de *Trypanosoma rangeli* identificadas por espectrometria de massas...72

Figura 15: Proporção de proteínas distintas de *Trypanosoma rangeli* (cepa Choachí) com anotação funcional pelo *Gene Ontology* (GO) e distribuição das

Figura 20: Amplificação dos fragmentos dos genes codificadores para (1) ES (106 pb), (2) HAL (91 pb), (3) Gim5A (125 pb), (4) mASAT (102 pb), (5) AMA-1 (126 pb), (6) MRP2 (97 pb), (7) FCaBP (171 pb), (8) KMP-11 (114 pb), (9) CCP (107 pb), (10) PFD 1 (128 pb), (11) PFD 2 (112 pb), (12) PFD 3 (105 pb), (13) PFD 4 (108 pb). Eletroforese em gel de agarose 4% contendo SynergelTM corado com brometo de etídeo revelando os produtos de amplificação dos fragmentos. PM – padrão de tamanho molecular......111

Figura 22: Perfil da abundância de mRNA dos genes selecionados. A abundância de mRNA foi analisada em formas epimastigotas (T0), quarto (T4) e oitavo dia (T8) de diferenciação celular *in vitro* de *Trypanosoma rangeli* utilizando como genes de referência a média dos genes GAPDH, HPGRT. Os resultados foram obtidos por ensaio de qPCR e representam a média e o desvio padrão de três experimentos independentes, realizados em triplicata. O sinal * indica diferença estatisticamente significante (*p*<0,01), utilizando o teste *ANOVA* de uma direção seguida pelo teste de comparação múltipla Tukey....114

Figura 25: (A) Análise do perfil de eletroforese unidimensional em gel de poliacrilamida SDS-PAGE 12% de 30 µg dos extratos proteicos totais de formas epimastigotas (T0), intermediárias (T4) e tripomastigotas (T8) de *Trypanosoma rangeli*, epimastigotas de *Trypanosoma cruzi* (Tc), promastigotas de *Leishmania braziliensis* (Lb) e extratos proteicos bacterianos contendo as proteínas recombinantes (PR) (ES, HAL, MRP2, FCaBP, KMP-11, PFD1 e PDF2). (B) *Western blotting* utilizando os antissoros policionais produzidos após esquema de imunização (40 dias), anticorpo monocional frente à KMP-11 e a α -tubulina. (C) Análise da densitometria das bandas das proteínas reconhecidas por *Western blotting* utilizando os antissoros produzidos e os anticorpos monocionais frente a KMP-11 e tubulina. Análises realizadas em comparação com as bandas obtidas para a tubulina.

LISTA DE TABELA

Tabela 1: Tabela comparativa da distribuição geográfica dos grupos KP1 (+) / KP1 (-) e A – E de <i>Trypanosoma rangeli</i> . Fonte: tabela original do Dr. Gustavo Vallejo32
Tabela 2: Tabela contendo os programas utilizados nas análises in silico com adescrição da suas finalidade
Tabela 3: Resumo da quantidade de <i>spots</i> analisados em cada dia do processo de diferenciação celular <i>in vitro</i> da cepa Choachí de <i>Trypanosoma rangeli</i> 60
Tabela 4: Proteínas não-redundantes identificadas por espectrometria de massas presente nos <i>spots</i> obtidos a partir da técnica de eletroforese bidimensional do extrato proteico total de <i>Trypanosoma rangeli</i> cepa Choachí
Tabela 5: Sequência dos iniciadores escolhidos para PCR para os genes alvo e tamanho dos produtos amplificados com cada par de iniciadores92
Tabela 6: Sequência dos iniciadores escolhidos para qPCR para os genes alvo e genes de referência (GAPDH, HGPRT e RNA 60S), e tamanho dos produtos amplificados com cada par de iniciadores
Tabela 7: Descrição dos anticorpos utilizados nos ensaios de <i>Western blotting</i> , considerando sua origem, tamanho da proteína reconhecida e diluições104
Tabela 8: Características das proteinas selecionadas de Trypanosoma rangeli e suas respectivas porcentagens de identidade e similaridade com seus ortólogos.
Tabela 9: Informações sobre a expressão heteróloga dos 13 genes selecionados

LISTA DE ABREVIATURAS, SIGLAS E UNIDADES

°C – Graus Celsius

 $\mu A - Microamperagem$

µg – Micrograma

µl – Microlitro

1DE – Eletroforese unidimensional

2DE – Eletroforese bidimensional

ACN – Acetonitrila

AF – Ácido fórmico

AMA-1 – Antígeno de membrana apical 1

AS – Sequência anti-senso

BSA – Soro albumina bovina (do inglês *Bovine Serum Albumin*)

CCP – Calpaína cisteíno peptidase

cDNA - DNA complementar

Cq – Ciclo de quantificação (do inglês Cycle quantification)

Da – Dalton

DAPI – do inglês 4',6-diamidino-2-phenylindole

DMEM - do inglês Dulbecco's Modified Eagle Medium

DNA - Ácido desoxirribonucleico

dNTP - Desoxinucleotídeo tri-fosfatado

DTT - Ditiotreitol

EDTA – Ácido etilenodiaminotetraacético

ELISA – Ensaio nde imunoadsorção ligado a enzima (do inglês *Enzyme Linked Immunosorbent Assay*)

ES – Espermidina sintase

ESI - do inglês Electrospray Ionization

EST – Etiqueta de sequência expressa (do inglês *Expressed Sequence Tag*)

FCaBP - Proteína flagelar ligante de cálcio

FDR – do inglês, False Discovery Rate

g – Força da gravidade

g – Grama

Gim5A – Proteína glicossomal 5ª

H – Hertz

h – Hora

HAL – Histidina amônio liase

IAA - Iodocetamida

IEF – Focalização isoelétrica (do inglês Isoeletric focusing)

IPTG – Isopropil-D-tiogalactopiranosideo

J – Joules Kb – Ouilobases kDa - Quilodaltons kDNA - DNA mitocondrial do cinetoplasto KMP-11 – Proteína de membrana de cinetoplastídeos KV - Quilovolt LB - Meio Luria-Bertani LC – Cromatografia líquida (do inglês *Liquid Chromatography*) LIT – do inglês Liver Infusion Tryptose M – Molar m/z - relação massa/carga MALDI – do inglês Matrix Assisted Laser Desorption/Ionization mASAT - Aspartato aminotransferase mitocondrial min – Minuto ml – mililitro mM - Milimolar mRNA - RNA mensageiro MRP2 – Proteína mitocondrial ligante de RNA 2 MS – Espectrometria de massas (do inglês *Mass Spectrometry*) T – Nucleotídeos ODC – Ornitina decarboxilase ORESTES – Etiqueta de sequência expressa do quadro aberto de leitura (do inglês Open Reading Frame EST) ORF – Quadro aberto de leitura (do inglês Open Reading Frame) PB – Pares de bases PBS – Tampão salina fosfato (do inglês *Phosphate Buffered Saline*) PCR - Reacão em cadeia da DNA polimerase (do inglês Polvmerase *Chain Reaction*) Pfam – Base de dados de família de proteínas (do inglês the protein *families database*) PFD - Proteína de função desconhecida pH – Potencial hidrogeniônico qPCR - Reação em cadeia da DNA polimerase em tempo real RMN - Ressonância magnética nuclear RNA – Ácido ribonucleico RNA60S - subunidade ribossomal 60S RT-PCR – Transcrição reversa (do inglês *Reverse Transcription PCR*) s – Segundos S – sequência senso SBF – Soro bovino fetal SDS – Dodecil sulfato de sódio

SDS-PAGE – dodecil sulfato de sódio-eletroforese em gel de poliacrilamida (do inglês *Sodium Dodecil Sulphate – Polyacrilamide Gel Electrophoresis)*

TA – Temperatura ambiente

V - Volt

 $X\text{-}Gal-5\text{-}bromo\text{-}4\text{-}cloro\text{-}3\text{-}indolil\text{-}\beta\text{-}D\text{-}galactoriranosídeo}$

SUMÁRIO

REVISÃO	BIBLIOGRÁFICA	31
Trypano.	soma rangeli	31
Proteoma	a	36
OBJETIV	0	43
Objetivo	geral	43
Objetivo	s específicos	43
Capítulo processo tripomasti	1: Mapas proteicos de <i>Trypanosoma rangeli</i> durante do de diferenciação celular de formas epimastigotas a gotas <i>in vitro</i>	45
1.1.	INTRODUÇÃO	47
1.2. 1.2.1. 1.2.2. 1.2.3. 1.2.4. 1.2.5. 1.2.6. 1.2.7. 1.2.8. 1.2.9. 1.2.10	MATERIAIS E MÉTODOS Parasitas Diferenciação celular <i>in vitro</i> Eletroforese unidimensional (1DE) Eletroforese bidimensional (2DE) Digestão proteolítica das proteínas nos géis coletados Digestão proteolítica dos extratos proteicos em solução (<i>gel free</i>) Análise por espectrometria de massas em tandem (LC-ESI- MS/MS) das proteínas solúveis obtidas a partir da eletroforese 2DE Análise por espectrometria de massas em tandem (LC-ESI- MS/MS) das proteínas presentes nas bandas coletadas dos géis 1DE e em solução (<i>gel free</i>) Processamento e análise dos espectros de massas Análise in <i>silico</i> das proteínas identificadas por MS/MS	47 47 48 48 49 50 50 50 51 52 53
1.3. 1.3.1.	RESULTADOS E DISCUSSÃO Análise das proteínas solúveis das formas epimastigota, intermediárias (T2,T4,T6) e tripomastigotas (T8) diferenciadas	55
1.3.2	<i>in vitro</i> da cepa Choachí de <i>T. rangeli</i> por eletroforese 2DE Análise das proteínas solúveis das formas epimastigota, intermediárias (T2, T4 e T6) e tripomastigotas (T8) diferenciadas <i>in vitro</i> da cepa Choachí de <i>T. rangeli</i> por GeLC-	55
1.3.3	MS/MS. Análise proteômica das proteínas em solução (<i>gel free</i>) das formas epimastigota, intermediárias (T2, T4 e T6) e	68

	tripomastigotas (T8) diferenciadas in vitro da cepa Choachí de T.	
124	rangeli	0
1.3.4	comparação entre as tres diferentes abordagens proteomicas	71
		1
1.4 CO	NCLUSÃO7	7
Capítulo expressas <i>rangeli</i>	2: Caracterização molecular de proteínas diferencialmente no processo de diferenciação celular <i>in vitro</i> do <i>Trypanosoma</i>	79
2.1	INTRODUÇÃO	81
2.1.1	Proteínas selecionadas	31
2.1.1.	1 Espermidina sintase (ES)	31
2.1.1.	2 Histidina amônio liase (HAL)	33
2.1.1.	3 Proteína glicossomal 5A (Gim5A)8	34
2.1.1.	4 Aspartato aminotransferase mitocondrial (mASAT)	\$4
2.1.1.	5 Antígeno de membrana apical 1 (AMA-1)8	\$5
2.1.1.	6 Proteína mitocondrial ligante de RNA 2 (MRP2)	\$5
2.1.1.	7 Proteína Flagelar Ligante de Cálcio (FCaBP)	6
2.1.1.	8 Proteína de membrana de cinetoplastídeos (KMP-11)	;7
2.1.1.	9 Calpaína cisteíno peptidase (CCP)	8
2.1.1.	10 Proteínas de função desconhecida (PFD)9	0
2.2	MATERIAIS E MÉTODOS9	1
2.2.1	Análise in silico e desenho dos iniciadores9)1
2.2.2	DNA)3
2.2	.2.1 Isolamento do DNA total de <i>T. rangeli</i>)3
2.2	.2.2 Amplificação e clonagem dos fragmentos gênicos	
	codificadores das proteínas de interesse via Reação em Cadeia	
	da Polimerase (PCR)	14
2.2	.2.3 Clonagem	15
2.2	.2.4 Sequenciamento dos insertos dos clones9	16
2.2	.2.5 Análise das sequências obtidas9	96
2.2	.2.6 Expressão heteróloga e purificação das proteínas	
	selecionadas	6
2.2.3	RNA	18
2.2	3.1 Extração de RNA total	8
2.2	3.2 Reação de transcrição reversa (RI-PCR)	19
2.2	.3.3 Reação em cadeia da polimerase quantitativa em tempo real	0
2.2	(qPUK)	10
2.2	.5.4 Analise dos resultados e analises estatísticas	JU
2.2.4	proteína de interesse	1
^ ^ ^	A 1 Animais	11 1
2.2	 .	11

2.2.4.2 Imunização dos camundongos com cada proteínas	de			
interesse	102			
2.2.4.3 Western Blotting	102			
1 2 DECULTADOS E DISCUSSÃO	105			
2.3 RESULTADOS E DISCUSSAO	105			
2.3.1 Análises in silico	105			
2.3.2 qPCR	110			
2.3.3 Âmplificação do fragmento gênico de interesse via PCR	115			
2.4 CONCLUSÕES	125			
CONSIDERAÇÕES FINAIS				
REFERÊNCIAS				
APÊNDICE A				
APÊNDICE B				
APÊNDICE C				
APENDICE D 2				

REVISÃO BIBLIOGRÁFICA

Trypanosoma rangeli

O Trvpanosoma rangeli, descrito por Tejera em 1920, pertence à Kinetoplastida Família Trypanosomatidae Ordem е à (D'ALESSANDRO, 1976). A Ordem Kinetoplastida compreende organismos flagelados possuidores de uma região característica, denominada de cinetoplasto, localizada na sua única mitocôndria. Este cinetoplasto contém o DNA mitocondrial (kDNA), o qual está organizado em moléculas circulares denominadas de maxi e minicírculos. Além disto, apresentam uma organela citoplasmática diferenciada e similar ao peroxissomo, denominada glicossomo, a qual possui enzimas envolvidas na via glicolítica e no metabolismo de (D'ALESSANDRO, SARAVIA, 1992, carboidratos MICHELS, HANNAERT, BRINGAUD, 2000).

Em tripanosomatídeos, os minicírculos de kDNA apresentam o mesmo número de regiões conservadas em diferentes cepas da mesma espécie. Como uma exceção da organização de kDNA, o *T. rangeli* possui variação no tamanho dos minicírculos (1,6 e 1,8 kb) (VALLEJO et al., 1994) e no número de regiões gênicas conservadas, podendo apresentar uma (KP1), duas (KP2) ou quatro (KP3) regiões conservadas (RECINOS, KIRCHHOFF, DONELSON, 1994, VALLEJO et al., 1994, VALLEJO et al., 2002) (Figura 1).

Figura 1: Representação das regiões conservadas nos minicírculos de *Trypanosoma rangeli* caracterizando KP1, KP2 e KP3. Fonte: Adaptado de Vallejo et al. (2002).

Com base na presença ou na ausência dos minicírculos do tipo KP1, foi possível distinguir duas linhagens de *T. rangeli*: uma com a presença do minicírculo do tipo KP1 (KP1+) e outra sem este minicírculo (KP1-) (Tabela 1). A primeira é encontrada na América Central, Colômbia e Venezuela e a segunda com uma distribuição ainda não bem estabelecida, sendo encontrada tanto no sul do Brasil quanto na Colômbia (VALLEJO et al., 2002). Maia da Silva et al. (2004, 2007) utilizaram como marcadores os genes do miniexon ou sequência líder

(*spliced leader*, SL) e 18S rDNA e classificaram as cepas de *T. rangeli* em quatro grupos genéticos principais sendo denominados A, B, C e D. Uma análise posterior incluindo cepas do parasito isoladas de morcegos determinaram a existência de um novo genótipo, o qual foi denominado grupo E (MAIA DA SILVA et al., 2009).

Tabela 1: Tabela comparativa da distribuição geográfica dos grupos KP1 (+) / KP1 (-) e A – E de *Trypanosoma rangeli*. Fonte: tabela original do Dr. Gustavo Vallejo.

kDNA (Vallejo et al., 2002)	Genotipagem (miniexon/18S) (Maia Da Silva et al. 2004, 2007, 2009)	Distribuição geográfica	
KP1 (+)	А	América Central, Venezuela, Colômbia e Brasil	
	В	Brasil	
KP1 (-)	С	América Central, Colômbia, Peru	
	D	Sul do Brasil	
	E	Centro do Brasil	

O *T. rangeli* é capaz de infectar mamíferos selvagens e domésticos. Sua distribuição geográfica é sobreposta à do *Trypanosoma cruzi*, agente etiológico da doença de Chagas (Figura 2), com o qual compartilha os mesmos reservatórios e vetores. As implicações epidemiológicas da simpatria destes dois parasitos estão na ocorrência de infecções únicas ou mistas, tanto nos hospedeiros invertebrados como nos mamíferos (D'ALESSANDRO, 1976, BRENER, 1992, GRISARD et al., 1999, GRISARD, STEINDEL, 2005).

O *T. rangeli* não apresenta especificidade de hospedeiros, sendo encontrado em uma extensa variedade de reservatórios mamíferos correspondentes às Ordens Edentata, Marsupialia, Carnivora, Rodentia e Primata (D'ALESSANDRO, SARAVIA, 1999). Experimentalmente, diferentes espécies, que incluem ratos, camundongos, hamsters, coelhos, cães, morcegos e primatas têm sido infectadas com o *T. rangeli*, comprovando sua possível amplitude de hospedeiros (GUHL, VALLEJO, 2003). Em relação ao hospedeiro invertebrado, o gênero *Rhodnius* é particularmente suscetível à infecção pelo *T. rangeli* e a transmissão via inoculativa já foi demonstrada para 12 espécies deste gênero. Além disso, *Panstrongylus megistus, Triatoma infestans, Triatoma sordida, Triatoma braziliensis* e *Triatoma vitticeps* também foram descritos como susceptíveis a infecção experimental por *T. rangeli* (DE STEFANI MARQUEZ et al., 2006).

Figura 2: Distribuição geográfica nas Américas Central e do Sul da doença de Chagas humana (região sombreada) e registros de ocorrência do *Trypanosoma rangeli* (•). Fonte: (GRISARD, STEINDEL, 2005)

Apesar de não ser considerado patogênico para o homem, o *T. rangeli* é capaz de infectá-lo e de induzir uma resposta imune humoral com elevados títulos de anticorpos, os quais determinam uma elevada reatividade cruzada com o *T. cruzi*. Esta reatividade cruzada pode ser devida ao compartilhamento, por formas epimastigotas, de cerca de 60% da constituição antigênica solúvel, o que deve incorrer em diagnósticos falso-positivos da doença de Chagas, especialmente em sua fase crônica. Desta forma, além de possuir uma biologia intrigante e pouco conhecida, este parasito é de considerável interesse médico e de extrema importância em estudos epidemiológicos da doença de Chagas

(AFCHAIN et al., 1979, SCHOTTELIUS, 1987, GRISARD et al., 1999).

Embora diferentes técnicas laboratoriais sejam empregadas atualmente para o diagnóstico da doença de Chagas, incluindo métodos parasitológicos diretos e/ou indiretos, somente poucos métodos ou técnicas especializadas podem inequivocamente diferenciar *T. cruzi* de *T. rangeli*, não estando estas disponíveis para o diagnóstico de rotina (STEINDEL et al., 1994, GRISARD, CAMPBELL, ROMANHA, 1999, VALLEJO et al., 2002, SUÁREZ, CUERVO, PUERTA, 2007).

O *T. rangeli* apresenta duas formas biológicas bem definidas no seu ciclo de vida (Figura 3): a forma epimastigota proliferativa com 45 a 56 μ m de comprimento, incluindo o flagelo livre, e a forma tripomastigota infectiva, a qual é delgada e possui comprimento de 26 a 35 μ m (CUBA CUBA, 1998).

Figura 3: Microfotografia de formas epimastigota (A) e tripomastigota (B) de *Trypanosoma rangeli*, coradas por Giemsa. As barras representam 10 μ m. Fonte: Lückemeyer (2012).

A capacidade das formas epimastigotas em evadir do trato digestivo médio dos triatomíneos para a hemocele é a principal característica biológica do ciclo deste parasito em seus hospedeiros invertebrados. Uma vez na hemolinfa, o parasito se multiplica intensamente de forma livre, migrando posteriormente às glândulas salivares do vetor, onde adere à superfície, penetra e é observado posteriormente na luz da glândula (MEIRELLES et al., 2005). No lúmen diferenciação glandular ocorre а dos parasitos em formas tripomastigotas metacíclicas, que são as formas infectivas para os hospedeiros mamíferos (D'ALESSANDRO, 1976). Desta forma, o T. rangeli é primariamente transmitido aos hospedeiros mamíferos através da picada de triatomíneos infectados, ou seja, por via inoculativa (Figura 4). De forma distinta, o *T. cruzi* não tem a capacidade de invadir a hemocele do inseto, sendo que as formas epimastigotas multiplicam-se no interior do intestino do triatomíneo e diferenciam-se em formas tripomastigotas metacíclicas na ampola retal do mesmo. Estas formas infectivas são liberadas com as fezes durante o repasto sanguíneo sendo, portanto, uma infecção contaminativa (DE SOUZA, 2002).

Figura 4: Representação esquemática do ciclo biológico do *Trypanosoma rangeli* no hospedeiro invertebrado. A infecção do triatomíneo ocorre pela ingestão de formas tripomastigotas sanguíneas durante o repasto (A), sendo as formas tripomastigotas e epimastigotas predominantes no intestino médio (B). Formas epimastigotas curtas se dividem no intestino médio e podem invadir a hemocele (C), onde dividem-se de forma livre como epimastigotas longos. Alguns parasitos podem invadir hemócitos (D), sendo desconhecida a capacidade de multiplicação no interior desta célula. As formas epimastigotas longas aderem e penetram na glândula salivar (E) diferenciando-se em seu interior em tripomastigotas metacíclicos (F) infectantes que são inoculados com a saliva durante o repasto sanguíneo. Fonte: Stoco et al. (2014).

Ao contrário do que ocorre no hospedeiro invertebrado, pouco se sabe a respeito do curso da infecção do *T. rangeli* no hospedeiro mamífero, no qual este parasito apresenta parasitemias sanguíneas normalmente muito baixas e de curta duração (D'ALESSANDRO, SARAVIA, 1992, D'ALESSANDRO, SARAVIA, 1999).

Na busca pela compreensão de pontos controversos e intrigantes do ciclo evolutivo do *T. rangeli*, estudos têm sido desenvolvidos e avanços significativos foram alcançados na tentativa de simular as condições naturais que podem levar o parasito a se diferenciar, possibilitando o estudo das alterações a que estes organismos são submetidos durante o processo de diferenciação, sobretudo para as formas infectivas. Além da possibilidade de cultivo de formas epimastigotas em meio LIT (*Liver Infusion Tryptose*), atualmente é possível obter formas tripomastigotas infectivas de *T. rangeli* através de um processo de diferenciação *in vitro* que mimetiza o processo que ocorre no inseto vetor, denominado metaciclogênese (KOERICH et al., 2002). Desta forma, a possibilidade de obtenção de grandes quantidades das distintas formas deste parasito *in vitro* permite o desenvolvimento de estudos sobre a biologia deste organismo.

Além de estudos biológicos a respeito do ciclo evolutivo do *T. rangeli*, vários estudos envolvendo a caracterização antigênica, genética e bioquímica têm sido realizados. Estudos de genômica, transcritômica ou proteômica comparativa de diferentes populações de *T. cruzi* e *T. rangeli* têm auxiliado na identificação e caracterização de proteínas que estão envolvidas em pontos-chave do ciclo celular, assim como na indução da resposta imune do hospedeiro, contribuindo diretamente na especificidade do diagnóstico da doença de Chagas bem como no estabelecimento da posição taxonômica do *T. rangeli* (STEVENS et al., 1999, WAGNER et al., 2013).

Comparações dos perfis proteicos totais de formas epimastigotas e tripomastigotas de *T. rangeli* e *T. cruzi* apontaram uma expressão gênica diferencial durante o ciclo de vida destes parasitos, incluindo algumas proteínas espécie-específicas (MEJIA et al., 2004). Este fato também pode ser observado a partir da utilização de diferentes cepas e formas do *T. rangeli* e *T. cruzi*, durante a avaliação da reatividade contra soros de pacientes chagásicos que apresentavam distintas formas clínicas da doença (DE MORAES et al., 2008).

Neste sentido, estudos que detalham o processo de diferenciação celular do *T. rangeli*, que envolve a transformação de formas replicativas e não infectivas (epimastigotas) para formas não replicativas e infectivas (tripomastigotas), permitirão revelar aspectos da regulação da expressão gênica do *T. rangeli*. Além disso, o uso concomitante de uma abordagem genômica e proteômica possibilitará inúmeros estudos comparativos com as demais espécies patogênicas filogeneticamente relacionadas.

Proteoma

Nas últimas décadas, pôde-se observar um grande avanço na área de biologia molecular, com a obtenção de uma vasta gama de dados através dos diversos projetos de sequenciamento genômico (WILKINS
et al., 1995). Em seguida surgiram, no período conhecido como "era pós-genômica", metodologias como a eletroforese bidimensional, ensaios cromatográficos e técnicas baseadas em marcação com anticorpos, associadas com técnicas, que permitem a identificação de proteínas por espectrometria de massas, por exemplo. A este conjunto de estudos que objetivam descrever e entender a função das proteínas dentro de um dado sistema biológico, através da determinação de estrutura, modificações pós-traducionais, localização celular, interação com outras moléculas e expressão relativa, deu-se o nome de proteômica (PANDEY, MANN, 2000, LABAER, 2002).

O termo "proteoma" foi introduzido em 1995 para descrever todas as proteínas que são expressas por um genoma (WILKINS et al., 1996. ANDERSON, MATHESON, STEINER, 2000). Proteoma não é, portanto, uma técnica, mas um conceito que envolve dezenas de técnicas e metodologias distintas e complementares (LABAER, 2002). Estudar proteínas envolve dificuldades que não estão presentes no estudo dos ácidos nucleicos, uma vez que a diversidade de sequências e estruturas proteicas é bem major. Esta diversidade faz com que as proteínas sejam físico-quimicamente muito distintas, devendo haver uma adequação técnica para o estudo de cada classe, o que dificulta a automatização e a realização de estudos em grande escala. Além disso, a sequência primária de uma proteína pouco informa sobre a localização celular ou modificações pós-traducionais (WASHBURN, ULASZEK, YATES, 2003). Sendo assim, a proteômica fundamenta-se em princípios bioquímicos, biofísicos e de bioinformática para quantificar e identificar as proteínas expressas, pois elas se alteram conforme o desenvolvimento de um organismo assim como em resposta aos fatores do ambiente (WILKINS et al., 1996, ANDERSON, ANDERSON, 1998).

Há uma forte e sinergística correlação entre os estudos proteômicos e genômicos uma vez que ambas as áreas de estudo investigam a organização celular em nível complementar, proteínas e genes, e cada área fornece informações que aumentam a eficiência da outra (PANDEY, MANN, 2000). Atualmente observa-se o aumento de estudos relacionados à proteômica no que se refere a triponosomatídeos. Em 05 de junho de 2011, ao realizar uma busca na base de dados (www.pubmed.com) utilizando Pubmed como palavras-chave "proteomic" e "Trypanosoma" foram encontrados 53 trabalhos científicos relacionados. Ao repetir a mesma análise em 16 de maio de 2014, o número de artigos aumentou cerca de quatro vezes (221 artigos). Desta forma, observa-se que análises proteômicas vem sendo empregadas na caracterização de proteínas de diversas espécies de tripanosomatídeos (NUGENT et al., 2004, PARODI-TALICE et al., 2004, ATWOOD et al., 2005, LUU et al., 2006, CUERVO et al., 2007), de diferentes estruturas (QUEIROZ et al., 2014, SUBOTA et al., 2014), na análise de expressão diferencial de proteínas entre estágios de vida de parasitas (KRIEGER et al., 1999, COLASANTE et al., 2006, CUERVO et al., 2007, PARODI-TALICE et al., 2007, DE GODOY et al., 2012), reguladas em diferentes eventos durante o ciclo biológico (ERBEN et al., 2014), como alternativa para diagnóstico (DE MORAES et al., 2008, WAGNER et al., 2013, FLEMING et al., 2014), ou para identificação de expressão diferencial pelo tratamento com diferentes fármacos (ANDRADE et al., 2008, SANTAMARIA et al., 2014).

Regulação gênica em tripanosomatídeos

Para todas as células, a regulação da expressão gênica é um mecanismo fundamental para o desenvolvimento, homeostase e adaptação ao meio ao qual se encontram. Em eucariotos, cada passo do processo de expressão gênica está sujeito a uma regulação dinâmica, incluindo mudanças na cromatina, transcrição do DNA em RNA, processamento do transcrito, transporte para o citoplasma e tradução do RNA mensageiro (mRNA) em proteína (GOMEZ et al., 2010). Nestes organismos, éxons e íntrons alternam-se ao longo dos genes. O fenômeno de transcrição é, na maioria dos casos, regulado por uma sequência promotora a montante da região codificadora. Ao transcrito primário, em sua extremidade 5', é adicionado um resíduo metil-guanosina-trifosfato (*cap*) e, em sua extremidade 3', uma cauda poliadenilada (poli-A). Por *cis-splicing*, são removidos os íntrons deste transcrito e os éxons são ligados formando os mRNA maduros (PROUDFOOT, FURGER, DYE, 2002).

Os tripanosomatídeos, como Trypanosoma brucei, T. cruzi e Leishmania spp., apresentam diferenças com relação a esse perfil. possuindo mecanismos genéticos peculiares. A primeira delas é a organização dos genes codificadores de proteínas em unidades policistrônicas, ou seja, os genes são organizados em conjuntos, mas não codificam proteínas com funções relacionadas entre si, portanto, não operons nos procariotos (MARTÍNEZfuncionando como os CALVILLO et al., 2010). Adicionalmente, o processamento dos transcritos é feito por trans-splicing que form os pré-mRNA e em seguida, pela a edição do RNA são formados os mRNA maduros. Os mRNA maduros dos tripanosomatídeos apresentam, na extremidade 5', sequência extremamente conservada de 39 nucleotídeos uma denominada sequência líder (spliced leader, SL) ou mini-exon. A SL é

derivada de um RNA de aproximadamente 110 nucleotídeos codificado por genes localizados em um ou dois cromossomos, dependendo da cepa em questão. O RNA da SL é clivado e uma porção de 39 nucleotídeos resultante é transferida para a região 5'do mRNA nascente (Figura 5A). A região 5' do pré-mRNA é clivada em um sítio específico e substituída pela SL (Figura 5B). Como os RNAs mensageiros e o RNA do SL são codificados por genes situados em diferentes sítios do genoma, o processo é denominado de *trans-splicing* (LANDFEAR, 2003, ARAÚJO, TEIXEIRA, 2011).

Figura 5: A transcrição do gene da sequência líder (SL) gera um SL RNA e por *trans-splicing* os 39 nucleotídeos da SL se unem aos transcritos primários policistrônicos originando mRNAs individuais. (A) Cada gene SL, arranjados em sequências repetitivas, é transcrito pela RNA Polimerase II a partir de um promotor localizado a montante do gene e recebe de forma co-transcricional o cap na porção 5'. (B) O SL RNA resultante é então combinado aos sítios de *splicing* (triângulos) localizados no RNA policistrônico para gerar a porção 5'de cada mRNA, e a porção final 3' do mRNA é poliadenilada em um passo que provavelmente é associado com o *trans-splicing* dando origem ao mRNA maduro. Adaptado de Landfear (2003).

A função da SL ainda não é completamente conhecida. No entanto, há evidências de que a SL confere a estabilidade ao mRNA, impedindo a sua degradação, e auxilia também na interação do mRNA maduro com os ribossomos. Transcritos que não apresentam SL perdem a sua estabilidade e não são traduzidos. Como ocorre nos eucariotos superiores, os mRNA dos tripanosomas apresentam a sua extremidade 3' uma cauda composta por cerca de 30 resíduos de adenina (cauda poli-A). Porém, ao contrário dos eucariontes superiores, os mRNA dos tripanosomatídeos não apresentam uma sequência consensual para a adição de resíduos de adenina. Sabe-se que a adição de SL e da cauda

poli-A ocorre durante a transcrição do mRNA mas ainda existe certa controvérsia com relação a hierarquia desses eventos (GÜNZL et al., 1997, LANDFEAR, 2003, MARTÍNEZ-CALVILLO et al., 2010).

Nestes parasitas, de modo geral, a RNA polimerase I transcreve os genes ribossomais e a RNA polimerase III transcreve moléculas de RNA nuclear. Os genes do SL são transcritos pela RNA polimerase II, a qual também transcreve os mRNA. Contudo, as polimerases e os promotores associados à transcrição dos genes que codificam proteínas ainda não foram completamente identificados (GILINGER, BELLOFATTO, 2001, LANDFEAR, 2003).

O fato de que genes presentes na mesma unidade policistrônica apresentam níveis de mRNA processado distintos reforça a ideia de que a regulação seja ao nível pós-transcricional. Estas características específicas dos tripanosomatídeos juntamente com a relevância médica os tornam um bom modelo para estudo visando à melhor compreensão de sua biologia, como, por exemplo, os mecanismos de controle pós-transcricionais. transcricionais e Em T. cruzi, as formas epimastigotas e amastigotas, quando iniciam o processo de diferenciação para as formas não replicativas e infectivas, apresentam uma grande diminuição na atividade das RNA polimerase I e II, porém a redução no nível de transcrição é geral e não gene-dependente (ELIAS et al., 2001). Deste modo, é possível observar que a expressão de alguns genes pode manter-se constante ou aumentar, mesmo com a redução da quantidade dos seus transcritos (ABUIN et al., 1999, RECINOS, KIRCHHOFF, DONELSON, 2001). Também é possível observar proteínas de expressão transiente nas formas em diferenciação (CONTRERAS et al., 1985).

Considerando-se a existência de um grande número de chagásicos nas Américas (destes, 30-40% estão em território brasileiro), a comprovada sobreposição geográfica, a ocorrência de infecções únicas ou mistas, a reatividade sorológica cruzada entre o *T. cruzi* e o *T. rangeli* (GRISARD, CAMPBELL, ROMANHA, 1999) e a escassez de dados a respeito da biologia e, em especial, do proteoma do *T. rangeli*, o estudo de proteínas envolvidas no processo de diferenciação celular reveste-se de grande importância. Seus resultados poderão contribuir para o esclarecimento da biologia deste parasito e para a compreensão de importantes aspectos de uma das principais doenças parasitárias que afeta grande parte da população.

Desta forma, nossa hipótese de trabalho é que durante a indução da diferenciação celular de *T. rangeli*, há proteínas reguladas diferencialmente (positivamente ou negativamente) que determinam a

transformação da forma epimastigota (não-infectante) em tripomastigota (infectante).

OBJETIVO

Objetivo geral

Determinar o perfil proteico de extratos totais solúveis de *Trypanosoma rangeli* durante o processo de diferenciação celular *in vitro*, da forma epimastigota para tripomastigota, utilizando abordagens proteômicas distintas, a fim de identificar proteínas-alvo para acompanhamento do processo de diferenciação celular.

Objetivos específicos

Para melhor organização dos resultados obtidos, os objetivos específicos foram divididos em dois capítulos. O primeiro capítulo trata da geração dos dados proteicos de *T. rangeli* durante o processo de diferenciação celular *in vitro*, bem como a seleção de proteínas de interesse para continuação dos estudos e o segundo capítulo relata os resultados obtidos quanto a caracterização molecular das proteínas selecionadas com base nos resultados obtidos no primeiro capítulo.

Capítulo 1:

- Avaliação dos mapas proteicos de *T. rangeli* durante do processo de diferenciação celular *in vitro* de formas epimastigotas a tripomastigotas;
- Selecionar proteínas de interesse expressas pelo *T. rangeli* durante o processo de diferenciação celular *in vitro*;

Capítulo 2:

- Avaliação intra- e interespecífica das sequências gênicas correspondentes às proteínas selecionadas;
- Avaliação da cinética dos níveis de transcritos destes genes e dos níveis de expressão das proteínas correspondentes durante o processo de diferenciação celular *in vitro* do *T. rangeli*;

Capítulo 1: Mapas proteicos de *Trypanosoma rangeli* durante do processo de diferenciação celular de formas epimastigotas a tripomastigotas *in vitro*

1.1. INTRODUÇÃO

Neste trabalho apresentamos a análise em grande escala do repertório de proteínas solúveis das formas epimastigotas (T0), intermediárias (T2, T4 e T6) e tripomastigotas (T8) diferenciadas *in vitro* da cepa Choachí de *T. rangeli*, bem como a primeira análise proteômica comparativa utilizando diferentes abordagens 1) eletroforese bidimensional (2DE-MS/MS), 2) eletroforese unidimensional (GeLC-MS/MS) e 3) proteínas em solução (LC-MS/MS), todas acopladas a técnicas de identificação por espectrometria de massas (MS).

Para o melhor entendimento, os resultados deste capítulo foram separados em quatro seções. Na primeira seção será apresentado o perfil proteômico 2DE. A segunda seção, contém os resultados obtidos através da análise das proteínas dos fragmentos dos géis unidimensionais destes parasitos. A terceira seção relata os resultados referentes à análise proteômica das proteínas em solução (*gel-free*). E por fim, a quarta seção, contempla a comparação entre as três diferentes abordagens utilizadas.

1.2. MATERIAIS E MÉTODOS

1.2.1. Parasitas

Foi utilizada a cepa Choachí (KP1+) de *T. rangeli*, originalmente isolada de glândulas salivares de *R. prolixus* naturalmente infectado capturado na Colômbia (SCHOTTELIUS, 1987). Esta cepa foi obtida junto ao criobanco do Laboratório de Protozoologia (MIP/CCB/UFSC).

As formas epimastigotas de *T. rangeli* foram cultivadas a 27 °C através de repiques semanais em meio LIT, suplementado com 10 % de SBF, 50 U/ml de penicilina e 50 μ g/ml de estreptomicina (Cultilab, Campinas).

1.2.2. Diferenciação celular in vitro

Formas tripomastigotas de cultura de *T. rangeli* foram obtidas a partir de modificações descritas por Stoco (2010) no protocolo descrito por Koerich et al. (2002). Inicialmente, 12×10^7 epimastigotas em fase exponencial de crescimento em meio LIT foram lavados duas vezes com PBS (pH 7,4) e transferidos para garrafas de cultura celular de 25 cm² sem aeração contendo 15 ml de meio DMEM pH 8,0 (Sigma-Aldrich, Saint Louis) suplementado com 1 g/l glicose, 5 mM L-glutamina e 5 % SBF. O processo de diferenciação foi acompanhado através da análise morfológica de 100 parasitos em lâmina corada com Giemsa (Merck, Darmstadt). Os parasitos foram coletados a cada dois dias durante o período da diferenciação celular e os tripomastigotas obtidos no 8° dia de cultivo sendo coletados por centrifugação quando taxas maiores que 95% de tripomastigotas foram obtidas.

As amostras utilizadas neste estudos foram constituidas de parasitos coletados no tempo 0 (T0 – epimastigotas), segundo dia (T2), quarto dia (T4), sexto dia (T6) e oitavo dia (T8 – tripomastigota) de diferenciação celular. As amostras foram obtidas em tripicata biológica.

1.2.3. Eletroforese unidimensional (1DE)

Os extratos proteicos foram preparados a partir de culturas de *T. rangeli* (~10⁸ parasitos). Para tal, a cultura foi centrifugada a 2.500 x g por 10 min a temperatura ambiente e lavada duas vezes em PBS (pH 7,4). Os parasitos foram lisados por sonicação em 40 mM Tris-HCl pH 7,4, em cinco ciclos de 30 s e 1 min de intervalo em gelo, utilizando uma frequência de 40 H. O extrato total obtido contendo as proteínas solúveis foi dosado por Bradford (BRADFORD, 1976). 30 ou 50 µg das proteínas foram adicionadas de tampão de amostra (20 % glicerol, 0,5 % azul de bromofenol, 0,5 M Tris-HCl, pH 6,8; 4,4 % SDS, 2 % βmercaptoetanol). Depois de misturadas ao tampão, as amostras foram submetidas à desnaturação a 95 °C por 5 min e resolvidas em géis SDS-PAGE 12 %. A eletroforese foi realizada no sistema Mini-PROTEAN[®] Tetra Cell (BioRad, Richmond), a 100 V durante 2 h. O gel foi corado com azul de Coomassie R250 (0,25 %) durante 5 h, e a imagem do gel foi digitalizada no Perfection 4990 Scanner[®] (Epson, Suwa).

Foram recortadas, com o auxílio de uma grade específica que corta simultaneamente até 26 fragmentos (1 mm x 3,5 mm) (Disposable gridcutter, Gel Company, São Franscisco), 25 fragmentos dos géis, sendo estes processados e submetidos a identificação por espectrometria de massas.

1.2.4. Eletroforese bidimensional (2DE)

Os extratos proteicos foram obtidos conforme descrito no item 1.2.2. Após quantificação, 2 mg do extrato proteico foi precipitado com 1 ml de ácido tricloroacético 20 % em acetona durante 16 h a -20 °C. As amostras precipitadas foram centrifugadas por 12 min a 12.000 x g a 4 °C, e o sedimento lavado cinco vezes em acetona gelada (centrifugações de 4 min, a 12.000 x g a 4 °C). As proteínas foram solubilizadas em 300 μ l de tampão de solubilização (7 M Ureia, 2 M Tioureia, 4 % CHAPS, 1 % ditiotreitol -DTT e 2 % de anfólitos pH 3-10, GE Healthcare) durante 2 h a temperatura ambiente.

Tiras lineares de gradiente de pH imobilizado (pH 3-10) de 13 cm (GE Healthcare) foram reidratadas por 16 h com os 300 μ l do extrato solubilizado. Posteriormente, a focalização isoelétrica (IEF) foi realizada no aparelho *IPGPhor 3* (GE Healthcare) com voltagem máxima de 10.000 V e 50 μ A, acumulando-se um total de 50.000 V.

Após a IEF, as tiras foram equilibradas por 20 min em tampão de equilíbrio I (30 % glicerol, 6 M ureia, 1 % DTT, 0,5 % azul de bromofenol), seguido de outros 20 min em tampão de equilíbrio II (solução de equilíbrio I com o DTT substituído por 4 % de iodacetamida). As tiras foram então aplicadas horizontalmente em gel SDS-PAGE a 12 % e as proteínas separadas por eletroforese no sistema *SE 600 Ruby Standard Dual Cooled Vertical Unit*[®] (GE Healthcare), a 15 V durante 16 h. Os géis foram corados com azul de Coomassie R-250 (0,25 %). Os géis foram digitalizados utilizando-se o *Perfection 4990 Scanner*[®] (Epson) e os *spots* detectados através do programa *ImageMaster*[®] 2DE Platinum v7.0 (GE Healthcare).

O spots proteicos que puderam ser individualizados com base em sua intensidade e separação foram recortadas dos géis e submetidas à identificação por espectrometria de massas (MS). Esta etapa foi realizada em colaboração com o Dr. Hércules Moura do *Center for Disease Control and Prevention* (CDC/EUA) e com o Dr. Henrique B. Ferreira da Universidade Federal do Rio Grande do Sul. Os ensaios de MS no CDC foram realizados pelo Dr. Glauber Wagner quando da realização de seu período sanduíche no CDC.

1.2.5. Digestão proteolítica das proteínas nos géis coletados

As proteínas detectadas nos experimentos 2DE e 1DE coradas com azul de coomassie, denominados neste trabalho de *spots* proteicos ou fragmentos de gel contendo proteínas, respectivamente, foram coletadas e acondicionadas em microtubos estéreis a -20 °C até o processamento para a análise por espectrometria de massas.

Cada *spot* ou fragmento de gel foi previamente tratado com 500 μ l de solução descorante I (50 % metanol/5 % ácido acético) durante 2 h sob agitação a TA. Em seguida, as amostras foram mantidas em 200 μ l de solução descorante II (50 % acetonitrila (ACN) em 5 mM de carbonato de amônia (NH₄HCO₃)) durante 1 h sob agitação a 37 °C e desidratadas com 200 μ l de acetonitrila (ACN) durante cinco min. O excesso de ACN foi removido em centrifugação sob vácuo (*SpeedVac*, Eppendorf) durante 30 min a TA.

Após esta etapa de descoloração e desidratação, os *spots*/fragmentos foram tratados com 10 mM de DTT para a redução dos

grupamentos tiol das cisteínos durante 30 min a 60 °C, seguido da alquilação destes grupos tiol com 50 mM de iodoacetamida (IAA) durante 30 min a TA ao abrigo de luz. Posteriormente os géis foram novamente mantidos em solução descorante II e desidratados com ACN conforme descrito anteriormente.

Na sequência, as proteínas foram submetidas à digestão proteolítica com tripsina (Promega, Madison). Para tal, foi utilizado 1 μ g de tripsina em 5 mM NH₄HCO₃ com 1 mM CaCl₂ pH 8,0 durante 16 h a 37 °C e após este período a digestão foi interrompida com 175 mM HCl (pH 7,5).

Os peptídeos foram extraídos do gel com 100 μ l de solução descorante II durante 2 h a 37 °C, sendo o sobrenadante, que contém os peptídeos, transferido para um novo tubo e os géis submetidos a novo tratamento com 50 μ l de uma solução descorante I durante 1 h a 37 °C. Após este período, o sobrenadante foi transferido para o tubo contendo o sobrenadante obtido na primeira etapa de extração. Em seguida, a solução contendo os peptídeos foi desidratada por centrifugação a vácuo (*SpeedVac*) e os peptídeos reconstituídos com 10 μ l de 0,1 % ácido fórmico (AF).

1.2.6. Digestão proteolítica dos extratos proteicos em solução (gel free)

Aproximadamente 70 µg dos extratos proteicos de cada dia da diferenciação de três amostras biológicas foram submetidas a digestão proteolítica com tripsina após o tratamento com o surfactante *RapGest* (Waters, Milfor). As proteínas foram tratadas com 10 µl de *RapGest* (Waters) 0,1 % durante cinco min a 100 °C. Após 1 min a 4 °C foi adicionado 5 µg de Tripsina *Sequencing Grad*, (Promega) e a digestão foi realizada em cinco ciclos de 52 °C por 3 min e 1 min a 4 °C. Após este período a reação foi parada com a adição de 10 µl de HCl a 450 mM e mantida em repouso por 30 min a 37 °C. Então a solução foi desidratada em um *Speedvac* e reidratada com 30 µl de ácido fórmico a 0,1 %.

1.2.7. Análise por espectrometria de massas em tandem (LC-ESI-MS/MS) das proteínas solúveis obtidas a partir da eletroforese 2DE

A identificação dos peptídeos resultantes da digestão em gel das proteínas presentes nos *spots* selecionados nos perfis 2DE das formas epimastigotas (T0) e durante o período de diferenciação celular (T2, T4,

T6 e T8) de *T. rangeli* foi realizada na plataforma LC-ESI-MS/MS, composta por sistema de cromatografia líquida *NanoAcquity* (Waters) acoplada com espectrômetro de massas *QTof Premier* (Waters) no CDC (EUA).

Para tal, 4 µl de cada digestão foi injetado em uma coluna de fase reversa *PepMap C18TM Trap* (Waters) (300 µm x 5 mm) em um fluxo de 20.000 µl/ min durante 1 min, objetivando a remoção do excesso de contaminantes e para promover a concentração dos peptídeos. Após 10 min, os peptídeos foram eluídos diretamente para uma coluna analítica (75 µm x 15 cm) de fase reversa *C18 PepMap C18TM* (Waters) com fluxo de 300 nl/ min e gradiente formado pelo solvente A (0,1 % de AF em água com pureza para HPLC) e solvente B (0,1 % de AF em ACN) nas seguintes condições: aumento da concentração do solvente B de 5 a 35 % em 9 min e até 85 % em 1 min, em seguida diminuição até 1 % do solvente B em 1 min. Entre cada análise houve a regeneração da coluna durante 10 min com 1 % do solvente B.

O espectrômetro de massas modelo QTof Premier foi configurado para realizar aquisições do tipo DDA (do inglês, Data-Dependent Analysis), operado em modo positivo (ES+) com voltagem na fonte de 5 V. Apenas íons carregados 2+, 3+ e 4+ foram analisados dentro da janela de aquisição para os íons MS de 400-1.500 m/z durante um segundo, com intervalos de aquisição de 0,1 segundo. Os três íons mais abundantes na primeira análise de massas (MS) foram submetidos à fragmentação (CID) por três segundos com janela aquisição entre 100-1.500 m/z, gerando assim o espectro MS/MS de íons 2+, 3+ e 4+ resultantes do íon (peptídeo) fragmentado.

Já o espectrômetro de massas modelo Q-Tof Micromass foi também configurado para realizar aquisições do tipo DDA, operado em modo ES+. Porém a janela de aquisição dos íons MS foi configurada entre 300-2000 m/z. Os dois peptídeos mais abundantes foram submetidos à fragmentação CID (35 eV) por 3 segundos com intervalo de aquisição entre 50-3000 m/z.

1.2.8. Análise por espectrometria de massas em tandem (LC-ESI MS/MS) das proteínas presentes nas bandas coletadas dos géis 1DE e em solução (*gel free*)

Os peptídeos oriundos da digestão das proteínas obtidos tanto por meio da digestão em gel unidimensional quanto por meio de solução (*gel free*) também foram analisados em plataforma LC-ESI-MS/MS, porém esta era composta por sistema de cromatografia líquida *NanoAcquity* (Waters) acoplado com espectrômetro de massas *Nanospray LTQ Orbitrap Velos* (Thermo Fischer Scientific, Kansas) no CDC (EUA).

Brevemente, 3 µl de cada digestão foram injetados em uma coluna de fase reversa com tamanho de 300 µm x 5 mm PepMap C18TM Trap (Waters) durante um min a um fluxo de 5.000 µl/ min. Após 10 min os peptídeos foram eluídos diretamente para a coluna (75 $\mu m \ge 15$ cm) de fase reversa analítica C18 PepMap C18TM (Waters) utilizando gradiente com os mesmos solventes A e B descritos no item anterior. No caso das digestões em gel, o gradiente utilizado foi: aumento da concentração do solvente B de 5 a 40 % em 16 min, depois até 95% em 1 min e permanecendo durante 3 min, após, a concentração do solvente B foi reduzida para 5 % em 1 min e a coluna regenerada com 5 % do solvente B por 10 min, totalizando 30 min de gradiente. Já no caso das digestões em solução (gel free) o gradiente aplicado foi: de 5 a 40 % de solvente B em 100 min, 40 a 95 % em 2 min e permanecendo durante 15 min, então após a diminuição da concentração para 5 % de solvente B em 2 min a coluna foi regenerada durante 15 min com 5 % de solvente B, totalizando 130 min de gradiente.

O espectrômetro de massas LTQ Orbitrap Velos (Thermo Fischer Scientific) foi operado em modo positivo (ES+), com voltagem da fonte em 35 kV e com tipo de aquisição de dados DDA, com janela de 400 até 1.400 m/z e resolução de massa nominal de 60.000, realizando 16 eventos de busca. Os íons mais intensos foram submetidos à fragmentação de baixa energia (CID), gerando assim espectros MS/MS para cada íon (peptídeo) selecionado. O tempo de aquisição foi de 30 minutos para as análises dos peptídeos obtidos a partir das digestões em gel e de 130 minutos em solução.

1.2.9. Processamento e análise dos espectros de massas

Os dados brutos de MS/MS oriundos dos espectrômetros de massas *qTOF* e *LTQ Orbitrap Velos* foram processados utilizando o programa *MASCOT Distiller*[®] (Matrix Science, Boston) e a busca na base de dados foi realizada utilizando o programa *MASCOT* (Matrix Science). Para tal, foram elaboradas duas bases de dados, sendo: i) genes preditos a partir da primeira montagem do genoma deste parasito (iniciais "contig"); ii) ORF completas ou parciais, obtidas a partir da segunda montagem do genoma (iniciais "TR"). Estas últimas são oriundas de dados do genoma do *T. rangeli* (LNCC, 2012).

A bases de dados utilizadas, foram concatenadas sequências de potenciais contaminantes de tripsina de *Sus scrofa* (P00761), álcool desidrogenase (ADH) de *Saccharomyces* sp. (P00330), bem como

sequência de queratina humana (Q14533). As bases de dados resultantes foram automaticamente utilizadas pelo *MASCOT* para a geração de uma base de dados reversa (*Decoy*).

A busca das proteínas nas bases de dados utilizando o programa MASCOT foi realizada com os seguintes parâmetros: i) peptídeo com no máximo uma ausência de uma clivagem da tripsina; ii) carbamidometilação dos resíduos de cisteíno e oxidação das metioninas como modificações variáveis; iii) 0,5 Da de tolerância da massa para peptídeos e para os fragmentos destes peptídeos. Em seguida, os resultados do MASCOT (dat) foram submetidos ao programa Scaffold (Proteome Software, Portland). Este programa realizou automaticamente a busca nas mesmas bases de dados e parâmetros utilizados no MASCOT através do pacote X!Tandem.

Após estas etapas, o programa *Scaffold* foi utilizado para compilar e validar as proteínas identificadas pelos programas de busca. Foram consideradas proteínas válidas aquelas que apresentaram pelo menos dois peptídeos, com FDR (do inglês, *False Discovery Rate*) menor que 1% e com probabilidade de acerto dos peptídeos superior a 95% e 99% para a proteína (de acordo com o algoritmo *Protein Prophet*).

1.2.10. Análise in silico das proteínas identificadas por MS/MS

Após a identificação das sequências por MS/MS, foram realizadas análises de bioinformática com as proteínas válidas. Para tal, utilizamos as sequências preditas das proteínas disponíveis nas bases de dados mencionadas no item 1.2.9.

Face ao volume de dados obtidos, os resultados foram compilados e apresentados na forma de figuras, gráficos e tabelas resumidas, contendo os dados mais relevantes do trabalho.

Programa	Função	НТТР	Referência
Blast	Análise de similaridade com os ortólogos em <i>T.cruzi</i> , <i>T. brucei</i> e <i>L. brazieliensis</i>	http://blast.ncbi.nlm.nih.gov/Blast.cgi	(ALTSCHUL et al., 1997)
HMMTOP	Predição de domínios trans-membranares	http://www.enzim.hu/hmmtop/	(TUSNADY, SIMON, 2001)
SignalP	Predição de peptídeo sinal e sito de clivagem	http://www.cbs.dtu.dk/services/SignalP/	(EMANUELSSON et al., 2007)
TMHMM	Predição de domínios trans-membranares	http://www.cbs.dtu.dk/services/TMHMM/	(KROGH et al., 2001)
GO	Anotação funcional pela <i>Gene Ontology</i> (GO)	http://www.geneontology.org	(MCCARTHY et al., 2006)
ProtParam (Expasy)	Análise dos parâmentros (pI, tamanho molecular) a partir da sequência aminoacídica	http://web.expasy.org/protparam/	(GASTEIGER et al., 2005)
Translate (Expasy)	Obtenção da sequência aminoacídica a partir da sequência nucleotídica	http://web.expasy.org/translate/	-

Tabela 2: Tabela contendo os programas utilizados nas análises *in silico* com a descrição da suas finalidade

1.3. RESULTADOS E DISCUSSÃO

1.3.1. Análise das proteínas solúveis das formas epimastigota, intermediárias (T2,T4,T6) e tripomastigotas (T8) diferenciadas *in vitro* da cepa Choachí de *T. rangeli* por eletroforese 2DE

Grande parte dos estudos relacionados à investigação de processos biológicos necessita do suporte de metodologias específicas para a obtenção das diferentes formas evolutivas do parasito. Durante o seu ciclo evolutivo, o T. rangeli alterna entre dois tipos morfológicos tripomastigota. propriedades principais. epimastigota e com a infectividade para o hospedeiro características, destacando-se vertebrado. Neste sentido, várias peculiaridades estão intimamente ligadas ao processo de diferenciação de uma forma para a outra. Uma etapa crucial do ciclo de vida do T. rangeli é o processo de diferenciação celular, durante o qual mudancas coordenadas no metabolismo e na morfologia ocorrem para efetuar uma transformação onde formas nãoinfectantes e replicativas, os epimastigotas, diferenciam-se em formas infectantes e incapazes de se multiplicar, os tripomastigotas. Nesse sentido, avanços significativos foram alcançados na tentativa de simular as condições naturais que podem levar o parasita a se diferenciar, possibilitando o estudo da reprogramação gênica a que estes organismos são submetidos durante o processo de diferenciação, sobretudo para as formas infectantes (STOCO, 2010). Uma etapa essencial foi o estabelecimento de um meio com condições quimicamente definidas que mimetizam o processo de diferenciação que ocorre no inseto vetor (KOERICH et al., 2002, STOCO, 2010).

A diferenciação de epimastigotas a tripomastigotas metacíclicos envolve alterações físico-químicas que permitem a ocorrência da reprogramação celular que visualmente pode ser acompanhada a partir da análise de modificações morfológicas que podemos visualizar na Figura 6. O cinetoplasto, na forma epimastigota (T0), está presente na porção anterior ao núcleo. Conforme o processo de diferenciação celular *in vitro* ocorre, o cinetoplasto migra até a porção posterior do núcleo caracterizando as formas tripomastigotas. Podemos observar também a membrana ondulante em toda extensão lateral da forma tripomastigota (T8).

Para o *T. cruzi* é bem estabelecido que o meio de urina artificial de triatomíneos (TAU) e a sua suplementação com prolina induz altas taxas de diferenciação celular de *T. cruzi in vitro* (CONTRERAS et al., 1985). Entretanto, o *T. rangeli* não é capaz de diferenciar e nem mesmo

de replicar neste meio. A sua capacidade de crescimento e diferenciação em meio DMEM em pH 8 suplementado com L-glutamina sugere que este aminoácido, assim como as condições de pH estão envolvidas neste processo, e que o *T. rangeli*, diferentemente do *T. cruzi*, requer um meio mais rico nutricionalmente para a sua diferenciação em formas tripomastigotas (KOERICH et al., 2002).

Após a obtenção das amostras, foi realizada a extração das proteínas totais das amostras (T0, T2, T4, T6, T8) ao longo do processo de diferenciação celular do *T. rangeli* e realizados ensaios de eletroforese unidimensional (1DE) e bidimensional (2DE) (Figura 7) com o objetivo de analisar o rol de proteínas diferencialmente expressas durante a transição entre a forma epimastigota (proliferativa e não-infectiva) e a forma tripomastigota (não proliferativa e infectiva). As alterações morfológicas nos parasitos também foram acompanhadas microscopicamente através de esfregaços em lâminas corados com Giemsa.

Para a obtenção dos mapas 2DE foram utilizadas proteínas solúveis de triplicatas biológicas e técnicas das amostras T0, T2, T4, T6, T8 contendo cerca de 0 %, 3,5 %, 57 %, 74 %, 97 % de tripomastigotas, respectivamente. Observa-se um aumento considerável de formas tripomastigotas do segundo dia de diferenciação celular (T2) para o quarto dia (T4), o que pode estar implicado em uma alteração no padrão de expressão proteica com o intuito de preparar ou até mesmo adaptar estes parasitas para a próxima fase do ciclo biológico.

Figura 6: Processo de diferenciação celular *in vitro* da cepa Choachí de *Trypanosoma rangeli* em meio DMEM (5% SFB), evidenciando alterações morfológicas dos parasitos em esfregaços corados com Giemsa. As barras em branco representam 10 μ m. N = núcleo e C = cinetoplasto.

Na Figura 7 estão apresentados 10 perfis 2DE obtidos a partir de duplicatas biológicas. Estes perfis foram obtidos a partir de 2 mg de proteínas solúveis resolvidas em tiras de 13 cm, com faixa de pI 3-10 e massa molecular relativa (M*r*) entre 10-250 kDa. Pode-se observar que a grande maioria dos *spots* estão localizados entre a faixa de pI 4-8 e massa molecular relativa 25-75 kDa. Além disso, levando em consideração as variações intrínsecas descritas para a eletroforese 2DE, observa-se uma boa reprodutibilidade dos perfis.

Foram coletados 926 *spots* das cinco amostras da cultura 1 (1^a replicata biológica), sendo que 918 foram analisados por espectrometria de massas (LC-ESI MS/MS). Para 56,8 % dos *spots* analisados, foi possível identificar uma ou mais proteínas. Entretanto, inúmeros *spots* apresentam a mesma proteína identificada resultantes de pequenas variações de massa e carga que podem estar relacionadas a presença de isoformas ou ainda a modificações pós-traducionais. Da cultura 2 (2^a replicata biológica) foram coletados 1.036 *spots* sendo analisados 139. A análise de apenas 13,4 % dos *spots* foi em decorrência da impossibilidade de processamento e análise por espectrometria de massas do grande volume de amostras (1.962 para as duas replicatas biológicas descritas neste manuscrito). Desta forma, foram analisadas 1.057 *spots* (53,8 %) no somatório das duplicatas biológicas, permitindo a identificação de um total de 182 proteínas não-redundantes (Tabelas 3 e 4).

Na Figura 8 está apresentado um gel representativo de todos os géis gerados por 2DE e demarcadas parte das proteínas identificadas por espectrometria de massas e na Tabela 4 estão relatadas as proteínas identificadas.

Figura 7: Eletroforese de extratos proteicos totais durante a diferenciação celular da cepa Choachí de *Trypanosoma rangeli*. (A) Perfil unidimensional das amostras nos tempos T0, T2, T4, T6 e T8 de duas amostras biológicas (cultura 1 (30 ug) e 2 (50ug)). (B) Perfil bidimensional de extratos proteicos totais de *T. rangeli* nos tempos T0, T2, T4, T6, T8. Alíquotas de 2 mg de proteínas foram aplicadas em tiras de 13 cm (pH 3-10). Os géis foram corados com Coomassie Brilliant Blue R-250.

	Amostra biológica 1			Amostra biológica 2			Total			
	Número de <i>Spots</i> coletados	<i>Spots</i> analisados	Spots com MS/MS	Número de <i>Spots</i> coletados	<i>Spots</i> analisados	Spots com MS/MS	Número de <i>Spots</i> coletados	<i>Spots</i> analisados	Spots com MS/MS	Proteínas não- redundantes
Т0 (Ері)	232	224 (96,5 %)	94 (41,9 %)	303	31 (10,2 %)	28 (90,3%)	535	255 (47,6%)	122 (47,8%)	87
T2 (2° dia)	124	124 (100%)	72 (58 %)	270	24 (8,8 %)	24 (100%)	394	148 (37,5%)	96 (64,8%)	67
T4 (4° dia)	185	185 (100%)	102% (56 %)	169	28 (16,5 %)	25 (89,2%)	354	213 (60,1%)	127 (59,6%)	83
T6 (6° dia)	169	169 (100%)	114 (52,7 %)	138	24 (17,4%)	19 (79,1%)	307	193 (62,8%)	133 (68,9%)	96
T8 (Tripo)	216	216 (100%)	140 (53%)	156	32 (49,9%)	28 (87,5%)	372	248 (66,6%)	168 (67,7%)	121
Total	926	918 (99,1 %)	522 (56,8%)	1036	139 (13,4%)	124 (89%)	1962	1057 (53,8%)	646 (61,1%)	182

Tabela 3: Resumo da quantidade de *spots* analisados em cada dia do processo de diferenciação celular *in vitro* da cepa Choachí de *Trypanosoma rangeli*.

Figura 8: (A) Perfil bidimensional do extrato proteico total de formas epimastigotas de *Trypanosoma rangeli* (primeira replicata biológica); (B) no detalhe, as proteínas identificadas por espectrometria de massas (111 das 167 proteínas comuns a todos os dias do processo de diferenciação celular).

Tabela 4: Proteínas não-redundantes identificadas por espectrometria de massas presente nos *spots* obtidos a partir da técnica de eletroforese bidimensional do extrato proteico total de *Trypanosoma rangeli* cepa Choachí.

	Proteínas	Código	Massa
		de acesso	molecular
1	14-3-3 protein	TR00226	30 kDa
2	14-3-3 protein	TR02934	29 kDa
3	25 kDa translation elongation factor 1-beta	TR03422	21 kDa
4	26S proteasome regulatory subunit T5	TR06658	42 kDa
5	2-amino-3-ketobutyrate coenzyme A		
	ligase	TR05897	44 kDa
6	2-oxoisovalerate dehydrogenase alpha		
	subunit	TR05730	49 kDa
7	2-oxoisovalerate dehydrogenase beta		
	subunit, mitochondrial precursor	TR04750	40 kDa
8	40S ribosomal protein S3	TR05151	27 kDa
9	60S acidic ribosomal protein P0	TR03071	35 kDa
10	69 kDa paraflagellar rod protein	TR02042	44 kDa

	Proteínas	Código de acesso	Massa molecular
11	69 kDa paraflagellar rod protein	TR04024	63 kDa
12	actin beta/gamma 1	TR01023	42 kDa
13	activated protein kinase C receptor	TR06474	35 kDa
14	adenylate kinase	TR01680	29 kDa
15	adenylate kinase	TR02653	24 kDa
16	alanine aminotransferase	TR01347	55 kDa
17	alcohol dehydrogenase	TR05738	42 kDa
18	aldose 1-epimerase-like protein	TR05451	42 kDa
19	alpha tubulin	TR05056	50 kDa
20	aminopeptidase	TR02075	43 kDa
21	aminopeptidase	TR02928	55 kDa
22	arginine kinase	TR00214	35 kDa
23	asparagine synthetase A	TR05413	39 kDa
24	aspartate aminotransferase	TR05843	46 kDa
25	aspartate aminotransferase, mitochondrial	TR04043	51 kDa
26	ATP synthase, epsilon chain	TR01540	21 kDa
27	ATPase beta subunit	TR01705	56 kDa
28	ATP-dependent Clp protease subunit, heat shock protein 100	TR06000	102 kDa
29	ATP-dependent Clp protease subunit, heat	TD01212	
20	ATD dependent DEAD/H DNA holicese	TR01212	90 kDa
30 21	avonomo control opporatus protain	TR04112	47 kDa
31	branched chain amine acid	1K00075	40 KDa
34	aminotransferase	TR04313	41 kDa
33	calmodulin	TR06725	72 kDa
34	calpain-like cysteine pentidase	TR01302	72 kDa
35	calreticulin	TR05116	45 kDa
36	carboxypeptidase	TR04126	39 kDa
37	carboxypeptidase Tag	TR06606	49 kDa
38	carnitine/choline acetyltransferase	TR01783	67 kDa
39	chaperonin	TR01153	58 kDa
40	chaperonin containing T-complex protein	TR03738	59 kDa
41	chaperonin HSP60, mitochondrial	TD06127	60 kDa
12	chaperonin/T complex protoin 1 commo	1K00127	00 KDa
42	subunit	TR01870	61 kDa
43	citrate synthase	TR04944	52 kDa
44	cystathione gamma lyase	TR03680	44 kDa

	Proteínas	Código	Massa
		de acesso	molecular
45	cystathionine beta-synthase	TR03074	29 kDa
46	cystathionine beta-synthase	TR05439	33 kDa
47	cytochrome C oxidase subunit IV	TR03337	39 kDa
48	cytochrome c oxidase subunit V	TR01917	22 kDa
49	cytoskeleton-associated protein CAP5.5	TR06262	88 kDa
50	dihydrolipoyl dehydrogenase	TR04445	51 kDa
51	D-isomer specific 2-hydroxyacid		
	dehydrogenase-protein	TR02516	38 kDa
52	elongation factor 1-beta	TR06591	26 kDa
53	elongation factor 2	TR06347	94 kDa
54	enolase	TR07150	46 kDa
55	enoyl-CoA hydratase/isomerase family		
	protein	TR03729	29 kDa
56	eukaryotic initiation factor 4a	TR04008	46 kDa
57	eukaryotic initiation factor 5a	TR00655	18 kDa
58	flagellar radial spoke protein	TR04947	61 kDa
59	fructose-1,6-bisphosphatase, cytosolic	TR05296	38 kDa
60	fructose-bisphosphate aldolase,		
	glycosomal	TR00236	41 kDa
61	glucokinase 1	TR00392	42 kDa
62	glucosamine-6-phosphate isomerase	TR01674	32 kDa
63	glucose-regulated protein 78	TR03733	71 kDa
64	glyceraldehyde 3-phosphate		
	dehydrogenase, cytosolic	TR06452	36 kDa
65	glycerol dehydrogenase	TR07237	34 kDa
66	glycosomal malate dehydrogenase	TR03342	34 kDa
67	haloacid dehalogenase-like hydrolase	TR00831	31 kDa
68	heat shock 70 kDa protein, mitochondrial		
10	precursor	TR03493	55 kDa
69	heat shock 70kDa protein 1/8	TR03366	66 kDa
70	heat shock 70kDa protein 1/8	TR07016	72 kDa
71	heat shock 70kDa protein 4	TR03283	79 kDa
72	heat shock protein DnaJ	TR04415	44 kDa
72	heterogeneous nuclear ribonucleoprotein		
	H/F	TR03124	49 kDa
74	hypothetical protein	TR00619	88 kDa
75	hypothetical protein	TR01915	48 kDa
76	hypothetical protein	TR05945	39 kDa
77	hypothetical protein	TR00231	22 kDa

	Proteínas	Código de acesso	Massa molecular
78	hypothetical protein	TR00293	66 kDa
79	hypothetical protein	TR00380	43 kDa
80	hypothetical protein	TR00591	31 kDa
81	hypothetical protein	TR00709	47 kDa
82	hypothetical protein	TR01557	119 kDa
83	hypothetical protein	TR02078	22 kDa
84	hypothetical protein	TR02146	53 kDa
85	hypothetical protein	TR02181	21 kDa
86	hypothetical protein	TR02227	42 kDa
87	hypothetical protein	TR02261	70 kDa
88	hypothetical protein	TR02402	37 kDa
89	hypothetical protein	TR02868	56 kDa
90	hypothetical protein	TR03200	42 kDa
91	hypothetical protein	TR03809	27 kDa
92	hypothetical protein	TR04332	24 kDa
93	hypothetical protein	TR04633	51 kDa
94	hypothetical protein	TR04816	38 kDa
95	hypothetical protein	TR04837	34 kDa
96	hypothetical protein	TR04870	39 kDa
97	hypothetical protein	TR05154	23 kDa
98	hypothetical protein	TR05286	49 kDa
99	hypothetical protein	TR05341	58 kDa
100	hypothetical protein	TR05604	37 kDa
101	hypothetical protein	TR05886	28 kDa
102	hypothetical protein	TR05950	43 kDa
103	hypothetical protein	TR06079	32 kDa
104	hypothetical protein	TR06111	35 kDa
105	hypothetical protein	TR06507	45 kDa
106	hypothetical protein	TR06516	23 kDa
107	hypothetical protein	TR06981	25 kDa
108	hypothetical protein	TR07335	43 kDa
109	hypothetical protein	TR03316	33 kDa
110	I/6 autoantigen	TR00726	22 kDa
111	IgE-dependent histamine-releasing factor	TR06709	20 kDa
112	inosine-5 -monophosphate dehydrogenase	TR05816	56 kDa
113	iron superoxide dismutase	TR05576	22 kDa
114	LA RNA binding protein	TR01620	39 kDa
115	large subunit ribosomal protein L9e	TR06681	22 kDa

	Proteínas	Código de acesso	Massa molecular
116	lipophosphoglycan biosynthetic protein	TR05935	82 kDa
117	L-threonine 3-dehydrogenase	TR02250	37 kDa
118	lysophospholipase	TR02858	30 kDa
119	lysosomal/endosomal membrane protein		
	p67	TR04677	71 kDa
120	malate dehydrogenase	TR02438	33 kDa
121	malic enzyme	TR00259	63 kDa
122	mitochondrial processing peptidase	TR05732	36 kDa
123	mitochondrial processing peptidase, beta		
	subunit	TR04446	36 kDa
124	mitochondrial RNA binding protein	TR03101	39 kDa
125	molecular chaperone HtpG	TR00837	81 kDa
126	myo-inositol-1(or 4)-monophosphatase 1	TR03732	31 kDa
127	NADH-cytochrome B5 reductase	TR03364	32 kDa
128	nascent polypeptide associated complex		
	subunit	TR02578	19 kDa
129	nucleosome assembly protein-like protein	TR04852	49 kDa
130	p21 antigen protein	TR01483	21 kDa
131	paraflagellar rod component	TR01610	68 kDa
132	peptidase M20/M25/M40	TR02201	52 kDa
133	phosphatase-like protein	TR02839	24 kDa
134	(ATP) phosphoenolpyruvate carboxykinase	TR05925	59 kDa
135	phosphoglycerate kinase	TR02767	45 kDa
136	poly(A)-binding protein	TR00554	61 kDa
137	prostaglandin F2alpha synthase	TR06121	43 kDa
138	proteasome alpha 3 subunit	TR00880	32 kDa
139	proteasome alpha 5 subunit	TR03212	27 kDa
140	proteasome regulatory ATPase subunit 3	TR00459	44 kDa
141	protein disulfide isomerase	TR06376	44 kDa
142	protein kinase	TR01385	31 kDa
143	protein kinase A regulatory subunit	TR03633	57 kDa
144	protein phosphatase	TR03123	46 kDa
145	Protein with unknown function	TR01041	34 kDa
146	Protein with unknown function	TR04205	87 kDa
147	Protein with unknown function	TR05844	30 kDa
148	pyrroline-5-carboxylate synthetase-like	TR00457	47 kDa
149	pyruvate dehydrogenase E1 component	TR05071	29 kDa

	Proteínas	Código do ocosso	Massa
	11 1 2	ue acesso	molecular
150	alpha subunit	TD02460	54 hD-
150	pyruvate kinase 2	TR02469	54 KDa
151	pyruvate phosphate dikinase	TR06266	101 kDa
152	quinone oxidoreductase	TR00615	23 KDa
153	RAB GDP dissociation inhibitor alpha	TR03103	50 kDa
154	reiske iron-sulfur protein precursor	TR03577	34 kDa
155	RNA helicase	TR05708	49 kDa
156	RNA-binding protein	TR02534	32 kDa
157	RNA-binding protein	TR03208	27 kDa
158	S-adenosylhomocysteine hydrolase	TR04758	48 kDa
158	S-adenosylmethionine decarboxylase	TD 02012	(21)
1.60	proenzyme	TR03913	42 kDa
160	serine carboxypeptidase CBP1	TR06814	23 kDa
161	serine/threonine protein phosphatase	TD05262	241-D-
1(0	catalytic subunit	TR05363	34 KDa
162	servi-trina synthese	TR00024	34 KDa
163	spermidine synthase	TR018/3	33 KDa
104	steroi 24-c-metnyitransierase	TR06821	41 kDa
165	stress-induced protein stil	TR02091	63 KDa
100	succinate denydrogenase flavoprotein	1R04856	67 KDa
167	chain	TR02001	45 kDa
168	succinyl-coA:3-ketoacid-coenzyme A		
	transferase, mitochondrial precursor	TR01479	53 kDa
169	surface protease GP63	TR06760	48 kDa
170	t-complex protein 1, eta subunit	TR04762	61 kDa
171	thiol-dependent reductase 1	TR00510	50 kDa
172	threonyl-tRNA synthetase	TR03503	91 kDa
173	transitional endoplasmic reticulum		
	ATPase	TR04770	89 kDa
174	transketolase	TR02117	73 kDa
175	tricarboxylate carrier	TR02126	23 kDa
176	triosephosphate isomerase	TR03469	27 kDa
177	trypanothione reductase	TR02517	54 kDa
178	tryparedoxin peroxidase	TR02563	21 kDa
179	tubulin beta	TR05117	50 kDa
180	tyrosine aminotransferase	TR02148	46 kDa
181	tyrosyl or methionyl-tRNA synthetase	TR01178	26 kDa
182	vacuolar ATP synthase subunit B	TR00246	56 kDa

O número de proteínas não redundantes identificadas em cada amostra analisada (T0, T2, T4, T6 e T8) foi similar, tendo sido identificadas 87, 67, 83, 96, 121 proteínas, respectivamente. Destas, 167 foram consideradas comuns entre todas as amostras durante o período de diferenciação celular e apenas uma proteína exclusiva foi identificada na amostra T2. O restante das proteínas é comum a duas ou mais dias do período avaliado (Figura 9). As proteínas detectadas são, em sua grande maioria, comuns a todos os dias do processo de diferenciação celular visto que proteínas reguladas durante este processo tem a tendência a estarem em baixa abundância (LUNDBERG et al., 2010), portanto, necessitando de uma técnica mais sensível ou um fracionamento anterior da amostra para detecção de proteínas diferencialmente reguladas.

A técnica de 2DE, embora apresente uma série de vantagens, também possui suas limitações, especialmente a dificuldade de comparação de dados obtidos entre laboratórios resultante das diferentes condições eletroforéticas. Outra limitação é o fato dos mapas proteicos não representam a totalidade das proteínas da célula, em decorrência dos diferentes níveis de expressão e das diferenças de solubilidade (FEY, LARSEN, 2001). Durante a eletroforese, a taxa de migração ou mobilidade eletroforética pode ser influenciada pela carga proteica no meio eletroforético, assim como pela sua forma, tamanho e associação com outros compostos ionizáveis. Os componentes dos extratos proteicos migram com velocidades individuais em um campo elétrico e podem sofrer alterações do meio (O'FARRELL, 1975), gerando um viés nas análises comparativas.

Figura 9: Diagrama de Venn revelando o número total de proteínas (182) de *Trypanosoma rangeli* identificadas por espectrometria de massas utilizando como ferramenta de separação a técnica de eletroforese 2DE conforme cada dia do processo de diferenciação *in vitro*. T0-epimastigota, T2- segundo dia, T4-quarto dia, T6- sexto dia de diferenciação celular e T8-tripomastigota.

Assim, tendo em vista a necessidade de abranger a identificação de um rol maior de proteínas do parasito em questão, o *T. rangeli*, utilizamos outras duas abordagens metodológicas cujos resultados estão descritos a seguir.

1.3.2 Análise das proteínas solúveis das formas epimastigota, intermediárias (T2, T4 e T6) e tripomastigotas (T8) diferenciadas *in vitro* da cepa Choachí de *T. rangeli* por GeLC-MS/MS.

Ao final da eletroforese unidimensional (1DE), as canaletas correspondentes a cada amostra foram seccionadas em 25 fragmentos conforme ilustrado na Figura 10. As bandas foram reunidas em grupos de três e em seguida passaram pelo processo de digestão com tripsina e identificação por espectrometria de massas.

Figura 10: Perfil unidimensional representativo das triplicatas biológicas das formas epimastigota (T0), formas intermediárias (T2, T4, T6) e tripomastigotas (T8) da cepa Choachí de *Trypanosoma rangeli*. As linhas em destaque representam os fragmentos de gel contendo as proteínas (25) analisadas por espectrometria de massas. Alíquotas de 50 μ g de proteínas foram resolvidas em SDS-PAGE 12 % e o gel corado com Azul de Coomassie R-250.

Foi possível identificar através desta metodologia um total de 1.410 proteínas sendo 72, 61, 41, 40 e 39 proteínas exclusivas para os tempos T0, T2, T4, T6 e T8, respectivamente. Observou-se um total de 711 proteínas que estiveram presentes durante todo o processo de diferenciação celular, além de um número menor de proteínas presentes em determinados dias da diferenciação como podemos visualizar na Figura 11. A tabela contendo as proteínas identificadas está localizada no apêndice A (Tabela A.1).

Figura 11: Diagrama de Venn revelando o número total de proteínas (1.410) de *Trypanosoma rangeli* identificadas por espectrometria de massas utilizando como ferramenta de separação a técnica de eletroforese unidimensional (GeLC-MS/MS) conforme cada dia do processo de diferenciação *in vitro*. T0epimastigota, T2- segundo dia de diferenciação celular, T4- quarto dia de diferenciação celular, T6-sexto dia de diferenciação celular e T8-tripomastigota.

1.3.3 Análise proteômica das proteínas em solução (*gel free*) das formas epimastigota, intermediárias (T2, T4 e T6) e tripomastigotas (T8) diferenciadas *in vitro* da cepa Choachí de *T. rangeli*.

A partir desta abordagem foram identificadas 716 proteínas, sendo 539 comuns a todos os dias durante o período de diferenciação celular. De acordo com esta técnica, 11 foram exclusivas para a forma epimastigota, quatro para a forma intermediária coletada no quarto dia de diferenciação celular (T4) e por fim, uma proteína foi exclusivamente identificada na forma tripomastigota coletada no oitavo dia do processo de diferenciação celular (Figura 12).

Figura 12: Diagrama de Venn revelando o número total de proteínas (716) de *Trypanosoma rangeli* identificadas por espectrometria de massas utilizando como estratégia LC-MS/MS conforme cada dia do processo de diferenciação *in vitro*. T0-epimastigota, T2- segundo dia, T4- quarto dia, T6-sexto dia de diferenciação celular e T8-tripomastigota.

1.3.4 Comparação entre as três diferentes abordagens proteômicas utilizadas

O advento de ferramentas proteômicas permitiu propor uma estratégia combinando a eletroforese unidimensional (1DE), bidimensional (2DE) e *gel free*, acopladas a espectrometria de massas (MS) para caracterizar o proteoma da cepa Choachí do *T. rangeli*. A eletroforese 1DE e a análise baseada em *gel free* permitiram a identificação da maior parte das proteínas aqui descritas.

Após a análise conjunta dos resultados obtidos nas três abordagens utilizadas neste estudo, o número total de proteínas não redundantes identificadas foi de 1.455. Destas, 167 foram comuns a todas as abordagens, quatro foram específicas para a eletroforese 2DE, 724 foram somente identificadas com a eletroforese 1DE e 41 específicas para a técnica de *gel free*. Realizando a combinação das técnicas, houveram proteínas identificadas comuns a eletroforese 2DE e 1DE (11) e comuns a 1DE e *gel free* (508). Entretanto, nenhuma proteína foi comum entre a técnica de eletroforese 2DE e gel free (Figura 13).

Figura 13: Diagrama de Venn com a comparação entre as três abordagens proteômicas (2DE, 1DE e *gel free*) utilizando o número total de proteínas (1.455) de *Trypanosoma rangeli* identificadas por espectrometria de massas.

Esta diferença entre o número de proteínas obtidas a partir do perfil 2DE em relação ao perfil 1DE e gel-free, deve-se primordialmente a maior sensibilidade do equipamento utilizado nestas duas últimas metodologias (LTQ Orbitrap Velos). Adicionalmente, no experimento 1DE, as bandas (1DE) foram analisadas em conjunto de três e não houve perda de amostra, pois toda a parte do gel de poliacrilamida contendo proteínas foi submetida a análise. Ao realizar a análise por gel free, a solução contendo as proteínas solúveis de cada dia foram analisadas como uma única amostra, enquanto nos dados de 2DE cada spot obtido foi analisado individualmente. Outro fator relevante refere-se à sensibilidade obtida utilizando a técnica de eletroforese 2DE. A coloração por azul de coomassie revela proteínas de alta abundância, principalmente quando não é realizado um pré-fracionamento da amostra para retirada destas proteínas, como por exemplo, as proteínas estruturais que estão em maior quantidade nas células. Neste sentido, torna-se difícil detectar por eletroforese 2DE proteínas que estão sendo reguladas durante a diferenciação celular, pois este tipo de proteína está usualmente em baixa abundância (LUNDBERG et al., 2010).

Analisando todas as técnicas abordadas e todas as amostras (T0, T2, T4, T6, T8), como mostrado na Figura 14, é possível observar a
correspondência de 711 proteínas entre todos os dias envolvidos no processo de diferenciação celular. As demais proteínas identificadas são compartilhadas entre 2, 3 ou 4 dos dias do processo de diferenciação celular in vitro, sendo algumas identificadas como exclusivas para cada dia da diferenciação celular. Entretanto, é necessária uma investigação mais aprofundada para verificarmos que tais proteínas são realmente estágio especificas durante a diferenciação celular. De forma geral, o perfil de expressão mostrou sobreposição substancial, mas também diferenças na composição do rol proteico entre as amostras, indicando haver uma regulação durante o processo de diferenciação celular de não-infectivas formas а infectivas. Dentre estas proteínas diferencialmente expressas. 13 proteínas foram selecionadas estudos mais aprofundados de caracterização.

Figura 14: Diagrama de Venn com a comparação entre as diferentes amostras utilizando o número total de proteínas (1.455) de *Trypanosoma rangeli* identificadas por espectrometria de massas pelas 3 abordagens proteômicas (2DE, 1DE e *gel free*). T0-epimastigota, T2-segundo dia de diferenciação celular, T4- quarto dia de diferenciação celular, T6-sexto dia de diferenciação celular e T8-tripomastigota.

A diferenciação celular *in vitro* no *T. cruzi* é um processo crucial e bem estudado, o qual envolve uma série de alterações na expressão gênica do parasito, resultando em importantes modificações

morfológicas e funcionais entre as formas epimastigotas e tripomastigotas (KRIEGER et al., 1999). Estudos iniciais revelaram a existência de proteínas estágio-específicas na superfície das formas (TEIXEIRA, YOSHIDA, 1986) e em diferentes tripomastigotas estágios do ciclo celular (DE GODOY et al., 2012). Posteriormente, análises de eletroforese de duas dimensões (2DE) revelaram uma correspondência de cerca de 50 % das proteínas encontradas entre epimastigotas e tripomastigotas de T. cruzi e uma série de proteínas de expressão diferencial durante a diferenciação celular (PARODI-TALICE et al., 2007).

Para caracterização das proteínas identificadas por espectrometria de massas, uma análise utilizando o programa Gene Ontology (GO) buscou categorizar as proteínas quanto à sua localização celular, processo biológico ou função molecular. Para 42 % das proteínas identificadas (611 proteínas, n= 1.455) foi possível obter anotação funcional. Dentre as 611 proteínas, em relação a localização celular, 30 % (183 proteínas) são parte integrante do citosol, 13 % (79 proteínas) estão localizadas no núcleo e 10% na mitocôndria (61 proteínas). A maior quantidade de proteínas citosólicas identificadas é observada neste tipo de abordagem em gel (PARODI-TALICE et al., 2004, ATWOOD et al., 2005, CUERVO et al., 2007, KIKUCHI et al., 2010), sendo proteínas de membrana extremamente hidrofóbicas e requerendo outros métodos de separação e fracionamento para realizar sua caracterização.

Em relação ao processo biológico, 12 % das proteínas possuem função de transporte (73 proteínas) e 11 % estão envolvidas na resposta ao estresse (67 proteínas). As três funções moleculares mais abundantes foram a ligação a íons (16 %, 97 proteínas), função de oxiredução (8 %, 49 proteínas) e função de ligase (7 %, 43 proteínas) (Figura 15).

Assim como no genoma (BERRIMAN et al., 2005, EL-SAYED et al., 2005) e proteoma de outros organismos (ANDRADE et al., 2008, GRÉBAUT et al., 2009, DE GODOY et al., 2012), no transcriptoma (GRISARD et al., 2010) e no genoma (STOCO et al., 2014) do *T. rangeli* há um elevado número de genes denominados hipotéticos que também foram identificados neste estudo a partir das análises realizadas.

Apesar dos avanços nas plataformas de espectrometria de massas, a qualidade das análises proteômicas depende diretamente da qualidade e disponibilidade de dados relativos ao genoma e/ou ao transcriptoma de um dado organismo. Normalmente, são utilizadas bases de dados contendo genes ou ORF da espécie, cujo mapa proteômico está sendo estudado (ANDRADE et al., 2008, KIKUCHI et al., 2010). Até 2010 não havia informações substanciais disponíveis a respeito do genoma do T. rangeli, dificultando, portanto, o estudo do proteoma deste parasito. O genoma do T. rangeli foi recentemente sequenciado em uma associação do Laboratório de Protozoologia da Nacional Sequenciamento Rede UFSC com a de de DNA (www.brgene.lncc.br), cujos resultados estão em fase de publicação (STOCO et al., 2014). A despeito disso, o presente estudo contou com o acesso aos dados o que permitiu as análises das informações geradas pelos espectros obtidos.

Figura 15: Proporção de proteínas distintas de *Trypanosoma rangeli* (cepa Choachí) com anotação funcional pelo *Gene Ontology* (GO) e distribuição das proteínas com GO de acordo com sua localização celular, função molecular e processo biológico.

1.4 CONCLUSÃO

- A análise conjunta de diferentes abordagens proteômicas (2DE, 1DE e *gel free*) permitiu um incremento quali-quantitativo das proteínas identificadas nas diferentes formas do *T. rangeli* se comparado às análises realizadas isoladamente por cada método;
- A abordagem proteômica 1DE acoplada a espectrometria de massas mostrou-se mais efetiva na geração de dados em relação ao número de proteínas;
- O número de proteínas compartilhadas entre formas epimastigotas e tripomastigotas é condizente com outros relatos para tripanosomatídeos, como por exemplo, o *T. cruzi;*
- Foi possível realizar anotação funcional quanto a função molecular, processo biológico e localização celular de um número substancial de proteínas (42%);
- De acordo com indícios de diferença de expressão durante o processo de diferenciação celular foram selecionadas 13 proteínas de interesse para dar continuidade a caracterização molecular, sendo quatro destas classificadas como proteínas de função desconhecida.

Capítulo 2: Caracterização molecular de proteínas diferencialmente expressas no processo de diferenciação celular *in vitro* do *Trypanosoma rangeli*

2.1 INTRODUÇÃO

A partir da análise dos resultados obtidos pela espectrometria de massas e, considerando-se as informações disponíveis do genoma do T. rangeli, foram selecionadas 13 proteínas para dar prosseguimento a este estudo. Os critérios para a seleção destas proteínas foram: 1- Possuir indícios de estar diferencialmente expressa durante o processo de diferenciação celular; 2- Não ser uma proteína estrutural e, 3- Ser um potencial marcador da diferenciação celular, ou seja, capaz de distinguir formas epimastigotas e tripomastigotas em processo de transformação. Com base nestes critérios, as proteínas selecionadas foram: espermidina sintase (ES), histidina amônio liase (HAL), proteína Gim5A, aspartato aminotransferase mitocondrial (mASAT), proteína apical de membrana 1 (AMA-1), proteína mitocondrial ligante de RNA 2 (MRP2), proteína flagelar ligante de cálcio (FCaBP), proteína de membrana de kinetoplastídeos (KMP-11), calpaína cisteíno peptidase (CCP), proteína de função desconhecida 1 (PFD1), proteína de função desconhecida 2 (PFD2), proteína de função desconhecida 3 (PFD3) e proteína de função desconhecida 4 (PFD4).

Cabe aqui salientar que as chamadas proteínas de função desconhecida são proteínas anotadas em outros genomas como "proteínas hipotéticas" e que, neste estudo, são proteínas que por possuírem o gene completo, evidências de transcrição (EST) e sequência proteica detectada por sequenciamento *de novo*, foram assim denominadas.

2.1.1 Proteínas selecionadas

2.1.1.1 Espermidina sintase (ES)

As poliaminas são cátions orgânicos essenciais e ubíquos tanto em procariotos quanto em eucariotos que desempenham um papel essencial no crescimento e proliferação celular, sendo seus níveis regulados por diferentes mecanismos (COHEN, 1997, IGARASHI, KASHIWAGI, 2000, GONZÁLEZ, HUBER, ALGRANATI, 2001). Em tripanosomatídeos as poliaminas realizam a manutenção adicional no equilíbrio redox endógeno através do mecanismo da tripanotiona (Figura 16) (TAYLOR et al., 2008, WILLERT, PHILLIPS, 2008).

Estudos revelam a importância da espermidina na manutenção da proliferação de tripanosomatídeos (WILLERT, PHILLIPS, 2008). A sua depleção através da inibição das enzimas-chave ornitina decarboxilase (ODC) por α -difluorometilornitina (DMFO) e espermidina sintase por sulfato de bis-ciclohexilamonio (CHA) está envolvida na redução das taxas de multiplicação destes parasitas

(GONZÁLEZ, HUBER, ALGRANATI, 2001). Parasitas contendo ODC metabolicamente instável são capazes de crescer continuamente mesmo na presença de altos níveis de DMFO, o inibidor irreversível da ODC, como é o caso de *Crithidia fasciculata* (CERIANI, GONZÁLEZ, ALGRANATI, 1992). *T. brucei* e *Leishmania mexicana* contêm níveis estáveis de ODC são susceptíveis e param sua proliferação após tratamento com DMFO (GONZÁLEZ et al., 1991, CARRILLO et al., 2000).

Adaptado de Taylor et al (2008) e Willert and Phillips (2008)

Figura 16: Rota biossintética das poliaminas em tripanosomatídeos. Em vermelho está ressaltada a espermidina sintase que possui um papel importante na síntese da espermidina. A parte mais clara da figura referencia a ausência da rota da ODC em *Trypanosoma rangeli*.

Ao contrário dos demais tripanosomatídeos, há evidências de que o *T. cruzi* (CARRILLO et al., 1999) e o *T. rangeli* (STOCO et al., 2014) não possuem a enzima ODC. Estes parasitos utilizam outra fonte de obtenção de aminoácidos necessários para seu metabolismo, como por exemplo, a importação de poliaminas provenientes do meio extracelular. Assim, o aporte de espermidina é de extrema importância para a manutenção da proliferação celular, especialmente quando se trata de formas epimastigotas e também no equilíbrio redox do qual os tripanosomatídeos são capazes de realizar. Neste sentido, a ES realiza um papel essencial na síntese e manutenção dos níveis de espermidina. A função da ES é catalizar a transferência de um grupamento aminopropil da S-adenosilmetionina (dcSAM) para o grupamento amino terminal da putrescina para formar a espermidina (PEGG, WILLIAMS-ASHMAN, 1969).

A ES foi selecionada para dar continuidade aos estudos devido a evidência de sua maior expressão na fase inicial do processo de diferenciação celular (T0 e T2) do *T. rangeli*. Foi possível a identificação por MS/MS com uma cobertura de 65 %, ou seja, dos 296 aminoácidos desta proteína foram identificados 191.

2.1.1.2 Histidina amônio liase (HAL)

A HAL ou histidase catalisa a primeira reação não oxidativa de catálise da histidina produzindo amônio e ácido urocânico (Figura 17). Estudos sugerem que a enzima interage com substratos específicos através dos grupamentos carboxila, amino e da fração imidazólica. Inibidores eficazes contêm grupos funcionais que correspondem a estes três locais de ligação, enquanto que compostos com apenas dois dos grupos funcionais são inibidores pobres, com exceção da glicina (GIVOT, SMITH, ABELES, 1969).

Figura 17: Reação de catálise da histidina amônio liase que resulta na formação de ácido urocânico e amônio. Fonte: Schwede, Rétey e Schulz (1999).

Análises proteômicas comparativas de formas epimastigotas, tripomastigotas metacíclicos, amastigotas e tripomastigotas sanguíneos de *T. cruzi* revelaram que a enzima HAL é prontamente detectada no proteoma das formas epimastigotas e tripomastigotas metacíclicos, formas encontradas no inseto vetor, mas quase indetectáveis nas formas amastigotas e tripomastigotas sanguíneos (ATWOOD et al., 2005, TARLETON, 2007). Sendo a histidina, utilizada como fonte de energia, um aminoácido abundante tanto nas fezes quanto na hemolinfa de *R. prolixus*, é sugerido que a adaptação do *T. cruzi* no inseto vetor possua relação com este aminoácido (GINGER, FAIRLAMB, OPPERDOES, 2007), fato este que explicaria a maior expressão da enzima responsável por sua degradação nas formas citadas acima. Esta enzima parece estar presente apenas no metabolismo de animoácidos de *T. cruzi* e ausente nos demais tripanosomatídeos como, por exemplo, o *T. brucei* (GINGER, FAIRLAMB, OPPERDOES, 2007).

A HAL foi selecionada para dar continuidade aos estudos devido a evidência de sua maior expressão na fase inicial do processo de diferenciação celular, ou seja, nas formas epimastigotas (T0). A histidina amônia liase foi identificada por MS/MS com uma cobertura de 26 %, ou seja, dos 538 aminoácidos desta proteína foram identificados 142.

2.1.1.3 Proteína glicossomal 5A (Gim5A)

A classe de proteínas Gim5 é única em membros da Ordem Kinetoplastida e essencial para a sua sobrevivência. Há duas proteínas pertencentes a Gim5, a Gim5A e a Gim5B, sendo que a diferença é a região 3'UTR da sequência codificadora. A proteína Gim5A está localizada na membrana glicossomal sendo esta uma organela essencial na manutenção da regulação glicolítica (BAKKER et al., 2000, MAIER et al., 2001).

A Gim5A foi selecionada para dar continuidade aos estudos devido à evidência de sua maior expressão na fase inicial do processo de diferenciação celular, ou seja, nas formas epimastigotas (T0). Foi possível a identificação desta proteína por MS/MS com uma taxa de cobertura de 69 %, ou seja, dos 245 aminoácidos desta proteína foram identificados 169.

2.1.1.4 Aspartato aminotransferase mitocondrial (mASAT)

Tripanosomatídeos expressam uma variedade de aminotransferases e acredita-se que estejam envolvidas na produção de intermediários essenciais para suprir as necessidades do ciclo de Krebs ou rotas gliconeogênicas. A maioria das aminotransferases exibe especificidade de substrato e normalmente são reguladas de acordo com o desenvolvimento durante o ciclo de vida dos parasitas (MARCIANO et al., 2008, NOWICKI, CAZZULO, 2008). Isto acontece com a aspartato aminotransferase citosólica e mitocondrial tanto com *T. brucei* quanto com *T. cruzi*. A isoforma citosólica, transamina tanto aminoácidos aromáticos quanto dicarboxílicos utilizando como co-substrato o 2-oxoglutarato enquanto que as mitocondriais são altamente

específicas para o substrato aspartato/2-oxoglutarato (MARCIANO et al., 2008).

A mASAT é menos abundante em formas sanguíneas de *T. brucei*, o que corresponde a inatividade do ciclo de Krebs nas formas do parasito encontradas em mamíferos. Já em *T. cruzi* esta enzima é expressa de forma constitutiva (MARCIANO et al., 2008, MARCIANO et al., 2009).

A aspartato aminotransferase foi selecionada para dar continuidade aos estudos devido a evidência de sua maior expressão na fase intermediária do processo de diferenciação celular (T2-T4). Esta proteína foi identificada por MS/MS com uma taxa de cobertura de 36 %, ou seja, dos 464 aminoácidos desta proteína 169 foram identificados.

2.1.1.5 Antígeno de membrana apical 1 (AMA-1)

O antígeno de membrana apical 1 é uma proteína transmembrana vastamente estudada no filo Apicomplexa e uma boa candidata a vacina contra a malária devido a sua característica imunogênica. Considera-se que esta proteína desempenha vários papéis importantes durante a penetração do parasita na célula hospedeira, essencialmente na estruturação da junção por interação com a proteína *"rhoptry neck 2"* durante a internalização do parasita (TYLER, BOOTHROYD, 2011, BARGIERI et al., 2013).

A AMA-1 foi selecionada para dar continuidade aos estudos devido a evidência de sua maior expressão na fase intermediária do processo de diferenciação celular (T2-T4). Esta proteína foi identificada por MS/MS com uma taxa de cobertura de 13 %, ou seja, dos 183 aminoácidos desta proteína foram identificados 24.

2.1.1.6 Proteína mitocondrial ligante de RNA 2 (MRP2)

Proteínas mitocondriais ligantes de RNA são importantes em muitos aspectos do processamento, função e destruição de RNA (GAUDENZI. FRASCH. CLAYTON. 2005). Vários RNA mitocondriais são pós-transcricionalmente editados em tripanosomatídeos pela inserção e deleção de uridinas (U) a múltiplos sítios em pré-mRNA para produzir mRNAs maduros (HORVÁTH, BERRY, MASLOV, 2000). Essa edição é realizada por proteínas ligantes de RNA que funcionam como RNA-guia (gRNA) e parecem regular a respiração mitocondrial em diferentes estágios do ciclo de vida (ESTÉVEZ, parasitas SIMPSON. 1999. dos HAJDUK. OCHSENREITER, 2010).

Uma abordagem para a detecção de componentes da maquinaria de edição de RNA tem sido a busca por proteínas-guia ligantes de RNA (gRNA) ou *mRNA*. Em *L. tarentolae*, as proteínas p18, p51, p110, Ltp26 e Ltp28 foram identificadas como proteínas ligantes de RNA (BRINGAUD et al., 1995, APHASIZHEV et al., 2003) e em *T. brucei* há estudos envolvendo proteínas mitocondriais ligantes de RNA, como por exemplo a TBRGG1, RBP16, gBP21 (KÖLLER et al., 1994, HAYMAN, READ, 1999, MULLER, LAMBERT, GORINGER, 2001). Outra classe importante de proteínas mitocondriais ligantes de RNA são aquelas que possuem o motivo de reconhecimento RRM e estão presentes em tripanosomatídeos como o *T. brucei, T. cruzi* e *L. major* (GAUDENZI, FRASCH, CLAYTON, 2005).

A MRP2 foi selecionada para dar continuidade aos estudos devido a evidência de sua maior expressão na fase intermediária do processo de diferenciação celular (T2-T4). A MRP2 de *T. rangeli* foi identificada por MS/MS com uma cobertura de 45 %, ou seja, dos 223 aminoácidos desta proteína foram identificados 100.

2.1.1.7 Proteína Flagelar Ligante de Cálcio (FCaBP)

A FCaBP ou calflagina, é uma proteína altamente conservada em alguns tripanosomatídeos. A característica de ligação de cálcio (Ca^{2+}) levou a especular uma relação entre sua presença e a patogenicidade de organismos ou uma possível função regulatória no ciclo celular destes protozoários (MALDONADO et al., 1997).

Durante o ciclo de vida, os tripanosomatídeos assumem mais de uma forma. No caso de T. rangeli tem-se apenas o conhecimento da forma epimastigota e tripomastigota, com evidências de ausência de multiplicação intracelular. Já o T. cruzi, apresenta três formas distintas, epimastigota, amastigota (intracelular) e tripomastigota. Devido a importância de cálcio (Ca²⁺) para sinalizações do ciclo celular em outros organismos, surgiu a hipótese que a FCaBP poderia estar envolvida na detecção de cálcio para disparar cascatas que poderiam levar o parasito a mudar de uma forma para a próxima (PINTO et al., 2003). Em T. cruzi, a FCaBP pode estar envolvida na motilidade flagelar (ENGMAN et al., 1989) , estocagem de Ca²⁺ ou na transdução de sinal. Já é bem estabelecido que o Ca²⁺ desempenha um papel importante no processo de invasão celular pelas formas tripomastigotas de T. cruzi (DOCAMPO, MORENO, 1996, BURLEIGH, ANDREWS, 1998) e evidências indicam que o Ca^{2+} desempenha um importante papel durante (GONZALES-PERDOMO. metaciclogênese ROMERO. а GOLDENBERG, 1988).

Genes homólogos aos que codificam a calflagina em *T. cruzi* também foram encontrados em *T. rangeli*, *Leishmania major*, *Trypanosoma freitasi*, *T. brucei* e *Trypanosoma conorhini* levando a crer que esta proteína estivesse ligada a capacidade de tripanosomatídeos de infectar células e a também altamente imunogênica (MALDONADO et al., 1997).

Além do possível papel desta proteína na invasão do hospedeiro pelo parasito, a FCaBP apresenta-se como possível marcador específico para diferenciação do *T. rangeli* em relação ao *T. cruzi* (WAGNER et al., 2013). Desse modo, o estudo da variabilidade intraespecífica de FCaBP em *T. rangeli* permite além de gerar dados em relação ao curso da infecção no hospedeiro mamífero e gerar informações relativas à reatividade sorológica cruzada entre *T. cruzi* e *T. rangeli*.

Além disto, Porcel et al (1996) demonstraram que a FCaBP de *T. rangeli* apresenta homologia com uma proteína de *T. cruzi*, e está envolvida com montagem e funcionalidade do flagelo. Apesar desta proteína não ter sítio de ancoramento à GPI, ela apresenta sítios de miristoilação ou palmitoilação que também são importantes para o ancoramento de proteínas a membrana plasmática do parasito (GODSEL, ENGMAN, 1999).

A FCaBP foi selecionada para dar continuidade aos estudos devido à evidência de sua maior expressão na fase final do processo de diferenciação celular. Foi possível a identificar por MS/MS a FCaBP com uma cobertura de 44 %, ou seja, dos 205 aminoácidos desta proteína foram identificados 90.

2.1.1.8 Proteína de membrana de cinetoplastídeos (KMP-11)

KMP-11 é uma proteína abundante que está presente em uma variedade de parasitas da Ordem Kinetoplastida (STEBECK et al., 1995, THOMAS et al., 2000, DIEZ et al., 2005). Esta proteína foi primeiramente identificada em *L. donovani* como uma proteína de superfície capaz de estimular a proliferação de células T (KING, CHANG, TURCO, 1987). Além de alvo da resposta imune humoral em infecções por *Leishmania* spp. e *T. cruzi*, este antígeno induz uma resposta imune protetora contra infecções por *T. cruzi* (DIEZ et al., 2006). Nos tripanosomatídeos estas proteínas estão distribuídas no citoplasma, membrana, flagelo e bolsa flagelar, estando associadas com o citoesqueleto destes protozoários (STEBECK et al., 1995, BERBERICH et al., 1998, DIEZ et al., 2008).

A função da KMP-11 ainda não é totalmente conhecida, entretanto o silenciamento desta proteína em *T. brucei* através de RNA

de interferência inibiu a segregação do corpo basal e a citocinese, resultando em múltiplos núcleos de vários tamanhos. Em *T. brucei* a KMP-11 é uma proteína flagelar que possui um papel essencial na regulação da citocinese em ambas as formas do parasita (LI, WANG, 2008).

A KMP-11 foi selecionada para dar continuidade aos estudos devido à evidência de sua maior expressão na fase final do processo de diferenciação celular. Esta proteína foi identificada por MS/MS com uma taxa de cobertura de 76 %, ou seja, dos 92 aminoácidos desta proteína foram identificados 70.

2.1.1.9 Calpaína cisteíno peptidase (CCP)

Na Ordem Kinetoplastida, as cisteíno peptidases desempenham um papel importante no crescimento e sobrevivência dos parasitas (SAJID, MCKERROW, 2002), destruição de proteínas do hospedeiro (STANLEY et al., 1995) e também na neutralização da resposta imune do hospedeiro (REED et al., 1995).

Para muitas peptidases, a cisteína é um sítio ativo essencial para a atividade enzimática e função biológica. Aquelas, que no momento da hidrólise das ligações peptídicas baseiam-se no tiol da cisteína especificamente são designadas como cisteína peptidases (também conhecidas como tiol peptidases, sulfidrila peptidases e cisteinil peptidases) e são reunidas em famílias baseadas em semelhanças nas sequências aminoacídicas primárias e, quando conhecido, semelhanças estruturais. Famílias que possuem uma origem evolutiva comum são agrupadas em clãs conforme Figura 18. Não há identidade de sequência entre as cisteína peptidases de diferentes clãs. Evidências sugerem que as enzimas dentro de diferentes clãs surgiram de forma independente em relação a evolução e são semelhantes apenas no mecanismo catalítico que utiliza um resíduo de cisteína (MOTTRAM et al., 2003).

Adaptado de Mottram et al., (2003)

Figura 18: Diagrama esquemático da superfamília das cisteíno peptidases destacando a subfamília CA.

Cisteíno peptidases de parasitas são divididas em dois grupos principais denominados clãs, o CA e o CD (BARRET, 1994). A CCP é uma protease pertencente a família C2 dentro do clã CA. O que difere entre as famílias é a ordem dos resíduos de cisteíno e histidina (Cys/His ou His/Cys) na sequência linear (RAWLINGS, BARRET, 1994). Ainda assim a classificação das cisteínos peptidases não poder ser realizada apenas pela sequência nucleotídica, devendo-se realizar a comparação entre as estruturas terciárias (BARRET, RAWLINGS, 1996), pois dependendo da ordem aminoacídica o dobramento da proteína ocorre de forma diferenciada. No caso da CCP, a ordem aminoacídica é Cys/His.

As calpaínas pertencentes a família C2 são enzimas formadas por heterodímeros. O maior (80 kDa) deles contém o domínio proteolítico e também estruturas ligantes de cálcio e EF-hand semelhantes aos encontrados em outras proteínas (RAWLINGS, BARRET, 1993).

A CCP foi selecionada para dar continuidade aos estudos devido a evidência de sua maior expressão na fase final do processo de diferenciação celular. Foi possível a sua identificação por MS/MS com uma taxa de cobertura de 8%, ou seja, dos 1.593 aminoácidos desta proteína foram identificados 130.

2.1.1.10 Proteínas de função desconhecida (PFD)

O sequenciamento do genoma de microrganismos gera uma grande quantidade de dados e é conhecido a função de apenas cerca de 50-70% das sequências gênicas traduzidas (GALPERIN, 2001, GALPERIN, KOONIN, 2004, LUBEC et al., 2005). O restante dos genes são descritos como: 1) homólogos a genes de função desconhecida tipicamente denominados 'genes hipotéticos e conservados' ou 2) não possuem homólogos conhecidos e são denominados de genes 'hipotéticos' ou 'não caracterizados' 011 'desconhecidos' pois ainda não está claro se são efetivamente codificadoras para proteínas (SIVASHANKARI, SHANMUGHAVEL, 2006). Assim, para nominar as proteínas derivadas destes genes utilizase corriqueiramente a terminologia 'proteína hipotética' ou 'proteína de função desconhecida' (LUBEC et al., 2005, SIVASHANKARI, SHANMUGHAVEL, 2006).

Assim, proteínas hipotéticas são proteínas preditas somente pelas sequências nucleotídicas e/ou sequências proteicas que podem ser encontradas em organismos de várias linhagens filogenéticas, porém sua função é desconhecida. Avanços na abordagem experimental e computacional para determinação da estrutura e análise deste tipo de proteína tem gerado iniciativas para a anotação genômica via uma abordagem estrutural. A ideia da anotação a partir da função biológica de uma macromolécula está baseada na determinação da estrutura em alta resolução, que pode ser determinada por cristalografia de raio-X ou RMN. Esta abordagem deriva do fato de que a estrutura de uma proteína é essencial para o entendimento da função a nível molecular. A determinação da estrutura tridimensional pode levar a detecção e caracterização de grupos prostéticos ou ligantes de metal, e revelar sítios catalíticos e regulatórios em enzimas. Destas características estruturais pode ser predito e proposto o mecanismo catalítico, associações proteína-proteína ou interações proteína-ácidos nucleicos (EISENSTEIN et al., 2000).

Métodos de fracionamento, seguidos de identificação dos *spots* por espectrometria de massas é uma ferramenta útil para investigar e reforçar a presença de proteínas hipotéticas. Os *spots* são identificados por MS ou por MS/MS (MALDI-TOF, MALDI-TOF-TOF) e softwares, como por exemplo o Mascot, são utilizados para as análises posteriores. A sequência obtida pode ser utilizada para realizar uma busca na base de dados através de *BLAST* a fim de determinar a identidade/similaridade ou homologia com proteínas já descritas. Se não houver nenhuma identidade significativa com as já conhecidas, a sequência da proteína é

examinada para a presença de domínios funcionais (ex: bases de dados PROSITE, PRINTS, InterPro, ProDom, Pfam e SMART), submetido a buscas por motivos (ELM) e, finalmente, as bases de dados de interação proteína-proteína (InterWeaver, STRING) podem são consultados ou ainda realizar previsões quanto a conformação (LUBEC et al., 2005). Ou seja, a bioinformática é uma valiosa ferramenta na predição de informações derivadas da sequência gênica que podem guiar o estudo e elucidação das funções deste tipo de proteína.

As proteínas hipotéticas possuem extrema importância e são necessários estudos para validar a sua existência tanto a nível proteico quanto a nível genômico. As informações geradas irão complementar os genomas e os proteomas visto que cerca de metade dos genomas são constituídos de genes deste tipo.

Foram selecionadas duas proteínas de função desconhecida com evidência de maior expressão na fase inicial (PFD1-TR01161 e PFD2-TR00439) e duas no final (PFD3-TR02802 e PFD4-TR07083) do processo de diferenciação celular. Entretanto, em uma reanálise no genoma do *T. rangeli*, a PFD4 inicialmente identificada como proteína hipotética/função desconhecida, foi re-anotada como sendo uma sialidase/trans-sialidase.

A proteína de função desconhecida 1 (PFD 1), PFD 2, PFD 3 e PFD 4 foram identificadas por espectrometria de massas com 22 %, 17%, 40% e 12% de cobertura, respectivamente.

2.2 MATERIAIS E MÉTODOS

2.2.1 Análise in silico e desenho dos iniciadores

As sequências completas das janelas abertas de leitura (ORF) dos genes que codificam as proteínas selecionadas (ES, HAL, Gim5A, mASAT, AMA-1, MRP2, FCaBP, KMP-11, CCP, PFD1, PFD2, PFD3, PFD4), bem como dos genes de referência escolhidos a partir da literatura, GAPDH, HGPRT e RNA60S, foram obtidas a partir do banco de dados do Projeto Genoma do *T. rangeli* (www.rangeli.lncc.br).

A análise *in silico* inicial permitiu a predição das sequências aminoacídicas destas proteínas e sua comparação com proteínas ortólogas de outros tripanosomatídeos, bem como a detecção de domínios específicos através da ferramenta *rpsBlast* do programa *Blast* disponível no GenBank (www.ncbi.nlm.nih.gov/Genbank).

Os iniciadores para a realização da PCR (Tabela 5) foram desenhados utilizando-se o programa *Primer Select* do pacote DNASTAR[®] (Lasergene, Madison) e os iniciadores para PCR quantitativa (qPCR) (Tabela 6) através do programa *Primer Express 3.0*

(Applied Biosystems, Carlsbad), respeitando-se recomendações previamente descritas (UDVARDI, CZECHOWSKI, SCHEIBLE, 2008). A ausência de indicação de formação de dímeros e grampos entre os pares de iniciadores foi confirmada também pelo programa *Primer Select* do pacote DNASTAR[®].

Gene	Código		Iniciadores (5'→3')	Tamanho da ORF (pb)	Tamanho produto (pb)
ES	TR01873	S	CATATGTACAGCGTTTACATCATGCCTG	888	906
		AS	<u>CTCGAG</u> TTATTCCAGCTTGTTGATGTGC		2.50
HAL	TR01548	S	CATATGCAACGAATGCAGAGTCAGGT	1 614	1 635
		AS	<u>GGATCC</u> TGTGTCTCCCCCTCAAATGT	1.011	
Gim5A	TR00090	S	CATATGAAAATGTCCGCCTTTGCCCA	735	744
Gillion		AS	<u>GGATCC</u> ACCTTAATAGAAATCGCATAGC	155	,
mASAT	TP04042	S	<u>CATATG</u> TTCTTTCTACCTTTTATTTCC	1 202	1.392
112 (57 (1	11(0+0+5	AS	<u>GGATCC</u> CTTAGAAACGTCGTGAAAGGC	1.572	
ΔΜΔ 1	TR06390	S	CATATGCAGGTGCCGAATCCAG	552	552
7101711		AS	GGATCCTTACTGCATCGCCACAAAACC	552	
MRP2	TR00100	S	CATATGCTTCGTCATCTTGCAC	660	666
		AS	GGATCCAAACGTGCGGGCAAATCC	009	000
FCaBP	TP01500	S	CATATGATCATGGGGGGCTTGCGGTTC	615	627
	11(01577	AS	GGATCCTCAGTTTCACGCACTCTCCG	015	
KMP-11	TP02226	S	CATATGGCCACCACCCTTGAG	276	276
	11(02220	AS	GGATCCCTTGCCCGGGAACTGAGC	270	270
CCD	TD06256	S	CATATGTTTGTGGTGGACGAGGTGC	4 770	1 101
CCF	1K00350	AS	CTCGAGCGCCGTCATAATGAGGTCTG	4.779	1.101
DED 1	TR01161	S	CATATGATGCACCGGACTGTGGC	1 500	1 500
TIDI		AS	CTCGAGCCGGACAAACTGGTAGTATTC	1.500	1.500
PFD 2	TR00439	S	CATATGATTTTCCACTACTGTACCC	1.110	1.110
		AS	GGATCCCTCTAGCGAGCGCTGCAGA	1.110	
PFD 3	TD02802	S	CATATGGATCTTCGATACCTTCCTGC	578	524
	1 K02802	AS	GGATCCTGGGCGAAGTTCAGCATAAG	528	
DED 4	TD07082	S	GGATCCTGGGCAATGTACGCCACGCAC	1.068	1 050
PFD 4	1K0/083	AS	GGTACCGCTTTGGTCTTCGCGTGGTGA	1.900	1.939

Tabela 5: Sequência dos iniciadores escolhidos para PCR para os genes alvo e tamanho dos produtos amplificados com cada par de iniciadores.

OBS: Os nucleotídeos sublinhados em cada um dos iniciadores representam os sítios de clivagem das enzimas de restrição NdeI (<u>CATATG</u>), XhoI (<u>CTCGAG</u>), BamHI (<u>GGATCC</u>), KpnI (<u>GGTACC</u>)

Para obter iniciadores de boa qualidade visando a amplificação do fragmento gênico desejado, os produtos de amplificação para ES, HAL, Gim5A, FCaBP são maiores que sua região codificadora. Para mASAT, AMA-1, KMP-11, PFD1, PFD2 o produto de amplificação possui o mesmo tamanho que a região codificadora e para a proteína CCP foi desenhado os iniciadores para a região interna da ORF que corresponde aos sítios catalíticos. Já para as proteínas MRP2, PFD3 e PFD4 o produto de amplificação é menor que sua ORF. No anexo B pode ser visualizado a sequencia nucleotídica e a sequência aminoacídica predita

para todas as proteínas, bem como a posição dos inidiadores senso e anti-senso.

Tabela 6: Sequência dos iniciadores escolhidos para qPCR para os genes alvo e genes de referência (GAPDH, HGPRT e RNA 60S), e tamanho dos produtos amplificados com cada par de iniciadores.

Gene	Código		Tamanho do produto (pb)		
ES	TP01972	S	ATTGGAACGCTTGTCTGCAC	106	
E9	1K01875	AS	CAGAGTGGTAGTACTTCAGC	100	
IIAI	TD01549	S	GGATAAGGATCGCGAAATGC	01	
ПАL	1K01546	AS	GATGTGCTTCTTAACCGCGT	91	
Cim5A	TR00000	S	CCGTGTTTTCAATGACGTGC	125	
GIIIJA	1K00090	AS	GTCACTCAGTTGCAGCTTGT	125	
mASAT	TD04042	S	TGATTGGTCGCACATTGAGC	102	
IIIASAT	1K04045	AS	GTCATGTACACGTGGTGCA		
AMA 1	TP.06200	S	CTTCTGTTGCTCCTTATGCTG	126	
AMA I	1K00390	AS	TACTGCATCGCCACAAAACC	120	
MDD	TP.00100	S	CACCTTCATCCTCAAGTGCA	07	
WIKF 2	1R00100	AS	GTCAAACATCACCGTCCAGT	97	
ECoDD	TR01599	S	TGTTTGACGAGATCGACACC	171	
FCaBF		AS	ACGCAGCAAACTCGTCAAAC	1/1	
KMD 11	TR02226	S	AGGAGCACTACGAGAAGTTC	114	
KIVII - I I		AS	CAAGCAGCTCAGCAAACTTC	114	
CCD	TR06356	S	AGGTCTTTGCCAACTTCCCT	107	
CCI		AS	ACTGTTCGTGTACTTCAGCG	107	
DED 1	TP01161	S	TGATTCCAGTGAAGGGATGG	128	
FFD I	IKUIIUI	AS	GAGATCCTCCTTCATCGATC	120	
DED 2	TP00420	S	ACGATGGCGCATTTGATGAC	112	
FFD 2	1K00439	AS	AGCGTGTCATCTGCTATCCT	112	
DED 2	TD02802	S	CATTGAAGAGGTGAAGGCC	105	
FFD 5	1K02802	AS	TCGTCGCTCTTGGAGTACTT	105	
DED 4	TR07083	S	ACAGAAGGAGATGTGGAGAG	109	
PFD 4		AS	CTGCTTCGTTTCCATCCTCT	108	
GAPDH	S		GCGACACCAGCATCAAAGAG	102	
		AS	CTGTGCTCACAAGTTCCTCG	102	
LICDDT		S	TGACATCCGCCACAGCATTG	127	
HGPKI		AS	CGAGCAACACAACGGTCTTC	137	
		S	CGATGAAGCTCAAGTGGACC		
RNA 60S		AS	CGGTTGTACTTGACGGGAAC	113	

2.2.2 DNA

2.2.2.1 Isolamento do DNA total de T. rangeli

Formas epimastigotas em fase exponencial de cultivo da cepa Choachí de *T. rangeli* foram coletadas por centrifugação a 3.000 x g por 10 min e, posteriormente, lavadas duas vezes em PBS (3.000 x g por 10 min). Às células foi então adicionado tampão de lise (10 mM Tris-HCl pH 7,4; 10 mM NaCl; 25 mM EDTA pH 8,0; 1 % SDS) (três vezes o volume de parasitos após centrifugação), sendo homogenizadas cuidadosamente, adicionado proteínase-K na concentração final de 100 μ g/ml (Sigma-Aldrich, Saint Louis) e incubado por 12 h. Após essa digestão, o DNA foi extraído através do método de fenol-clorofórmio, conforme protocolo padrão (SAMBROOK, RUSSEL, 2001). Ao final, as amostras de DNA foram solubilizadas em água ultrapura, tratadas com 10 μ g/ml de RNAse A livre de DNAse I por 1 h a 37 °C. A concentração e pureza foram avaliadas através de espectrofotometria a 260 e 280 nm em equipamento BioPhotometer[®] (Eppendorf, Hamburg) e em gel de agarose 0,8 %. O DNA extraído foi estocado a -20 °C até o uso.

2.2.2.2 Amplificação e clonagem dos fragmentos gênicos codificadores das proteínas de interesse via Reação em Cadeia da Polimerase (PCR)

Os ácidos nucleicos extraídos conforme o descrito acima foram utilizados como molde para amplificar via PCR os fragmentos codificadores das proteínas selecionadas e genes de referência (GAPDH, HGPRT e RNA 60S) utilizando os iniciadores desenhados para PCR e qPCR a fim de verificar sua especificidade.

Os iniciadores para PCR foram combinados em pares em reações contendo: 1-10 ng do DNA total de *T. rangeli*, 0,5-1 pmol de cada um dos dois iniciadores, 200 μ M de dNTP, 1,5 mM de MgCl₂, 1 unidade de *Taq* DNA polimerase (Invitrogen, Carlsbad) em seu tampão apropriado. As reações foram compostas de uma etapa de desnaturação do DNA a 94 °C durante 5 min. Subsequentemente foram realizados 35 ciclos com as etapas de desnaturação (94 °C por 45 s), ligação dos iniciadores a sequência alvo (60 °C ou 62 °C, por 1 min) e elongamento da cadeia de DNA pela polimerase (72 °C por 1 min). Ao término destes ciclos, as amostras foram submetidas a uma extensão final da cadeia de DNA a 72 °C por 10 min. Estes passos foram realizados em um termociclador Mastercycler[®] Gradient (Eppendorf). Os produtos de PCR obtidos foram resolvidos em géis de agarose (1 %) corados por brometo de etídio (1 µg/ml) e registrados digitalmente.

Para o teste de amplificação, os iniciadores para qPCR foram combinados em pares em reações de PCR contendo: 10 ou 30 ng do DNA total de *T. rangeli* cepa Choachí, 0,2; 0,5 ou 1 pmol de cada um

dos dois iniciadores, 200 μ M de dNTP, 1,5 mM de MgCl₂, 1 unidade de *Taq* DNA polimerase (Invitrogen, Carlsbad) em seu tampão apropriado. As reações foram compostas com uma etapa de desnaturação do DNA a 94 °C durante 5 min. Subsequentemente foram realizados 35 ciclos com as etapas de desnaturação (94 °C por 45 s), ligação dos iniciadores a sequência alvo (60 °C, por 1 min) e elongamento da cadeia de DNA pela polimerase (72 °C por 1 min). Ao término destes ciclos, as amostras foram submetidas a uma extensão final da cadeia de DNA a 72 °C por 10 min. Estes passos foram realizados em um termociclador Mastercycler[®] Gradient (Eppendorf). Os produtos de PCR obtidos foram resolvidos em géis de agarose contendo 4% de SynergelTM (Diversified Biotech, Boston), corados por brometo de etídio (1 µg/ml) e registrados digitalmente.

2.2.2.3 Clonagem

As bandas correspondentes aos fragmentos dos genes de interesse amplificados via PCR foram excisadas do gel de agarose e purificadas utilizando o kit *GFX*TM *PCR DNA and Gel Band Purification* (GE Healthcare), sendo o DNA purificado clonado utilizando-se o kit *pGEM-T easy*® *Vector* (Promega), ambos segundo especificações do fabricante. Os produtos de ligação foram utilizados na transformação de células *Escherichia coli* DH5 α cálcio competentes através de choque térmico a 42 °C por 45 s.

A seleção das colônias recombinantes foi baseada na coloração azul/branco das colônias crescidas em meio LB (Luria Bertani) ágar suplementado com ampicilina (100 μg/ml), 5-bromo-4-cloro-3-indolil-β-D-galactopiranosídeo (X-Gal. 20 µg/ml) e isopropil-β-Dtiogalactopiranosídeo (IPTG) na concentração final de 40 µg/ml. A presença dos insertos foi verificada através de uma PCR diretamente das colônias, utilizando os iniciadores específicos para cada gene nas condições descritas anteriormente. Os plasmídeos recombinantes selecionados foram extraídos através do procedimento padrão de lise alcalina, denominado lise alcalina ou mini-prep, conforme descrito por Sambrook e Russell (2001).

Uma vez que neste processo houve a geração e manipulação de organismos geneticamente modificados (OGM), é importante salientar que o Laboratório de Protozoologia está inserido no certificado de Qualidade em Biossegurança (CQB 101/99) da UFSC, estando apto a desenvolver estudos que envolvam a geração e a manipulação de OGM em regime de contenção.

96

2.2.2.4 Sequenciamento dos insertos dos clones

O sequenciamento dos clones obtidos contendo os genes de interesse foi realizado em um equipamento *Hitachi* 3500 *Genetic Analyzer* (AB Applied Biosystems[®], Foster City, EUA), sendo a reação de sequenciamento preparada a partir do Kit BigDye[®] Terminator (AB Applied Biosystems[®]), de acordo com as instruções do fabricante.

Basicamente as reações foram realizadas na presença de 5 pmol dos iniciadores universais M13-F (5' CGC CAG GGT TTT CCC AGT CAC GAC 3') e M13-R (5' TCA CAC AGG AAA CAG CTA TGA C 3') dirigidos ao vetor *pGEM-T easy*[®] e aproximadamente 2.000 ng de DNA plasmidial, nas seguintes condições térmicas: um passo inicial de desnaturação a 96 °C por 60 s seguidos por 35 ciclos de desnaturação a 96 °C por 1 s, ligação dos iniciadores a 50 °C por 5 s com rampa de alteração da temperatura de 1 °C/s ou 30 %, e extensão a 60 °C por 4 min. Posteriormente os produtos marcados foram precipitados utilizando etanol/edta para a retirada dos nucleotídeos e iniciadores não incorporados. Os produtos purificados foram adicionados de 10 µl de formamida e eletroinjetados.

2.2.2.5 Análise das sequências obtidas

As análises das sequências obtidas foram realizadas com o apoio do Laboratório de Bioinformática (MIP/CCB/UFSC).

Após a eletroforese, as sequências geradas foram analisadas quanto à sua qualidade utilizando-se o pacote *Phred/Phrap/Consed* (http://www.phrap.org). A confirmação da identidade dos fragmentos foi realizada através do programa *Blast* (http://blast.ncbi.nlm.nih.gov/Blast.cgi) do GenBank (ALTSCHUL et al., 1997). As análises comparativas foram realizadas através de alinhamentos com o programa ClustalW (THOMPSON, HIGGINS, GIBSON, 1994), através da utilização de sequências de diferentes cepas do *T. rangeli* e sequências de genes ortólogos de espécies relacionadas disponíveis no banco de dados do GenBank.

2.2.2.6 Expressão heteróloga e purificação das proteínas selecionadas

Para expressão heteróloga, os genes de interesse após amplificados por PCR e clonados em vetor de clonagem *pGEM-T easy*[®] *Vector* foram digeridos com enzimas de restrição correspondentes aos sítios inseridos nos iniciadores desenhados para a PCR (*NdeI*, *XhoI*,

*BamH*I, *Kpn*I) e subclonados em vetor de expressão pET14B ou PQE30 (Novagen, Darmstadt). Para tal, os produtos de PCR e o plasmídeo pET14B ou PQE30 foram digeridos com enzimas de restrição, utilizando 60 unidades de cada enzima em tampão apropriado a 37 °C por 12 h. Os produtos digeridos foram resolvidos em gel de agarose 1 %, e os fragmentos de DNA purificados através do kit GFX *PCR DNA and Gel Band Purification Kit*[®]. Estes fragmentos foram então ligados durante 16 h a 16 °C e utilizados para transformar *E. coli* BL21(DE3) ou BL21(DE3) *codonplus* (pET14B) cálcio competentes conforme o descrito em 2.2.2.3. Após uma hora de crescimento em 1 ml de meio SOC as bactérias foram semeadas em placas LB ágar (100 µg/ml ampicilina) e mantidas a 37 °C por 16 h. A seleção das colônias recombinantes foi feita a partir de PCR diretamente das colônias. Um clone positivo para cada fragmento foi selecionado e purificado por lise alcalina.

Para a expressão heteróloga, a colônia selecionada para cada inserto foi utilizada para um pré-inóculo em 10 ml de meio LB (100 μ g/ml de ampicilina), mantido a 37 °C por 16 h sob agitação. Uma diluição de 1:100 em 50 ml do mesmo meio foi mantida sob agitação constante a 37 °C até atingir uma densidade óptica (D.O.) de 0,6. Neste momento, foi adicionado IPTG na concentração final de 1 mM, prosseguindo-se por mais 2, 4 e 6 h a 15 °C, 27 °C ou 37 °C sob agitação. Para cada proteína recombinante foi necessário estabelecer as melhores condições de temperatura, tempo e concentração do indutor que resultou na maior expressão das proteínas heterólogas e também foi estabelecido em qual fração (solúvel/insolúvel) a proteína recombinante estava presente.

Após determinar as melhores condições para a expressão de cada clone, a expressão foi realizada em 50 ml de cultura e após o período de indução com IPTG, as bactérias foram coletadas por centrifugação a $4.000 \times g$ por 10 min a 4 °C e lavadas duas vezes em PBS. Para a purificação das proteínas recombinantes detectadas na fração insolúvel (7 das 8 proteínas), o sedimento foi submetido à lise através da adição de 2 ml de tampão de lise em condições desnaturantes (10 mM Tris-HCl, pH 8,0; 100 mM NaH₂PO₄, 8 M Ureia) sob agitação a 65 °C por 1 hora. O material lisado foi centrifugado a 4 °C por 30 min a 12.000 x g e o sobrenadante imobilizado em 400 µl do suporte Ni-NTA agarose (Qiagen, Duesseldorf), conforme instruções do fabricante. As lavagens do suporte e eluição da proteína foram realizadas utilizando-se o tampão B (100 mM NaH₂PO₄, 8 M ureia, 10 mM Tris- HCl) em diferentes pH (lavagens: pH 6,0 e eluição: pH 4,0). O suporte foi lavado duas vezes com 2 ml do tampão pH 6,0 e a proteína liberada em quatro etapas de adição de 500 µl do tampão pH 4,0. Para a renaturação das proteínas, as eluições foram ajustadas para pH 8,5 e dialisadas duas vezes a 4°C em tampão de diálise (100 mM Tris-HCl, pH 8,5; 500 mM NaCl, 0,5 mM EDTA, 20% glicerol, 5 mM DTT) e por último dialisada mais duas vezes no mesmo tampão contendo glicerol 40%.

A purificação da proteína recombinante detectada na fração solúvel (1 das 8 proteínas) foi realizada através da lise das bactérias pela adição de 10 ml de tampão de lise (50 mM NaH₂PO₄, 300mM de NaCl, 10mM de Imidazol, pH 8,0) juntamente com 20 µl de lisozima (50mg/ml), sendo a amostra sonicada em 10 ciclos de 30 s na potência de 12W em equipamento Sonic Dismembrator Modelo FB120 (Fisher Scientific) com 30 s de intervalo em banho de gelo. Após a sonicação foram adicionados 75 µl de RNAse. O material lisado foi então centrifugado a 4 °C por 30 min a 12.000 x g e o sobrenadante imobilizado em 600 µl do suporte Ni-NTA agarose (Qiagen, Dusseldorf), conforme instruções do fabricante. Foram realizadas as lavagens do suporte e a eluição da proteína foi realizada utilizando-se o tampão de lavagem (50 mM NaH2PO4, 300 mM de NaCl, 20 mM de Imidazol, pH 8,0) e o tampão de eluição (50 mM NaH₂PO₄, 300 mM de NaCl, 250 mM de imidazol, pH 8,0). O suporte foi lavado três vezes com 10 ml do tampão de lavagem e a proteína foi liberada em cinco etapas de adição de 600 µl do tampão de eluição. Para a diminuição da concentração de sais, as eluições foram dialisadas duas vezes a 4 °C em tampão de diálise (50 mM NaH₂PO₄, 150 mM de NaCl, pH 8,0).

Os extratos proteicos bacterianos, assim como as proteínas purificadas e as etapas de purificação foram avaliados em géis SDS-PAGE 12 %. Alíquotas contendo 5 µl das amostras foram misturadas a 5 µl de tampão de amostra (20 % glicerol, 0,5 % azul de bromofenol, 0,5 M Tris-HCl, pH 6,8; 4,4 % SDS, 2 % β-mercaptoetanol). Depois de misturadas ao tampão, as amostras foram submetidas à desnaturação a 95 °C por 5 min e em seguida a separação eletroforética. A corrida foi realizada no sistema *Mini*-PROTEAN[®] *Tetra Cell* (BioRad, Richmond), a 100 V. O gel foi corado com azul de Coomassie R250, e a imagem do gel digitalizada no *Perfection 4990* Scanner[®] (Epson).

2.2.3 RNA

2.2.3.1 Extração de RNA total

Parasitos do experimento descrito no item 1.2.2 foram coletados (3000 x g por 10 min), lavados duas vezes com PBS pH 7,4, e

homogeneizados vigorosamente em 1 ml do reagente Trizol[®] (Invitrogen, Carlsbad). As amostras foram armazenadas a -80 °C por no máximo um mês antes da realização da extração de RNA total.

Após o descongelamento, as amostras foram mantidas por cinco min a temperatura ambiente antes da extração de RNA total. Em seguida, adicionou-se 200 µl de clorofórmio 98 % (Merck, Darmstadt) às amostras, as quais foram agitadas por 15 s, mantidas a temperatura ambiente por 2 min e, então, centrifugadas a 12.000 x g por 15 min a 4 °C. A fase aquosa resultante foi transferida para um tubo novo, onde foi acrescida de 500 µl de isopropanol (Merck) e novamente submetida à centrifugação a 12.000 x g por 20 min a 4 °C. O sobrenadante foi descartado e o sedimento lavado com 1 ml de etanol 75 %, gelado, através de centrifugação a 7.500 x g por 5 min a 4 °C. Novamente, o sobrenadante foi descartado e o sedimento contendo o RNA total foi seco, invertendo-se os tubos sobre papel por aproximadamente 10 min a temperatura ambiente. O RNA total foi então solubilizado em 20 µl de água ultrapura livre de nucleases e armazenado a -80 °C.

As amostras obtidas tiveram sua concentração e pureza avaliadas em um espectrofotômetro BioPhotometer (Eppendorf, Hamburg), observando-se as relações de absorbância 260/280 nm e 260/230 nm.

A fim de eliminar qualquer DNA contaminante inadvertidamente purificado durante o processo de extração de RNA, as amostras de RNA (1 μ g ou 5 μ g, conforme a concentração inicial disponível) foram submetidas a tratamento com DNAseI (Invitrogen, Carlsbad), na razão de 1 unidade por μ g de RNA extraído. A reação foi realizada durante 15 min a temperatura ambiente, na presença de tampão recomendado pelo fabricante. A inativação da enzima ocorreu com a adição de EDTA na concentração final de 2,5 mM e aquecimento a 65 °C por 10 min.

2.2.3.2 Reação de transcrição reversa (RT-PCR)

A partir das amostras tratadas com DNAseI, 1 µg de RNA (conforme concentração inicial disponível) foram realizadas as reações de transcrição reversa. A RT-PCR foi conduzida a 37 °C por 50 min na presença de 200 unidades da enzima transcriptase reversa M-MLV (Invitrogen), 200 µM de dNTP (Invitrogen), 10 pmoles do iniciador OligodT-Anchor direcionado à cauda poli(A) (5'- GAC CAC GCG TAT CGA TGT CGA CT16 -3'), 10 mM de DTT (Invitrogen, Carlsbad) e 40 unidades do inibidor de ribonucleases RNaseOUTTM (Invitrogen), em tampão recomendado pelo fabricante. A inativação da

reação ocorreu por 15 min a 70 °C. O DNA complementar (cDNA) obtido foi armazenado a -20 °C.

2.2.3.3 Reação em cadeia da polimerase quantitativa em tempo real (qPCR)

Para utilização como molde na qPCR, o cDNA foi diluído cinco vezes em água ultrapura livre de nucleases. As reações ocorreram na presença do reagente Maxima[®] SYBR Green/ROX gPCR Master Mix (Thermo Scientific), de acordo com as orientações do fabricante, e 0.5 uM dos iniciadores de cada par descrito na Tabela 6, sendo montadas em placas de 96 pocos AB-C (Axygen, Union City), em volume final de 10 µl. As placas, cobertas por selante óptico MicroAmp[®] Optical Adhesive Film (Applied Biosystems) foram analisadas em equipamento ABI Prism[®] 7900HT Sequence Detection System (Applied Biosystems) do Laboratório Multiusuário de Estudos em Biologia (LAMEB-UFSC). As reações tiveram início com uma etapa de desnaturação a 95 °C por 10 min, seguida por 40 ciclos contendo uma etapa de desnaturação (95 °C por 15 s) e uma etapa de ligação dos iniciadores e extensão (60 °C por um min). Ao final, foi incluída uma etapa para obtenção da curva de dissociação (95 °C por 15 s, 60 °C por 15 s e, novamente, 95 °C por 15 segundos). Em cada placa adicionou-se um controle negativo para cada par de iniciadores, composto por todos os reagentes necessários à amplificação, à exceção do DNA molde.

A eficiência da qPCR com cada par de iniciadores foi calculada através da diluição seriada 1:2 de amostras de DNA genômico e de misturas de cDNA (cinco pontos). A inclinação da reta, obtida a partir da função entre o Cq (ciclo de quantificação, do inglês, *Cycle quantification*) e cada ponto da diluição, foi aplicada à equação:

$$E = 10e^{-1/slope} - 1 Equação 1$$

Nesta equação, E representa a eficiência da qPCR e *slope* é o valor de inclinação da reta. O valor de E é obtido como fração de uma unidade.

2.2.3.4 Análise dos resultados e análises estatísticas

Os experimentos de qPCR foram realizados utilizando-se triplicatas biológicas e técnicas, sendo os resultados posteriormente analisados pelo software SDS 2.4 (Applied Biosystems, Carlsbad). Para avaliar a variação relativa nos níveis de cada transcrito entre as amostras

analisadas, utilizou-se o método da quantificação relativa (LIVAK, SCHMITTGEN, 2001), comparando o Cq apresentado para cada gene alvo à média dos Cq de três genes de referência (GAPDH, HGPRT e RNA60S), escolhendo-se aqueles com menor variância interna.

O programa RefFinder (disponível em http://www.leonxie.com/referencegene.php?type=reference) foi utilizado para a escolha do melhor gene de referência entre os três genes selecionados previamente: GAPDH, HGPRT e RNA60S. Para cada gene foi calculado um índice de estabilidade que leva em consideração a variação dos valores de Cq entre as diferentes condições. Assim, quanto menor o valor do índice de estabilidade, menor a variação de expressão do gene de referência entre as condições experimentais.

Os cálculos necessários para obtenção dos valores de abundância relativa foram realizados em planilha do Excel (Microsoft Office), através das seguintes equações:

 $\Delta Cq = Cq (gene alvo) - Cq (gene de referência)$ Equação 2

ΔΔCq = ΔCq (amostra) – ΔCq (calibrador) Equação 3

$$QR = 2e^{-\Delta dQ}$$
 Equação 2

Nestas equações o *calibrador* é a amostra a partir da qual as demais serão comparadas e QR é o valor de quantificação relativa. O valor de QR médio do *calibrador* é sempre próximo a 1.

As análises estatísticas, bem como a confecção dos gráficos (valor de abundância de mRNA no eixo y e amostras no eixo x), foram realizadas no programa Prism 5.0 (GraphPad). Foi utilizado o teste estatístico Análise de Variância (ANOVA) de uma via, seguida do teste de comparação múltipla Tukey. Valores de p menores que 0,01 foram considerados estatisticamente significantes.

O agrupamento hierárquico dos níveis de RNA foi realizado utilizando as valores de $2^{-(\Delta Cq)}$ e o software Multiple Array Viewer 4.8.

2.2.4 Obtenção de antissoro policional murino dirigido a cada proteína de interesse

2.2.4.1 Animais

Neste trabalho, foram utilizados camundongos fêmeas C57BL/6 oriundos do Biotério Setorial do Departamento de Microbiologia, Imunologia e Parasitologia (MIP/UFSC) da UFSC. Os procedimentos de produção de antissoros policionais foram realizados na observância dos preceitos estabelecidos pelo Colégio Brasileiro de Experimentação Animal – COBEA, tendo sido aprovados pela Comissão de Ética em Uso de Animais da UFSC (Processo CEUA: 23080.025618/2009-81).

2.2.4.2 Imunização dos camundongos com cada proteínas de interesse

Para a produção de antissoros policlonais, grupos de três camundongos fêmeas foram imunizados por via subcutânea com 50 µg das proteínas recombinantes purificados. As imunizações foram realizadas a cada dez dias, sendo as proteínas emulsificadas em adjuvante completo de Freund (v/v) (Sigma-Aldrich, Saint Louis) na primeira inoculação, e com *Alu-Gel S* (Hidróxido de Alumínio 1,3 %) (Serva, Heidelberg) nas outras três inoculações. Após a terceira imunização, a resposta imunológica dos camundongos frente às proteínas de interesse foi verificada através da técnica ELISA direto e, os camundongos dos grupos imunizados que apresentaram a resposta mais elevada contra as proteínas recombinantes foram utilizados para ensaios de *Western blotting*.

Figura 19: Esquema de imunização dos camundongos com as proteínas de interesse.

2.2.4.3 Western Blotting

Para os ensaios de *Western blotting* foram utilizados as proteínas purificadas, além dos extratos proteicos totais do *T. rangeli* obtidos

durante a diferenciação celular e extratos proteicos totais de outras espécies da Ordem Kinetoplastida (*T. cruzi* e *L. braziliensis*).

Os extratos proteicos foram obtidos a partir da homogeneização das células em tampão de lise (1 % triton X-100, 50 mM NaCl, 200 mM Tris-HCl pH 7.4) aquecido a 90 °C. Após centrifugação a 12.000 x g por 20 min a 4 °C o sobrenadante foi separado e a concentração de proteínas estimada através do ensaio de Bradford (BRADFORD, 1976). Aproximadamente 30 µg de cada amostra foram solubilizadas em tampão de amostra desnaturante (20 % glicerol, 0,5 % azul de bromofenol, 0,5 M Tris-HCl, pH 6,8; 4,4 % SDS, 2 % βmercaptoetanol), aquecidas a 95 °C durante cinco min e resolvidas em eletroforese em géis SDS-PAGE 12 %. As amostras foram então transferidas para membranas de nitrocelulose Hybond-ECL[®] (GE Healthcare) durante 12 h a 25 V, conforme descrito por Towbin e colaboradores (1979). Após confirmação da transferência das proteínas pela coloração com Ponceau 1 %, as membranas foram bloqueadas com leite em pó desnatado 5 % diluído em tampão de bloqueio (25 mM Tris-HCl, pH 7.4; 150 mM NaCl e 0.1% Tween 20) durante 1 hora a temperatura ambiente. Após a retirada do excesso do agente bloqueador foi adicionado às membranas uma solução contendo o anticorpo primário específico para cada situação (antissoros policlonais ou anti-HisTag), sendo este mantido por 1 hora e 30 min a temperatura ambiente sob agitação branda. A ligação do anticorpo secundário anti-IgG de camundongo conjugado à peroxidase (Sigma-Aldrich, Saint Louis) foi realizada após cinco lavagens das membranas, em uma diluição de 1:10.000, sendo as membranas lavadas e reveladas através da utilização do reagente Pierce[®] ECL Plus Substrate (Thermo Scientific) em filmes radiográficos utilizando o processador de filmes SRX-101A (Konica Minolta Medical & Graphic, INC - China).

O anticorpo monoclonal frente a KMP-11 foi gentilmente cedido pelo Dr. Manuel Carlos López do Departamento de Biologia Molecular do Instituto de Parasitologia e Biomedicina de Granada, Espanha.

O anticorpo monoclonal anti-TAT-1 (Tubulina – T. *brucei*) foi gentilmente cedido pelo Dr. Kevin Tyler do Biomedical Research Centre da Univertisty of East Anglia, Norwich, Inglaterra.

Anticorpo	Código	Тіро	Tamanho*	Diluição
ES	TR01873	Antissoro IgG-camundongo	33 kDa	1:300
HAL	TR01548	Antissoro IgG-camundongo	59 kDa	1:300
MRP2	TR00100	Antissoro IgG-camundongo	25 kDa	1:200
FCaBP	TR01599	Antissoro IgG-camundongo	23 kDa	1:1000
KMP-11	TR02226	Monoclonal IgG-Coelho	11 kDa	1:25.000
PFD 1	TR01161	Antissoro IgG-camundongo	55 kDa	1:300
PFD 3	TR02802	Antissoro IgG-camundongo	25 kDa	1:200
TAT-1 Alfa-tubulina (<i>T. brucei</i>)	-	Monoclonal IgG-camundongo	55 kDa	1:6.000
His-Tag	-	Monoclonal IgG-camundongo	-	1:1.000

Tabela 7: Descrição dos anticorpos utilizados nos ensaios de *Western blotting*, considerando sua origem, tamanho da proteína reconhecida e diluições

*baseado na ORF

Após obtenção dos resultados de *western blotting*, foi realizada uma análise da densitometria das bandas pelo programa Image J (www. http://rsbweb.nih.gov/).

2.3 RESULTADOS E DISCUSSÃO

2.3.1 Análises in silico

As sequências codificadoras das proteínas ES, HAL, Gim5A, mASAT, AMA-1, MRP2, FCaBP, KMP-11, CCP, PFD1 (TR01161), PFD2 (TR00439), PFD3 (TR02802) e PFD4 (TR07083) foram inicialmente buscados via *Blast* no banco de dados do projeto genoma do *T. rangeli*. Uma vez obtida a ORF de cada gene, sua sequência aminoacídica foi predita e utilizada para a busca de domínios e comparação com outras proteínas em outros tripanosomatídeos através das ferramentas *Blastx* e *Blastp* do programa *Blast* do GenBank (http://blast.ncbi.nlm.nih.gov/).

Os dados obtidos junto ao GenBank bem como outros dados relevantes em relação às proteínas selecionadas encontram-se reunidos na Tabela 8. As sequências de aminoácidos deduzidos para os genes selecionados foram confrontadas com sequências disponíveis no banco de dados através do algoritmo *Blastp*. Os resultados para cada gene estão descritos na Tabela 8 e no apêndice C. As figuras do apêndice C (C.1-C.13) representam os alinhamentos das sequências aminoacídicas de *T. rangeli* e seus ortólogos utilizando o programa *Bioedit Sequence Aligment Editor*.

Proteinas	Código	Domínio funcional	nt*	AA*	kDa*	pI teórico*	Organismo	Código de acesso	Identidade / Similaridade**
		0000401					T. cruzi	XP_811272	85 % / 91 %
Espermidina Sintase (FS)	TR01873	COG0421	888	296	32,997	5,6	T. brucei	XM_822031.1	74 % / 88 %
(10)							L. braziliensis	XP_001561747	67 % / 79 %
Histidina Amônio		Goggaaa					T. cruzi	XP_820336.1	83 % / 90 %
Liase	TR01548	COG2986	1.614	538	58,505	7,29	T. brucei	-	-
(HAL)							L. braziliensis	-	-
Proteína Glicossomal		pfam05648	735	245	26,559	8,93	T. cruzi	XP_804598.1	79 % / 86 %
5A	TR00090						T. brucei	CAB94856.1	63 % / 74 %
(Gim5A)							L. braziliensis	XP_001568471.1	53 % / 67 %
Aspartato	TR04043	COG0436	1.392	464	51,437	9,04	T. cruzi	EKG07330.1	77 % / 86 %
aminotransferase mitocondrial (mASAT)							T. brucei	AAK73816.2	67 % / 81 %
							L. braziliensis	XP_001565303.1	52 % / 67 %
D . (11							T. cruzi	XP_810211.1	58 % / 72 %
Proteina apical de	TR06390	pfam04749	555	185	20,213	4,88	T. brucei	-	-
(AMA-1)							L. braziliensis	XP_001566783.1	41 % / 50 %
(/10//1)							Plasmodium spp.	-	-
Proteína mitocondrial							T. cruzi	XP_818766.1	78 % / 84 %
ligante de RNA 2	TR00100	pfam9387	669	223	25,117	9,50	T. brucei	XP_829385.1	72 % / 81 %
(MRP 2)							L. braziliensis	XP_001562731.1	58 % / 68 %
Proteína flagelar							T. cruzi	XP_805575.1	81 % / 90 %
ligante de cálcio	TR01599	COG5126	615	205	23,296	5,05	T. brucei	XP_847377.1	59 % / 72 %
(FCaBP)							L. braziliensis	XP_001563695.1	58 % / 79 %

Tabela 8: Características das proteinas selecionadas de *Trypanosoma rangeli* e suas respectivas porcentagens de identidade e similaridade com seus ortólogos.

Proteinas	Código	Domínio funcional	nt*	AA*	kDa*	pI teórico*	Organismo	Código de acesso	Identidade / Similaridade**
Proteína de							T. cruzi	XP_810488.1	98 % /100 %
membrana de	TD00006	mform02027	276	02	11.055	5.06	T. brucei	XP_827591.1	92 % / 97 %
cinetoplastídeos	1K02220	pranto 5057	270	92	11,055	3,90	L. braziliensis	XP_001568323.1	88 % / 93 %
(KMP-11)							L. donovani	S53442	86 % / 92 %
Calpaína cisteíno		pfam00648					T. cruzi	XP_812671.1	78 % / 86 %
peptidase	TR06356	pfam01067	4.779	1.593	179,15	5,82	T. brucei	XP_822445.1	60 % / 74 %
(CCP)		COG 5238					L. braziliensis	XP_001564727.2	39 % / 55 %
Proteína de funcão							T. cruzi	XP_817923.1	85 % / 92 %
desconhecida 1	TR01161	COG3425	1.500	500	54,554	6,44	T. brucei	XP_847441.1	77 % / 88 %
(PFD1)							L. braziliensis	XP_001565482.1	69 % / 81 %
Proteína de função							T. cruzi	XP_809065.1	81 % / 87 %
desconhecida 2	TR00439	-	1.110	370	41,879	8,14	T. brucei	XP_847394.1	64 % / 79 %
(PFD2)							L. braziliensis	XP_001563657.1	49 % / 64 %
Proteína de função							T. cruzi	XP_804999.1	87 % / 93 %
desconhecida 3	TR02802	COG5126	528	176	20,740	7,09	T. brucei	XP_829050.1	76 %/91%
(PFD3)							L. braziliensis	XP_001569004.1	59 % / 79 %
Proteína de funcão		pfam13859 pfam13385	1.968	656	70,345	5,99	T. cruzi	XP_805084.1	48 % / 57 %
desconhecida 4	TR07083						T. brucei	-	-
(PFD4)							L. braziliensis	-	-

* dados referentes a ORF de cada proteína selecionada obtidos utilizando as ferramentas Translate e ProtParam do ExPASy (www.expasy.org) ** conforme resultados obtidos através do programa *Blastp* do GenBank (www.ncbi.nlm.nih.gov/Genbank) Realizando uma busca na base de dados do genoma de *T. rangeli* foi possível detectar a presença de apenas uma cópia para os genes da ES, HAL, AMA-1, MRP2, PFD1, PFD2, PFD3 sugerindo que são genes de cópia única.

Para o gene Gim5A foram detectadas duas cópias (TR01873 e TR02958) e o alinhamento da sequência nucleotídica de ambas revelou 100% de identidade.

Duas cópias também foram encontradas para o gene da mASAT (TR04043 e TR05843), entretanto o alinhamento entre as duas sequências nucleotídicas obtidas mostrou alta variabilidade. Devido a esta diferença realizamos uma busca no GenBank com a sequência para mASAT de código TR02958 e esta teve identidade apenas com sequências de *L. braziliensis* (XP_001568193.1 (56 %) e XP_001565303.1 (37 %)) enquanto que a sequência TR04043 apresenta similaridade com sequências de *T. cruzi, T. brucei* e *L. braziliensis*.

Já para o gene da FCaBP, quatro cópias foram detectadas no genoma de *T. rangeli* (TR01599, TR02974, TR06187, TR06460) e ao realizar o alinhamento verificou-se que são cópias idênticas.

Para a PFD4 (TR07083) verificou-se a presença de múltiplas cópias através da análise do genoma.

As sequências que codificam a espermidina sintase possuem alta similaridade entre T. rangeli e seus ortólogos em T. cruzi (91 %), T. brucei (88 %) e L. braziliensis (79 %) utilizados para realizar o alinhamento. Esta enzima desempenha um papel muito importante em Esses diversos tripanosomatídeos. parasitos utilizam diversos mecanismos para adquirir poliaminas que são essenciais para sua manutenção. Leishmania sp., por exemplo, possui a rota metabólica da biossíntese de poliaminas em adição aos transportadores de putrescina/espermidina (ROBERTS et al., 2001, ROBERTS et al., 2002, HASNE, ULLMAN, 2005), enquanto que T. cruzi contém parte da rota metabólica porém necessita de captação exógena de poliaminas (LE QUESNE, FAIRLAMB, 1996, CARRILLO et al., 1999). Em formas sanguíneas de T. brucei, a atividade da espermidina sintase é essencial para sua manutenção e a captação exógena é deficiente, muito provavelmente devido a adaptação a baixa quantidade de poliaminas no plasma de seus hospedeiros (TAYLOR et al., 2008).

O gene codificador da proteína AMA-1 não apresentou identidade ou similaridade com *T. brucei* ou *Plasmodium* spp. conforme dados apresentados na Tabela 8. Outro ponto que nos chamou a atenção foi a não correspondência dos domínios específicos que caracterizam esta proteína em *Plasmodium* spp., visto que a AMA-1 é amplamente
estudada neste organismo devido a sua característica imunogênica. A superfamília ao qual esta sequência obtida para *T. rangeli* está relacionada é a PLAC8 (*Placenta-specific gene 8 protein*), uma superfamília característica de *Homo sapiens*.

Em *T. cruzi*, a FCaBP é uma proteína de 29 kDa, e seu gene possui alta homologia e é conservado em diferentes isolados deste parasito. Possue também a região ligante de cálcio *EF-hand* característica para estas proteínas. São genes alocados em pares de cromossomos homólogos arranjados em um ou dois *clusters* repetidos em sequência (PORCEL et al., 1996). Muitas das proteínas ligantes de cálcio descritas em diferentes eucariotos contem de duas a oito cópias do motivo *EF-hand* ou calmodulina. Esses domínios consistem em 29 aminoácidos arranjados em hélice*-loop*-hélice que são importantes funcionalmente (MOEWS, KRETSINGER, 1975, MONCRIEF, KRETSINGER, GOODMAN, 1990).

A alta conservação em tripanosomatídeos dos genes codificadores para as proteínas ligantes de Ca^{2+} aliada à localização flagelar e a habilidade de ligação de Ca^{2+} , sugere que estas proteínas estão envolvidas em processos cálcio dependentes de motilidade como, por exemplo, a hidrólise de ATP que opera sob controle de cálcio. Além disso, a alta conservação suporta a ideia que estas proteínas de superfície celular podem ter uma função comum em tripanosomatídeos como o movimento celular ou transporte de cálcio (PORCEL et al., 1996).

Segundo Porcel et al. (1996), o gene da *Tr*FCaBP é expresso como um transcrito poliadenilado e que há pelo menos 20 cópias por célula, organizados em repetição. A comparação, realizada neste estudo, entre as sequências deduzidas de aminoácidos de *T. rangeli* e *T. cruzi*, revela grau de conservação entre elas e as diferenças ocorrem em regiões não envolvidas nos domínios característicos de ligação de Ca²⁺ corroborando com resultados obtidos por Maldonado et al (1997).

Assim como Porcel et al. (1996), a sequência aminoacídica da FCaBP obtida para *T. rangeli* é menor que a de *T. cruzi*, apresentando 205 aminoácidos, enquanto que a de *T. cruzi* possui 211 aminoácidos.

A KMP-11 de *T. rangeli* compartilha 98% de identidade com a proteína homóloga em *T. cruzi*. Enquanto que em *T. cruzi* (cepa CL Brener) existem 40 alelos que codificam para KMP-11, no genoma do *T. rangeli* foram identificados 148. A expansão desta família pode estar relacionada a uma vantagem relacionada ao desenvolvimento no inseto vetor. Entretanto, sendo um alvo conhecido para a resposta imune em mamíferos, pode estar contribuindo para a baixa patogenicidade deste organismo (STOCO et al., 2014). Segundo Diez e colaboradotes (2005),

a organização genômica da KMP-11 entre *T. rangeli* e *T. cruzi* é muito similar, sendo as ORF separadas por regiões intergênicas de aproximadamente 270 pb. Já em *Leishmania* sp., as ORF são separadas por regiões intergênicas longas que podem exibir diferentes tamanhos. Esta característica pode estar envolvida na diferença da regulação desta proteína nesses organismos.

Uma vez confirmada a identidade e a homologia com outros tripanosomatídeos, as OFR dos genes foram utilizadas para a busca de iniciadores para PCR convencional e qPCR. A quantificação relativa de transcritos por qPCR requer a comparação com genes de referência cujo níveis de transcrição se mantenham estáveis durante todos os estágios de diferenciação celular. Neste caso, foram selecionados três genes de referência que comumente são utilizados para tripanosomatídeos: GAPDH (gliceraldeído-3-fosfato-desidrogenase); HGPRT (hipoxantina-guanina-fosforibosiltransferase) e RNA60S (RNA ribossomico 60S). As sequências destes genes também foram obtidas no banco de dados do projeto genoma do *T. rangeli*.

Os iniciadores escolhidos, descritos nas Tabela 5 (PCR convencional) e Tabela 6 (qPCR) são sequências de aproximadamente 20 nucleotídeos em regiões que amplificam a ORF no caso da PCR convencional e em regiões próximas a extremidade 3' de cada ORF para qPCR. Para realizar simultaneamente as reações com todos os genes aproximou-se a temperatura de ligação dos mesmos a 60 °C.

2.3.2 qPCR

Os iniciadores foram primeiramente avaliados qualitativamente a partir de uma PCR convencional utilizando como molde o DNA genômico de *T. rangeli* (cepa Choachí) e fragmentos no tamanho esperado foram obtidos para todos os genes (Figura 20) sem a presença de dímeros. Embora fragmentos inespecíficos acima do tamanho esperado possam ser observados para os genes da MRP2, KMP-11 e PFD3, estes são considerados produtos grandes demais para uma amplificação adequada por qPCR.

Figura 20: Amplificação dos fragmentos dos genes codificadores para (1) ES (106 pb), (2) HAL (91 pb), (3) Gim5A (125 pb), (4) mASAT (102 pb), (5) AMA-1 (126 pb), (6) MRP2 (97 pb), (7) FCaBP (171 pb), (8) KMP-11 (114 pb), (9) CCP (107 pb), (10) PFD 1 (128 pb), (11) PFD 2 (112 pb), (12) PFD 3 (105 pb), (13) PFD 4 (108 pb). Eletroforese em gel de agarose 4% contendo SynergelTM corado com brometo de etídeo revelando os produtos de amplificação dos fragmentos. PM – padrão de tamanho molecular.

Para a validação dos iniciadores dirigidos aos genes-alvo para análises por qPCR foram montadas reações com cinco pontos de diluição seriada 1:2 de misturas de cDNA, de T. rangeli de três pontos durante todo o período de diferenciação celular in vitro (epimastigotas (T0), 4° dia (T4) e tripomastigotas (T8)). Para cada um dos genes foi determinado o Cq de cada ponto na curva em função de sua diluição através de uma reta, cuja inclinação foi aplicada a equação número 1 para obtenção do valor de eficiência da reação. A eficiência média da qPCR para cada par de iniciadores foi calculada e os valores ficaram entre 90-110% conforme preconizado por Pfaffl (2004). Embora o cálculo de quantificação relativa (QR) considere uma eficiência de 100% para as reacões, ele pode ser aplicado para reacões onde as eficiências são próximas a 100%. Além disso, este cálculo exige eficiências semelhantes, com no máximo 10 pontos percentuais de diferença entre os pares de iniciadores dos genes-alvo e dos genes de referência. Não foi possível determinar a porcentagem de eficiência para os iniciadores do gene da PFD 4, desta forma, a expressão relativa para este gene não foi avaliada.

Cada ensaio de qPCR deve contar com a presença de um controle negativo para cada par de iniciadores, onde são acrescentados todos os reagentes necessários a reação, exceto o cDNA molde. Nas

reações descritas neste estudo, em nenhum momento detectou-se amplificação de DNA nos controles negativos. Particularmente quando o sistema de detecção da qPCR é por agentes ligantes de DNA (SYBRGreen) outro passo importante para a certificação de que não há contaminação com produtos inespecíficos é a observação da curva de dissociação. Incluída como etapa final na qPCR, esta curva avalia a temperatura em que se dissociam os fragmentos de DNA dupla fita presentes na reação. A representação da curva de dissociação é um gráfico, onde cada pico indica uma temperatura onde houve dissociação de DNA. As curvas de dissociação para todas as análises aqui descritas apresentaram apenas um pico, em temperaturas próximas a 80 °C, confirmando a ausência de dímeros e de outros produtos inespecíficos.

Conforme o resultado obtido através da análise utilizando o RefFinder e as recomendações do MIQE (*Minimum information for publication of Quantitative Real-Time PCR Experiments*)(BUSTIN et al., 2009) foi considerada a média aritmética de dois dos três genes de referência selecionados previamente para o cálculo dos resultados: GAPDH e HGPRT.

Os ensaios de qPCR possibilitaram avaliar os níveis de transcritos de 12 dos 13 genes selecionados. Agrupamentos hierárquicos (*Hierarchical clustering*) dos níveis de expressão gênica foram realizados a partir dos valores de $2^{-(\Delta Cq)}$ com o software Multiple Array Viewer 4.8. Os agrupamentos hierárquicos foram utilizados para relacionar as condições experimentais (diferentes dias do período de diferenciação celular *in vitro*, T0, T4 e T8) em função de seus níveis de mRNA dos genes.

O agrupamento hierárquico do perfil de mRNA dos genes selecionados possibilitou distinguir em dois grupos de condições (GC) principais. As formas epimastigotas (Epi-1, Epi-2 e Epi-3) formam um GC e as formas durante o período de diferenciação celular (T4-1, T4-2, T4-3) e formas tripomastigotas (T8-1, T8-2, T8-3) formam o segundo GC (Figura 21). Para as formas epimastigotas o nível de mRNA é maior para seis genes, sendo eles, KMP-11, HAL, Gim5A, ES, mASAT e PFD2 (TR00439). Para os genes FCaBP, AMA-1, MRP2 e PFD1 (TR01161) observa-se um padrão de mRNA mais homogêneo durante todo o processo de diferenciação celular *in vitro*, sofrendo pouca interferência nos níveis de transcritos. Os genes CCP e PFD3 (TR02802) ficaram agrupados em um terceiro grupo que não mostrou um perfil bem definido.

Figura 21: Agrupamento hierárquico dos níveis de mRNA de 12 genes associados ao processo de diferenciação celular de *Trypanosoma rangeli*. Os níveis de mRNA foram calculados de acordo com o método 2^{-ΔCq} normalizado com a média dos genes de referência GAPDH e HGPRT. Cada retângulo da matriz corresponde ao valor médio de mRNA de um estágio do processo de diferenciação celular *in vitro* de três amostras independentes. A intensidade da cor, de verde para vermelho, indica a abundância de mRNA, segundo a escala de cor presente na parte superior da figura. Os diferentes genes são representados a direita. O dendograma presente na parte superior da figura indica a relação entre as condições experimentais (Epi (T0), T4 e T8), definidos como grupos de condição (GC). O dendograma a esquerda indica a relação entre o perfil de abundância de mRNA, definidos como grupos de abundância de mRNA (GA).

De uma forma geral há uma redução nos níveis de transcritos dos genes selecionados nos parasitos durante o avanço do processo de diferenciação celular até a transformação da forma epimastigota em tripomastigota, sendo esta redução estatisticamente significante (p<0,01) para os genes ES, HAL, Gim5A, mASAT e PFD2 e estatisticamente não significante (p<0,01) para os genes PFD3, AMA-1, MRP2 e KMP-11. Houve um aumento nos níveis de transcritos para o gene referente a CCP porém não apresentou significância estatística pelo teste de comparação múltipla Tukey. Por outro lado, para os genes PFD1 e FCaBP nos tempos avaliados observa-se que os níveis de transcritos mantiveram-se constantes nas condições avaliadas (Figura 22). 114

Figura 22: Perfil da abundância de mRNA dos genes selecionados. A abundância de mRNA foi analisada em formas epimastigotas (T0), quarto (T4) e oitavo dia (T8) de diferenciação celular *in vitro* de *Trypanosoma rangeli* utilizando como genes de referência a média dos genes GAPDH, HPGRT. Os resultados foram obtidos por ensaio de qPCR e representam a média e o desvio padrão de três experimentos independentes, realizados em triplicata. O sinal * indica diferença estatisticamente significante (*p*<0,01), utilizando o teste *ANOVA* de uma direção seguida pelo teste de comparação múltipla Tukey.

O nível de transcritos para o gene da KMP-11 em *T. cruzi* é o mesmo nos diferentes estágios de vida do parasito (THOMAS et al., 2000). O contrário é observado para *T. rangeli* que apresenta maior abundância de mRNA em formas epimastigotes e em *L. infantum* há

uma regulação negativa em formas promastigotas (BERBERICH et al., 1998).

Entre os genes que foram modulados durante o período de diferenciação celular, se adotado um limite de duas vezes de diferença entre os níveis de mRNA entre as condições avaliadas (epi, T4 e T8), a abundância de mRNA para o gene HAL é 3,4 vezes maior em epimastigota comparado com as formas em T4 é 4,6 vezes maior em comparação com as formas em T8. Para o gene Gim5A o nível de mRNA em formas epimastigotas é 3,7 vezes maior quando comparado a T4 é 2,8 vezes maior em relação as formas em T8. Os níveis de mRNA das formas epimastigotas para o gene mASAT é 2,9 e 2,5 vezes maior se comparado com as formas em T4 e T8, respectivamente. Por fim, a abundância de mRNA em formas epimastigotas para o gene PFD2 (TR00439) é 2,4 e 2,1 comparado com as formas em T4 e T8 respectivamente. Para todos os outros genes avaliados a modulação entre as formas avaliadas foram abaixo do limite de duas vezes.

A regulação negativa da transcrição com a progressão da diferenciação celular observada neste estudo é verificada também para outros tripanosomatídeos, como *T. brucei* e *T. cruzi* (PAYS et al., 1993, FERREIRA et al., 2008).

Nos tripanosomatídeos, em especial, não há uma correlação clara ou direta dos níveis de transcritos com níveis de expressão proteica devido a ausência de controle específico durante a transcrição nestes organismos. A transcrição resulta na formação de RNA denominados policistrônicos que contem a informação de diversos genes os quais não possuem necessariamente funções e expressão relacionadas e podem, ou não, seguir para edição (TEIXEIRA, 1998, TEIXEIRA, DAROCHA, 2003). Desta forma, estes organismos realizam transcrição constitutiva de diferentes pré-mRNA e, somente após a adição do spliced-leader, são observados os mRNA maduros que seguem para a tradução nos ribossomos, formando os polissomos (LIANG et al., 2003). Desta forma, os importantes eventos pré- e pós-transcricionais relacionados à regulação gênica e à a maturação dos transcritos em tripanosomatídeos difere da maioria dos eucariotos (CLAYTON, 2002). Este tipo de regulação ocorre devido à necessidade de rápida adaptação dos tripanosomatídeos a variados ambientes tanto em seus hospedeiros mamíferos quanto triatomíneos.

2.3.3 Amplificação do fragmento gênico de interesse via PCR

De acordo com as sequências obtidas no banco de dados, o tamanho esperado após a amplificação dos genes era de 906 pb para ES,

1.635 pb para HAL, 744 pb para Gim5A, 1.392 pb para mASAT, 552 para AMA-1, 666 pb para MRP2, 627 pb para FCaBP, 276 pb para KMP-11, 1.101 pb para CCP, 1.500 para PFD1, 1.110 pb para a PFD2, 524 pb para PFD3 e 1.959 pb para PFD4. Para obter as sequências completas dos 13 genes selecionados, foi realizada uma PCR utilizando temperatura de ligação dos iniciadores variando entre 60 °C e 62 °C. Para alguns genes, ocorreu o aparecimento de produtos de amplificação inespecíficos que foram visualizados em gel de agarose 1 % (Figura 23). Entretanto, as bandas de tamanho esperado para os produtos de amplificação foram mais evidentes em todas as amostras, possibilitando a sua identificação de acordo com a comparação com o padrão de tamanho molecular.

Figura 23: Amplificação dos fragmentos dos genes codificadoras para (1) ES (906 pb), (2) HAL(1.635 pb), (3) Gim5A (744 pb), (4) mASAT (1.392 pb), (5) AMA-1 (552 pb), (6) MRP2 (666 pb), (7) FCaBP (627 pb), (8) KMP-11 (276 pb), (9) CCP (1.101 pb), (10) PFD1 (1.500 pb), (11) PFD2 (1.110 pb), (12) PFD3 (524 pb), (13) PFD4 (1.959 pb). Eletroforese em gel de agarose 1 % corado com brometo de etídeo revelando os produtos de amplificação dos fragmentos. PM – padrão de tamanho molecular.

Para o gene da calpaína cisteíno peptidase, foi utilizada parte da sequência para o desenho dos iniciadores visto que a sequência codificadora contem 4.779 nucleotídeos sendo inviável sua amplificação por PCR convencional em apenas uma etapa. Portanto, foi selecionada a região interna da sequência que inclui sítios catalíticos visando a produção de antissoro após a expressão heteróloga. Para o restante dos genes foi utilizada a sequência completa de suas respectivas ORF.

Uma vez observados fragmentos de amplificação inespecífica para alguns dos genes, a banda dos produtos de PCR específicos para cada gene foi excisados do gel de agarose e purificados utilizando o kit GFX de purificação de DNA (GE Healthcare). Após esse procedimento foi realizada a clonagem no vetor pGEM T easy[®]. Após transformação dos produtos das ligações em bactérias, as colônias resultantes foram submetidas à PCR e as que apresentaram o produto de amplificação de tamanho correto tiveram seus plasmídeos extraídos através de um procedimento de mini-prep. Para a inserção destes genes em vetor de expressão, após a extração plasmidial foi realizada a digestão de cada plasmídeo pGEM T easy[®] contendo um dos 13 genes de interesse com as enzimas de restrição NdeI e BamHI ou NdeI e XhoI ou BamHI e KpnI (conforme informações na Tabela 9) para retirar os insertos e inserir no plasmídeo pET-14b ou PQE30, o qual foi digerido com as mesmas enzimas. Novamente, após as reações de ligação e transformação em bactérias, um PCR diretamente das colônias que cresceram foi utilizado para verificar se haviam clones positivos para os 13 genes. As colônias positivas foram submetidas a extração de DNA plasmidial e seus insertos submetidos ao sequenciamento a fim de confirmar a correta orientação e fase de leitura.

A análise comparativa das sequências obtidas no banco de dados do projeto genoma de *T. rangeli* e das sequências obtidas após o sequenciamento, confirmam a identidade dos insertos utilizados para realizar a clonagem em vetor de expressão.

Após a confirmação pelo sequenciamento, foi realizada a expressão heteróloga utilizando os vetores pET14B ou pQE30. No teste preliminar de expressão, os extratos dos clones induzidos com 1 mM de IPTG a 15 °C, 27 °C e 37 °C foram analisados em SDS-PAGE, nos quais visualiza-se 0 aparecimento das bandas proeminentes correspondentes aos polipeptídeos de molecular massa de aproximadamente de 33 kDa para ES, 59 kDa para HAL, 25 kDa para MRP2, 23 kDa para FCaBP, 11 kDa para KMP-11, 47 kDa para CCP, 55 kDa para PFD1, 25 kDa para PFD3 (Figura 24), cujos tamanhos observados são compatíveis aos esperados teóricos. Estes mesmos extratos foram então analisados através de Western blotting utilizando anticorpo anti-HisTag, que confirmou a expressão de proteínas contendo uma região rica em histidinas, correspondente neste caso a cauda de histidinas de seis repetições conferida pelo vetor.

Das 13 proteínas selecionadas para este estudo foi possível a síntese heteróloga e purificação de oito proteínas já mencionadas acima e na Figura 24. Esforços serão realizados com o intuito de obter sucesso na expressão das proteínas Gim5A, mASAT, AMA-1, PFD2 e PFD4.

			Enzima de restrição			Condições padronizadas de expressão		
Gene	Código	Tamanho teórico	Porção 5'	Porção 3'	Vetor de expressão	°C	Tempo	Solubilidade
Espermidina sintase (ES)	TR01873	33 kDa	NdeI	XhoI	pet14b	37 °C	4h	Não
Histidina amônio liase (HAL)	TR01548	59 kDa	NdeI	BamHI	pet14b	37 °C	4h	Nào
Proteína glicosomal 5A (Gim5A)	TR00090	27 kDa	NdeI	BamHI	pet14b	-	-	-
Aspartato aminotransferase mitocondrial (mASAT)	TR04043	51 kDa	NdeI	BamHI	pet14b	-	-	-
Proteína apical de membrana 1 (AMA-1)	TR06390	19 kDa	NdeI	BamHI	pet14b	-	-	-
Proteína mitocondrial ligante de RNA (RMP2)	TR00100	25 kDa	NdeI	BamHI	pet14b	37 °C	4h	Não
Proteína flagelar ligante de cálcio (FCaBP)	TR01599	23 kDa	NdeI	BamHI	pet14b	37 °C	4h	Não
Proteína de membrana de kinetoplastídeos (KMP-11)	TR02226	11 kDa	NdeI	BamHI	pet14b	37 °C	4h	Sim
Calpaína cisteíno peptidase (CCP)	TR06356	47 kDa	NdeI	XhoI	pet14b	27 °C	2h	Não
Proteína de função desconhecida 1 (PFD 1)	TR01161	55 kDa	NdeI	XhoI	pet14b	37 °C	4h	Não
PFD 2	TR00439	42 kDa	NdeI	BamHI	pet14b	-	-	-
PFD3	TR02802	21 kDa	NdeI	BamHI	pet14b	37 °C	4h	Não
PFD 4	TR07083	52 kDa	BamHI	KpnI	PQE30	-	-	-

Tabela 9: Informações sobre a expressão heteróloga dos 13 genes selecionados

Figura 24: Expressão em *Escherichia coli* dos fragmentos codificadoras da (1) ES (33 kDa), (2) HAL (59 kDa), (3) MRP 2 (25 kDa), (4) FCaBP (23 kDa), (5) KMP-11 (11 kDa), (6) CCP (47 kDa), (7) PFD 1 (55 kDa), (8) PFD 3 (25 kDa). Eletroforese em gel de poliacrilamida 12 % corado com Comassie Blue. PM – padrão de tamanho molecular.

Após o teste de solubilidade, as proteínas recombinantes foram purificadas em coluna agarose Ni-NTA sob condições desnaturantes, com exceção da KMP-11 que estava presente na fração solúvel. A purificação foi bastante satisfatória em termos quantitativos para permitir a produção de anticorpos em camundongos.

Utilizando 50 µg/dose das oito proteínas purificadas, foram imunizados diferentes grupos de três camundongos no esquema de imunização apresentado na Figura 19.

Ao final do processo de imunização foram produzidos seis antissoros frente às proteínas espermidina sintase, histidina amônia liase, proteína mitocondrial ligante de RNA 2, proteína flagelar ligante de cálcio, PFD1 e PFD3.

No momento da coleta do antissoro dos animais imunizados foi também realizada a coleta do baço, estando este preservado a -80 °C em solução contendo SBF (90%) e DMSO (10%) visando a posterior produção de anticorpos monoclonais.

Objetivando a análise da expressão diferencial das proteínas selecionadas, foram resolvidos por eletroforese 30 µg dos extratos totais de proteínas solúveis das formas epimastigotas (T0), em diferenciação celular (T4) e tripomastigotas (T8) de *T. rangeli* bem como extartos

proteicos de *T. cruzi* (formas epimastigotas) e *L. braziliensis* (formas promastigotas) além dos extratos proteicos bacterianos contendo as proteínas recombinantes (Figura 25 A). Em seguida, foram realizados ensaios de *Western blotting* com os antissoros produzidos e também com os anticorpos monoclonais frente à KMP-11 e à α -tubulina (Figura 25 B). Devido ao forte reconhecimento das proteínas recombinantes pelos antissoros, os extratos bacterianos utilizados neste ensaio foram diluídos entre 100 e 500 vezes.

A análise do resultado mostrou que os antissoros e o anticorpo monoclonal anti-KMP-11 não reconheceram qualquer polipeptídeo no extrato proteico de formas promastigotas de *L. braziliensis*, sendo o anticorpo monoclonal anti- α -tubulina o único a reconhecer uma proteína de aproximadamente 55 kDa nos extratos de todos os parasitas avaliados.

Os antissoros frente à ES, HAL, PFD1 e o anticorpo monoclonal anti-KMP-11 reconheceram nos extratos proteicos de *T. rangeli* bem como o extrato das formas epimastigotas de *T. cruzi* polipeptídeos de tamanho correspondente ao esperado teórico para cada uma das proteínas.

Em contrapartida, os antissoros frente à MRP2, FCaBP e a PFD 3 reconheceram apenas os extratos de *T. rangeli* (T0, T4 e T8).

Para as proteínas HAL, MRP2 e PFD3 houve reconhecimento de mais de um polipeptídeo. O antissoro frente a HAL reconheceu um polipeptídio de tamanho esperado (59 kDa) e outro com tamanho inferior (~50kDA). Para a proteína MRP2 houve o reconhecimento de uma banda correspondente ao esperado teórico (25 kDa) e outra de aproximadamente 50 kDa nos extratos proteicos de *T. rangeli* e o mesmo ocorreu no extrato proteico bacteriano contendo a proteína recombinante.

Figura 25: (A) Análise do perfil de eletroforese unidimensional em gel de poliacrilamida SDS-PAGE 12% de 30 µg dos extratos proteicos totais de formas epimastigotas (T0), intermediárias (T4) e tripomastigotas (T8) de *Trypanosoma rangeli*, epimastigotas de *Trypanosoma cruzi* (Tc), promastigotas de *Leishmania braziliensis* (Lb) e extratos proteicos bacterianos contendo as proteínas recombinantes (PR) (ES, HAL, MRP2, FCaBP, KMP-11, PFD1 e PDF2). (B) *Western blotting* utilizando os antissoros policlonais produzidos após esquema de imunização (40 dias), anticorpo monoclonal frente à KMP-11 e a α -tubulina. (C) Análise da densitometria das bandas das proteínas reconhecidas por *Western blotting* utilizando os antissoros produzidos e os anticorpos monoclonais frente a KMP-11 e tubulina. Análises realizadas em comparação com as bandas obtidas para a tubulina.

As MRP são proteínas identificadas em diversos tripanosomatídeos como por exemplo T. brucei, T. cruzi, L. major, L. tarentolae, C. fasciculata (KÖLLER et al., 1997, BLOM et al., 2001, APHASIZHEV et al., 2003, VONDRUSKOVA et al., 2005) e normalmente apresentam-se como dímeros. Esses dímeros são formados pela interação de proteínas MR1 e MR2. Ambas apresentam homologia quanto a sua constituição gênica. Há indícios de que MRP1/MRP2 sejam capazes de formar complexos de alto peso molecular (100, 200, 400 kDa)(BLOM et al., 2001, APHASIZHEV et al., 2003, ZÍKOVÁ et al., 2008). Segundo Aphasizhev et al (2003) o dímero MRP1/MRP2 apresenta-se como um heterotetrâmero de 100 kDa. Se considerarmos essa informação, o visualizado no Western blotting para MRP2 pode ser o reconhecimento do dímero do MRP2/MRP2 do heterotetrâmero devido ao reconhecimento de duas bandas (25 kDA e 50 kDA) tanto em formas epimastigotas de T. rangeli e no extrato bacteriano contendo a proteína recombinante.

O antissoro frente a PFD3 reconheceu além da proteína de tamanho esperado (25 kDa) outra proteína de maior tamanho (~28 kDa), cuja identidade ainda não foi determinada.

Nos resultados obtidos por *western blotting*, foi verificado diferença quanto a intensidade do reconhecimento por cada antissoro e anticorpo monoclonal utilizado. Assim, foi realizada uma análise preliminar da densitometria das bandas pelo programa Image J (www. http://rsbweb.nih.gov/). Adotando como critério a diferença de duas vezes na intensidade das bandas, quatro das sete proteínas avaliadas apresentaram diferenças. Para a espermidina sintase, o reconhecimento da proteína em epimastigotas de *T. rangeli* é de 5,8 e 6,3 vezes maior que para as formas T4 e T8, respectivamente. Para a HAL esse reconhecimento é de 3,9 vezes maior em relação a T4 e 2 vezes para T8. A proteína MRP2 é reconhecida 32,5 vezes mais em formas epimastigotas quando comparada com T4 e 18 em relação a T8. Por fim, em PFD1 (TR01161) o reconhecimento é 7,4 vezes maior em epimastigotas que em T4 e 14,8 vezes maior em relação a T8.

Tendo em vista, que os parasitos do gênero *Trypanosoma* diferenciam-se em diversos tipos celulares ao longo do seu ciclo evolutivo, há a necessidade de rápida adaptação principalmente em nível proteico. De maneira diferenciada aos demais eucariotos, estes organismos apresentam um controle da expressão gênica em nível transcricional praticamente ausente. Desta forma, é somente durante ou após o passo de processamento do mRNA que o controle individual da expressão gênica é possível. No entanto, o controle pós transcricional,

frequentemente envolve taxas diferenciais de degradação de RNA, permitindo rápidas mudanças nos níveis proteicos (ARCHER et al., 2011).

Consistente com o controle pós transcricional, o genoma do T. brucei, por exemplo, codifica um grande número de possíveis "proteínas ligadoras de RNA" (GAUDENZI, FRASCH, CLAYTON, 2005), incluindo algumas que sabidamente participam em algum processo de diferenciação (SUBOTA et al., 2011). Durante a diferenciação, a passagem de formas replicativas a não replicativas envolve uma série de mudancas no repertório proteico destes parasitos. Por exemplo, em T. cruzi durante a transição de formas epimastigotas a tripomastigotas ocorre uma diminuição substancial na quantidade de proteínas ribossômicas e proteínas associadas à replicação celular (FRAGOSO et al., 1998, ATWOOD et al., 2005). Uma redução na capacidade de produção de proteínas parece ser consistente com o status não replicativo da forma tripomastigota. Análises de microarranjo de DNA também documentaram uma redução significativa na expressão de proteínas ribossômicas em formas metacíclicas de L. major (ALMEIDA et al., 2004). De forma contrária, as formas não replicativas e infectantes apresentam níveis aumentados de enzimas e substratos relacionados a defesa antioxidante, tais como triparedoxina e ascorbato redutase. Estas mudanças também são consistentes a uma pré adaptação destas formas ao metabolismo oxidativo das células fagocíticas no hospedeiro mamífero (ATWOOD et al., 2005).

2.4 CONCLUSÕES

- Observa-se uma tendência global de redução nos níveis de transcritos de quase todos os genes selecionados nos parasitos durante o avanço do processo de diferenciação celular (T0 para T8), sendo esta redução estatisticamente significativa para os genes da ES, HAL, Gim5A, mASAT e PFD2. Excetuam-se dessa tendência o gene da calpaína cisteíno peptidase. Diferentemente, os níveis de PFD1 e FCaBP nos tempos avaliados sugerem que sua transcrição não sofre alterações durante o processo de diferenciação *in vitro*;
- Das 13 proteínas selecionadas foi possível, até o presente momento, obter a expressão de forma heteróloga da ES, HAL, MRP2, FCaBP, KMP-11, CCP, PFD1 e PFD3;
- Para quatro proteínas selecionadas; ES, HAL, MRP2 e a PFD1; há uma regulação de expressão durante o processo de diferenciação celular, sendo mais abundante nas formas epimastigotas que nas demais;
- Há correlação positiva entre os níveis de transcritos e os níveis de expressão proteica para as proteínas ES, HAL e FCaBP.

CONSIDERAÇÕES FINAIS

Com o passar dos anos, avanços contínuos na área da proteômica tem sido observados, auxiliando na geração de informações acerca dos organismos no que diz respeito a identificação de proteínas bem como sua funcionalidade e organização em seres vivos.

Neste estudo, a combinação de abordagens proteômicas distintas (2DE, 1DE e sem gel) acoplada a espectrometria de massas permitiu um incremento quali-quantitativo na identificação das proteínas nas diferentes formas do *T. rangeli* se comparado às análises realizadas isoladamente por cada método. Estas abordagens permitiram a geração de um mapa proteômico detalhado do parasito e, em especial, do processo de diferenciação de formas epimastigotes em tripomastigotas.

Ao total, foram identificadas 1.455 proteínas do *T. rangeli*, das quais 13 foram avaliadas mais detalhadamente, evidenciando uma participação em processos biológicos distintos e cruciais ao processo de diferenciação celular.

Desta forma, a associação dos dados obtidos relativos a proteômica do *T. rangeli* com os dados do genoma deste organismo irão aportar novas perguntas e novos conhecimentos ao longo dos próximos anos.

PERSPECTIVAS

- Obter as proteínas recombinantes Gim5A, mASAT, AMA-1, PFD2 e PDF4;
- Obter anticorpos monoclonais frente às proteínas ES, HAL, MRP2 e PDF2;
- Determinar o número de cópias gênomicas para as PFD;
- Determinar a citolocalização das PFD;
- Realizar estudo de elucidação estrutural para as PFD;
- Realizar estudos bioquímicos/funcionais para entender a importância das proteínas durante o ciclo de diferenciação celular.

REFERÊNCIAS

ABUIN, G.; FREITAS-JUNIOR, L. H. G.; COLLI, W.; ALVES, M. J. M.; SCHENKMAN, S. Expression of trans-sialidase and 85-kDa glycoprotein genes in *Trypanosoma cruzi* is differentially regulated at the post-transcriptional level by labile protein factors. **The Journal of Biology Chemistry**. v. 274, p. 13041-13047, 1999.

AFCHAIN, D.; LERAY, D.; FRUIT, J.; CAPRON, A. Antigenic make-up of *Trypanosoma cruzi* culture forms: identification of a specific component. **Journal of Parasitology**. v. 65, n. 4, p. 507-514, 1979.

ALMEIDA, R.; GILMARTIN, B. J.; MCCANN, S. H.; NORRISH, A.; IVENS, A. C.; LAWSON, D.; LEVICK, M. P.; SMITH, D. F.; DYALL, S. D.; VETRIE, D.; FREEMAN, T. C.; COULSON, R. M.; SAMPAIO, I.; SCHNEIDER, H.; BLACKWELL, J. M. Expression profiling of the *Leishmania* life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. **Molecular & Biochemical Parasitology**. v. 136, p. 87-100, 2004.

ALTSCHUL, S. F.; MADDEN, T. L.; SCHAFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. **Nucleic Acids Research**. v. 25, n. 17, p. 3389-3402, 1997.

ANDERSON, N. L.; ANDERSON, N. G. Proteome and proteomics: new technologies, new concepts, and new words. **Electrophoresis**. v. 19, n. 11, p. 1853-1861, 1998.

ANDERSON, N. L.; MATHESON, A. D.; STEINER, S. Proteomics: applications in basic and applied biology. **Current Opinion in Biotechnology**. v. 11, p. 408-412, 2000.

ANDRADE, H. M.; MURTA, S. M. F.; CHAPEAUROUGE, A.; PERALES, J.; NIRDÉ, P.; ROMANHA, A. J. Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. Journal of Proteome Research. v. 7, n. 6, p. 2357-2367, 2008.

APHASIZHEV, R.; APHASIZHEVA, I.; NELSON, R. E.; SIMPSON, L. A 100-kD complex of two RNA-binding proteins from mitochondria of *Leishmania tarentolae* catalyzes RNA annealing and interacts with several RNA editing components. **RNA**. v. 9, p. 62-76, 2003.

ARAÚJO, P. R.; TEIXEIRA, S. M. Regulatory elements involved in the posttranscriptional control of stage-specific gene expression in *Trypanosoma cruzi* - A Review. **Memórias do Instituto Oswaldo Cruz**. v. 106, n. 3, p. 257-266, 2011.

ARCHER, S. K.; INCHAUSTEGUI, D.; QUEIROZ, R.; CLAYTON, C. The Cell Cycle Regulated Transcriptome of *Trypanosoma brucei*. **Plos One**. v. 6, n. 3, p. e18425, 2011.

ATWOOD, J. A.; WEATHERLY, D. B.; MINNING, T. A.; BUNDY, B.; CAVOLA, C.; OPPERDOES, F. R.; ORLANDO, R.; TARLETON, R. L. The *Trypanosoma cruzi* proteome. **Science**. v. 309, n. 5733, p. 473-476, 2005.

BAKKER, B. M.; MENSONIDES, F. I. C.; TEUSINK, B.; VAN HOEK, P.; MICHELS, P. A. M.; WESTERHOFF, H. V. Compartmentation protects trypanosomes from the dangerous design of glycolysis. **Proceedings of the National Academy of Sciences USA**. v. 97, p. 2087-2092, 2000.

BARGIERI, D. Y.; ANDENMATTEN, N.; LAGAL, V.; THIBERGE, S.; WHITELAW, J. A.; TARDIEUX, I.; MEISSNER, M.; MÉNARD, R. Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. **Nature Communications**. v. 4, p. 2552, 2013.

BARRET, A. J. Classification of peptidases. **Methods in Enzymology**. v. 224, p. 1-15, 1994.

BARRET, A. J.; RAWLINGS, N. D. Families and clans of cysteine peptidases. **Perspectives in Drug Discovery and Design**. v. 6, p. 1-11, 1996.

BERBERICH, C.; MACHADO, G.; MORALES, G.; CARRILLO, G.; JIMENEZ-RUIZ, A.; ALONSO, C. The expression of the *Leishmania infantum* KMP-11 protein is developmentally regulated and stage specific. **Biochimica et Biophysica Acta**. v. 144, n. 2, p. 230-237, 1998.

BERRIMAN, M.; GHEDIN, E.; HERTZ-FOWLER, C.; BLANDIN, G.; RENAULD, H.; BARTHOLOMEU, D. C.; LENNARD, N. J.; CALER, E.; HAMLIN, N. E.; HAAS, B.; BOHME, U.; HANNICK, L.; ASLETT, M. A.; SHALLOM, J.; MARCELLO, L.; HOU, L.; WICKSTEAD, B.; ALSMARK, U. C. M.: ARROWSMITH, C.: ATKIN, R. J.: BARRON, A. J.: BRINGAUD, F.: BROOKS, K.; CARRINGTON, M.; CHEREVACH, I.; CHILLINGWORTH, T.-J.; CHURCHER, C.; CLARK, L. N.; CORTON, C. H.; CRONIN, A.; DAVIES, R. M.; DOGGETT, J.; DJIKENG, A.; FELDBLYUM, T.; FIELD, M. C.; FRASER, A.; GOODHEAD, I.; HANCE, Z.; HARPER, D.; HARRIS, B. R.; HAUSER, H.; HOSTETLER, J.; IVENS, A.; JAGELS, K.; JOHNSON, D.; JOHNSON, J.; JONES, K.; KERHORNOU, A. X.; KOO, H.; LARKE, N.; LANDFEAR, S.; LARKIN, C.; LEECH, V.; LINE, A.; LORD, A.; MACLEOD, A.; MOONEY, P. J.; MOULE, S.; MARTIN, D. M. A.; MORGAN, G. W.; MUNGALL, K.; NORBERTCZAK, H.; ORMOND, D.; PAI, G.; PEACOCK, C. S.; PETERSON, J.; QUAIL, M. A.; RABBINOWITSCH, E.; RAJANDREAM, M.-A.; REITTER, C.; SALZBERG, S. L.; SANDERS, M.; SCHOBEL, S.; SHARP, S.; SIMMONDS, M.; SIMPSON, A. J.; TALLON, L.; TURNER, C. M. R.; TAIT, A.; TIVEY, A. R.; AKEN, S. V.; WALKER, D.; WANLESS, D.; WANG, S.; WHITE, B.; OWEN WHITE; WHITEHEAD, S.; WOODWARD, J.; WORTMAN, J.; ADAMS, M. D.; EMBLEY, T. M.; GULL, K.; ULLU, E.; BARRY, J. D.; FAIRLAMB, A. H.; OPPERDOES, F.; BARRELL, B. G.; DONELSON, J. E.; HALL, N.; FRASER, C. M.; MELVILLE, S. E.; EL-SAYED, N. M. The genome of the african trypanosome *Trypanosoma brucei* Science. v. 309, p. 416-422, 2005.

BLOM, D.; VAN DEN BERG, M.; BRREK, C. K. D.; SPEIJER, D.; MUIJSERS, A. O.; BENNE, R. Cloning and characterization of two guide RNA-binding protein from mitochondria of *Crithidia fasciculata*: gBP27, a novel protein, and gBP29, the orthologue of *Trypanosoma brucei* gBP21. Nucleic Acids Research. v. 29, p. 2950-2962, 2001.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. **Analytical Biochemistry**. v. 72, p. 248-254, 1976.

BRENER, Z. *Trypanosoma cruzi*: taxonomy, morphology and life cycle. In: WENDEL, S.; BRENER, Z.; CAMARGO, M. E. ; RASSI, A. (Ed.). Chagas Disease (American Trypanosomiasis): its impact on transfusion and clinical medicine. São Paulo: ISBT Brazil'92 - SBHH, 1992. p.13-29.

BRINGAUD, F.; PERIS, M.; ZEN, K. H.; SIMPSON, L. Characterization of two nuclear-encoded protein components of mitochondrial ribonucleoprotein complexes from *Leishmania tarentolae*. **Molecular and Biochemical Parasitology**. v. 71, p. 65-79, 1995.

BURLEIGH, B. A.; ANDREWS, N. W. Signaling and host cell invasion by *Trypanosoma cruzi*. Current Opinion in Microbiology. v. 1, p. 461-465, 1998.

BUSTIN, S. A.; BENES, V.; GARSON, J. A.; HELLEMANS, J.; HUGGETT, J.; KUBISTA, M.; MUELLER, R.; NOLAN, T.; PFAFFL, M. W.; SHIPLEY, G. L.; VANDESOMPELE, J.; WITTWER, C. T. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. **Clinical Chemistry**. v. 55, n. 4, p. 611-622, 2009.

CARRILLO, C.; CEJAS, S.; CORTÉS, M.; CERIANI, C.; HUBER, A.; GONZÁLEZ, N. S.; ALGRANATI, I. D. Sensitivity of Trypanosomatid Protozoa to DFMO and Metabolic Turnover of Ornithine Decarboxylase. **Biochimical and Biophysical research Communications**. v. 279, p. 633-668, 2000.

CARRILLO, C.; CEJAS, S.; GONZALEZ, N. S.; ALGRANATI, I. D. *Trypanosoma cruzi* epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzyme. **FEBS Letters**. v. 454, p. 192-196, 1999.

CERIANI, C.; GONZÁLEZ, N. S.; ALGRANATI, I. D. Ornithine decarboxylase from *Crithidia fasciculata* is metabolically unstable and resistant to polyamine down-regulation. **Federation of European Biochemical Societies Letters**. v. 301, n. 3, p. 261-264, 1992.

CLAYTON, C. E. Life without transcriptional control? From fly to human and back again. **The EMBO Journal**. v. 21, n. 8, p. 1881-1888, 2002.

COHEN, S. A Guide to the polyamines. Oxford: Oxford University Press, 1997.

COLASANTE, C.; ELLIS, M.; RUPPERT, T.; VONCKEN, F. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form *Trypanosoma brucei brucei*. **Proteomics**. v. 6, n. 11, p. 3275-3293, 2006.

CONTRERAS, V. T.; SALLES, J. M.; THOMAS, N.; MOREL, C. M.; GOLDENBERG, S. *In vitro* differentiation of *Trypanosoma cruzi* under chemically defined conditions. **Molecular and Biochemical Parasitology**. v. 16, n. 3, p. 315-327, 1985.

CUBA CUBA, C. A. Review of the biologic and diagnostic aspects of *Trypanosoma* (Herpetosoma) *rangeli*. **Revista da Sociedade Brasileira de Medicina Tropical**. v. 31, n. 2, p. 207-220, 1998.

CUERVO, P.; DE JESUS, J. B.; JUNQUEIRA, M.; MENDONÇA-LIMA, L.; GONZÁLEZ, L. J.; BETANCOURT, L.; GRIMALDI, G. J.; DOMONT, G. B.; FERNANDES, O.; CUPOLILLO, E. Proteome analysis of *Leishmania* (Viannia) *braziliensis* by two-dimensional gel electrophoresis and mass spectrometry. **Molecular and Biochemical Parasitology**. v. 154, n. 1, p. 6-21, 2007.

D'ALESSANDRO, A.; SARAVIA, N. G. *Trypanosoma rangeli*. In: GILLES, H. (Ed.). **Protozoal diseases**. London: Arnold Press, 1999. p.398-341.

D'ALESSANDRO, A. Biology of *Trypanosoma* (Herpetosoma) *rangeli* Tejera, 1920. In: LUMSDEN, W. H. R. ; EVANS, D. A. (Ed.). **Biology of the Kinetoplastida**. London: London Academic, v.3, 1976. p.327-403.

D'ALESSANDRO, A.; SARAVIA, N. G. *Trypanosoma rangeli*. In: KREIER, J. P.; BAKER, J. P. (Ed.). **Parasitic Protozoa**. 2 ed. London: Academic Press, v.2, 1992. p.1-54.

DE GODOY, L. M. F.; MARCHINI, F. K.; PAVONI, D.; RAMPAZZO, R. D. C. P.; PROBST, C. M.; GOLDENBERG, S.; KRIEGER, M. A. Quantitative proteomics of *Trypanosoma cruzi* during metacyclogenesis. **Proteomics**. v. 12, n. 17, p. 2694-2703, 2012.

DE MORAES, M. H.; GUARNERI, A. A.; GIRARDI, F. P.; RODRIGUES, J. B.; EGER, I.; TYLER, K. M.; STEINDEL, M.; GRISARD, E. C. Different serological cross-reactivity of *Trypanosoma rangeli* forms in *Trypanosoma cruzi*-infected patients sera. **Parasites & Vectors.** v. 1, n. 20, p. 1-10, 2008.

DE SOUZA, W. Basic cell biology of *Trypanosoma cruzi*. Current Pharmaceutical Design. v. 8, n. 4, p. 269-285, 2002.

DE STEFANI MARQUEZ, D.; RODRIGUES-OTTAIANO, C.; OLIVEIRA, R. M.; PEDROSA, A. L.; CABRINE-SANTOS, M.; LAGES-SILVA, E.; RAMIREZ, L. E. Susceptibility of different triatomine species to *Trypanosoma rangeli* experimental infection. **Vector Borne Zoonotic Disease**. v. 6, n. 1, p. 50-56, 2006.

DIEZ, H.; LOPEZ, M. C.; DEL CARMEN THOMAS, M.; GUZMAN, F.; ROSAS, F.; VELAZCO, V.; GONZALEZ, J. M.; PUERTA, C. Evaluation of IFN-gamma production by CD8 T lymphocytes in response to the K1 peptide from KMP-11 protein in patients infected with *Trypanosoma cruzi*. **Parasite Immunology**. v. 28, p. 101-105, 2006.

DIEZ, H.; SARMIENTO, L.; CALDAS, M. L.; MONTILLA, M.; THOMAS, M. D. C.; LOPEZ, M. C.; PUERTA, A. C. Cellular Location of KMP-11 protein in *Trypanosoma rangeli*. Vector Borne Zoonotic Disease. v. 8, n. 1, p. 93-96, 2008.

DIEZ, H.; THOMAS, M. C.; URUEÑA, C. P.; SANTANDER, S. P.; CUERVO, C. L.; LÓPEZ, M. C.; PUERTA, C. J. Molecular characterization of the kinetoplastid membrane protein-11 genes from the parasite *Trypanosoma rangeli*. **Parasitology**. v. 130, p. 643-651, 2005.

DOCAMPO, R.; MORENO, S. N. J. The role of Ca^{2+} in the process of cell invasion by inttracellular parasites. **Parasitology Today**. v. 12, n. 2, p. 61-65, 1996.

EISENSTEIN, E.; GILLILAND, G. L.; HERZBERG, O.; MOULT, J.; ORBAN, J.; POLJAK, R. J.; BANERJEI, L.; RICHARDSON, D.; HOWARD, A. J. Biological function made crystal clear - annotation of hypothetical proteins via structural genomics. **Current Opinion in Biotechnology**. v. 11, p. 25-30, 2000.

EL-SAYED, N. M.; MYLER, P. J.; BARTHOLOMEU, D. C.; NILSSON, D.; AGGARWAL, G.; TRAN, A.-N.; GHEDIN, E.; WORTHEY, E. A.; DELCHER, A. L.; BLANDIN, G.; WESTENBERGER, S. J.; CALER, E.; CERQUEIRA, G. C.; BRANCHE, C.; HAAS, B.; ANUPAMA, A.; ARNER, E.; ASLUND, L.; ATTIPOE, P.; BONTEMPI, E.; BRINGAUD, F.; BURTON, P.; CADAG, E.; CAMPBELL, D. A.; CARRINGTON, M.; CRABTREE, J.; DARBAN, H.; SILVEIRA, J. F. D.; JONG, P. D.; EDWARDS, K.; ENGLUND, P. T.; FAZELINA, G.: FELDBLYUM, T.; FERELLA, M.; FRASCH, A. C.; GULL, K.; HORN, D.; HOU, L.; HUANG, Y.; KINDLUND, E.; KLINGBEIL, M.; KLUGE, S.; KOO, H.; LACERDA, D.; LEVIN, M. J.; LORENZI, H.; LOUIE, T.; MACHADO, C. R.; MCCULLOCH, R.; MCKENNA, A.; MIZUNO, Y.; MOTTRAM, J. C.; NELSON, S.; OCHAYA, S.; OSOEGAWA, K.; PAI, G.; PARSONS, M.; PENTONY, M.; PETTERSSON, U.; POP, M.; RAMIREZ, J. L.; RINTA, J.; ROBERTSON, L.; SALZBERG, S. L.; SANCHEZ, D. O.; SEYLER, A.; SHARMA, R.; SHETTY, J.; SIMPSON, A. J.: SISK, E.: TAMMI, M. T.: TARLETON, R.: TEIXEIRA, S.: AKEN, S. V.; VOGT, C.; WARD, P. N.; WICKSTEAD, B.; WORTMAN, J.; WHITE, O.; FRASER, C. M.; STUART, K. D.; ANDERSSON, B. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. v. 309, p. 409-415, 2005.

ELIAS, M. C. Q. B.; MARQUES-PORTO, R.; FREYMÜLLER, E.; SCHENKMAN, S. Transcription rate modulation through the *Trypanosoma cruzi* life cycle occurs in parallel with changes in nuclear organisation. **Molecular & Biochemical Parasitology**. v. 112, p. 79-90, 2001.

EMANUELSSON, O.; BRUNAK, S.; VON HEIJNE, G.; NIELSEN, H. Locating proteins in the cell using TargetP, SignalP and related tools. **Nature Protocols**. v. 2, n. 4, p. 953-971, 2007.

ENGMAN, D. M.; KRAUSE, K.-H.; BLUMIN, J. H.; KIM, K. S.; KIRCHHOFF, L. V.; DONELSON, J. E. A novel flagellar Ca²⁺-binding protein in Trypanosomes. **The Journal of Biologycal Chemistry**. v. 264, n. 5, p. 18627-18631, 1989.

ERBEN, E. D.; FADDA, A.; LUEONG, S.; HOHEISEL, J. D.; CLAYTON, C. A genome-wide tethering screen reveals novel potential post-transcriptional regulators in *Trypanosoma brucei*. **Plos Pathogens**. v. 10, n. 6, p. e1004178, 2014.

ESTÉVEZ, A. M.; SIMPSON, L. Uridine insertion/deletion RNA editing in trypanosome mitochondria - a review. **Genetics in Medicine**. v. 240, p. 247-260, 1999.

FERREIRA, L. R. P.; DOSSIN, F. D. M.; RAMOS, T. C.; FREYMÜLLER, E.; SCHENKMAN, S. Active transcription and ultrastructural changes during *Trypanosoma cruzi* metacyclogenesis. **Annals of the Brazilian Academy of Sciences.** v. 80, n. 1, p. 157-166, 2008.

FEY, S. J.; LARSEN, P. M. 2D or not 2D. Current Opinion in Chemical Biology. v. 5, p. 25-33, 2001.

FLEMING, J. R.; SASTRY, L.; CROZIER, T. W.; NAPIER, G. B.; SULLIVAN, L.; FERGUSON, M. A. Proteomic selection of immunodiagnostic antigens for *Trypanosoma congolense*. **Plos Negleted Tropical Desease**. v. 8, n. 6, p. e2936, 2014.

FRAGOSO, S. P.; MATTEI, D.; HINES, J. C.; RAY, D.; GOLDENBERG, S. Expression and cellular localization of *Trypanosoma cruzi* type II DNA topoisomerase. **Molecular & Biochemical Parasitology**. v. 94, n. 2, p. 197-204, 1998.

GALPERIN, M. Y. Conserved 'hypothetical' proteins: new hints and new puzzles. **Comparative and Functional Genomics.** v. 2, p. 14-18, 2001.

GALPERIN, M. Y.; KOONIN, E. V. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. **Nucleic Acids Research**. v. 32, n. 18, p. 5452-5463, 2004.

GASTEIGER, E.; HOOGLAND, C.; GATTIKER, A.; DUVAUD, S.; WILKINS, M. R.; APPEL, R. D.; BAIROCH, A. Protein Identification and Analysis Tools on the ExPASy Server. In: WALKER, J. M. (Ed.). **The Proteomics Protocols Handbook**. Totowa: Humana Press, 2005. p.571-607.

GAUDENZI, J. D.; FRASCH, A. C.; CLAYTON, C. RNA-binding domain proteins in Kinetoplastids: a comparative analysis. **Eukaryotic Cell**. v. 4, n. 12, p. 2106-2114, 2005.

GILINGER, G.; BELLOFATTO, V. Trypanosome spliced leader RNA genes contain the first identified RNA polymerase II gene promotor in these organisms. **Nucleic Acids Research**. v. 29, n. 7, p. 1556-1564, 2001.

GINGER, M. L.; FAIRLAMB, A. H.; OPPERDOES, F. R. Comparative genomics of trypanosome metabolism. In: BARRY, D.; MCCULLOCH, R.; MOTTRAM, J.; ACOSTA–SERRANO, A. (Ed.). **Trypanosomes: after the genome**. Wynondham, United Kingdom: Horizon Bioscience, 2007. p.373–416.

GIVOT, I. L.; SMITH, T. A.; ABELES, R. H. Studies on the mechanism of action and the structure of the electrophilic center of histidine ammonia lyase. **The Journal of Biologycal Chemistry**. v. 244, n. 23, p. 6341-6353, 1969.

GODSEL, L. M.; ENGMAN, D. M. Flagellar protein localization mediated by a calcium–myristoyl/palmitoyl switch mechanism. **The EMBO Journal**. v. 18, n. 8, p. 2057-2065, 1999.

GOMEZ, C.; RAMIREZ, M. E.; CALIXTO-GALVEZ, M.; MEDEL, O.; RODRÍGUES, M. A. Regulation of Gene Expression in Protozoa Parasites. Journal of Biomedicine and Biotechnology. v. Article ID 726045, p. 1-24, 2010.

GONZALES-PERDOMO, M.; ROMERO, P.; GOLDENBERG, S. Cyclic AMP and adenylate cyclase activators stimulate *Trypanosoma cruzi* differentiation. **Experimental Parasitology**. v. 66, p. 205-2012, 1988.

GONZÁLEZ, N. S.; HUBER, A.; ALGRANATI, I. D. Spermidine is essential for normal proliferation of trypanosomatid protozoa. **FEBS Letters**. v. 508, p. 323-326, 2001.

GONZÁLEZ, N. S.; SÁNCHEZ, C. P.; SFERCO, L.; ALGRANATI, I. D. Control of *Leishmania mexicana* proliferation by modulation of polyamine intracelular levels. **Biochemical and Biophysical Research Commnications**. v. 180, n. 2, p. 797-804, 1991.

GRÉBAUT, P.; CHUCHANA, P.; BRIZARD, J.-P.; DEMETTRE, E.; SEVENO, M.; BOSSARD, G.; JOIN, P.; VINCENDEAU, P.; BENGALY, Z.; BOULANGÉ, A.; CUNY, G.; HOLZMULLER, P. Identification of total and differentially expressed excreted-secreted proteins from *Trypanosoma congolense* strain exhibiting different virulence and pathogenicity. **International Journal for Parasitology**. v. 39, p. 1137-1150, 2009.

GRISARD, E. C.; CAMPBELL, D. A.; ROMANHA, A. J. Mini-exon gene sequence polymorphism among *Trypanosoma rangeli* strains isolated from distinct geographical regions. **Parasitology**. v. 118, p. 375-382, 1999.

GRISARD, E. C.; STEINDEL, M. *Trypanosoma* (Herpetosoma) *rangeli*. In: NEVES, D. P. (Ed.). **Parasitologia Humana**. 11 ed. São Paulo: Atheneu, 2005. p.109-113.

GRISARD, E. C.; STEINDEL, M.; GUARNERI, A. A.; EGER-MANGRICH, I.; CAMPBELL, D. A.; ROMANHA, A. J. Characterization of *Trypanosoma rangeli* strains isolated in Central and South America: An overview. **Memórias do Instituto Oswaldo Cruz.** v. 94, p. 203-209, 1999.

GRISARD, E. C.; STOCO, P. H.; WAGNER, G.; SINCERO, T. C.; ROTAVA, G.; RODRIGUES, J. B.; SNOEIJER, C. Q.; KOERICH, L. B.; SPERANDIO, M. M.; BAYER-SANTOS, E.; FRAGOSO, S. P.; GOLDENBERG, S.; TRIANA, O.; VALLEJO, G. A.; TYLER, K.; DÁVILA, A. M.; STEINDEL, M. Transcriptomic analyses of the avirulent protozoan parasite *Trypanosoma rangeli*. **Molecular and Biochemical Parasitology**. v. 174, n. 1, p. 18-25, 2010. GUHL, F.; VALLEJO, G. A. *Trypanosoma* (Herpetosoma) *rangeli* Tejera, 1920: an updated review. **Memórias do Instituto Oswaldo Cruz**. v. 98, n. 4, p. 435-442

2003.

GÜNZL, A.; ULLU, E.; DÖRNER, M.; FRAGOSO, S. P.; HOFFMANN, K. F.; MILNER, J. D.; MORITA, Y.; NGUU, E. K.; VANACOVA, S.; WÜNSCH, S.; DARE, A. O.; KWON, H.; TSCHUDI, C. Transcription of the *Trypanosoma brucei* spliced leader RNA gene is dependent only on the presence of upstream regulatory elements. **Molecular & Biochemical Parasitology**. v. 85, p. 67-76, 1997.

HAJDUK, S.; OCHSENREITER, T. RNA editing in kinetoplastids. **RNA Biology**. v. 7, n. 2, p. 229-236, 2010.

HASNE, M. P.; ULLMAN, B. Identification and characterization of a polyamine permease from the protozoan parasite *Leishmania major*. Journal of Biological Chemistry v. 280, p. 15188-15194, 2005.

HAYMAN, M. L.; READ, L. K. *Trypanosoma brucei* RBP16 is a mitochondrial Ybox family protein with guide RNA binding activity. **Journal of Biological Chemistry**. v. 274, p. 12067-12074, 1999.

HORVÁTH, A.; BERRY, E. A.; MASLOV, D. A. Translation of the edited mRNA for cytochrome b in trypanosome mitochondria. **Science**. v. 287, p. 1639-1640, 2000.

IGARASHI, K.; KASHIWAGI, K. Polyamines: Mysterious Modulators of cellular Functions. **Biochemical and Biophysical Research Communications**. v. 271, p. 559-564, 2000.

KIKUCHI, S. A.; SODRÉ, C. L.; KALUME, D. E.; ELIAS, C. G. R.; SANTOS, A. L. S.; SOEIRO, M. D. N.; MEUSER, M.; CHAPEAUROUGE, A.; PERALES, J.; FERNANDES, O. Proteomic analysis of two Trypanosoma cruzi zymodeme 3 strains. **Experimental Parasitology**. v. 126, p. 540-551, 2010.

KING, D. L.; CHANG, Y. D.; TURCO, S. J. Cell surface lipophosphoglycan of *Leishmania donovani*. **Molecular and Biochemical Parasitology**. v. 24, p. 47-53, 1987.

KOERICH, L. B.; EMMANUELLE-MACHADO, P.; SANTOS, K.; GRISARD, E. C.; STEINDEL, M. Differentiation of *Trypanosoma rangeli*: high production of infective trypomastigote forms *in vitro*. **Parasitology Research**. v. 88, n. 1, p. 21-25, 2002.

KÖLLER, J.; MÜLLER, U.; SCHMID, B.; MISSEL, A.; KRUFT, V.; STUART, K.; GÖRINGER, H. U. *Trypanosoma brucei* gBP21: an arginine-rich mitochondrial protein that binds to guide RNA with high affinity. **Journal of Biological Chemistry**. v. 272, p. 3749-3757, 1997.

KÖLLER, J.; NÖRSKAU, G.; PAUL, A. S.; STUART, K.; GORINGER, H. U. Different *Trypanosoma brucei* guide RNA molecules associate with an identical

complement of mitochondrial proteins *in vitro*. Nucleic Acids Research. v. 22, p. 1988-1995, 1994.

KRIEGER, M. A.; ÁVILA, A. R.; OGATTA, S. F. Y.; PLAZANET-MENUT, C.; GOLDENBERG, S. Differential gene expression during *Trypanosoma cruzi* metacyclogenesis. **Memórias do Instituto Oswaldo Cruz**. v. 94, n. 1, p. 165-168, 1999.

KROGH, A.; LARSSON, B.; VON HEIJNE, G.; SONNHAMMER, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. **Journal of Molecular Biology**. v. 305, n. 3, p. 567-580, 2001.

LABAER, J. Genomics, proteomics, and the new paradigm in biomedical research. **Genetics in Medicine**. v. 4, p. 2S-9S, 2002.

LANDFEAR, S. M. Trypanosomatid transcription factors: Waiting for Godot. **PNAS**. v. 100, n. 1, p. 7-9, 2003.

LE QUESNE, S. A.; FAIRLAMB, A. H. Regulation of a high-affinity diamine transport system in *Trypanosoma cruzi* epimastigotes. **Biochemical Journal**. v. 316, p. 481-486, 1996.

LI, Z.; WANG, C. C. KMP-11, a basal body and flagellar protein, is required for cell division in *Trypanosoma brucei*. Eukaryotic Cell. v. 7, n. 11, p. 1941-1950, 2008.

LIANG, X.-H.; HARITAN, A.; ULIEL, S.; MICHAELI, S. Trans- and cis-splicing in Trypanosomatids: Mechanism, Factors, and Regulation. **Eukaryotic Cell**. v. 2, n. 5, p. 830-840, 2003.

LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{(-\text{Delta Delta C(T)})}$ Method. **Methods**. v. 25, p. 402-408, 2001.

LNCC. **Trypanosoma rangeli Genome Project**. Disponível em: < <u>http://www.labinfo.lncc.br/index.php/trypanosoma-rangeli</u> >. Acesso em: 05/08/2012.

LUBEC, G.; AFJEHI-SADAT, L.; YANG, J.-W.; JOHN, J. P. P. Searching for hypothetical proteins: Theory and practice based upon original data and literature. **Progress in Neurobiology**. v. 77, p. 90-127, 2005.

LUNDBERG, E.; FAGERBERG, L.; KLEVEBRING, D.; MATIC, I.; GEIGER, T.; COX, J.; ÄLGENÄS, C.; LUNDEBERG, J.; MANN, M.; UHLEN, M. Defining the transcriptome and proteome in three functionally different human cell lines. **Molecular Systems Biology**. v. 6, p. 1-9, 2010.

LUU, V. D.; BREMS, S.; HOHEISEL, J. D.; BURCHMORE, R.; GUILBRIDE, D. L.; CLAYTON, C. Functional analysis of Trypanosoma brucei PUF1. Molecular and Biochemical Parasitology. v. 150, n. 2, p. 340-349, 2006.

MAIA DA SILVA, F.; A. MARCILIA, L. L.; CAVAZZANA JR, M.; ORTIZ, P. A.; CAMPANER, M.; TAKEDA, G. F.; PAIVA, F.; NUNES, V. L. B.; CAMARGO, E. P.; TEIXEIRA, M. M. G. *Trypanosoma rangeli* isolates of bats from Central Brazil: Genotyping and phylogenetic analysis enable description of a new lineage using spliced-leader gene sequences. Acta Tropica. v. 109, p. 199-207, 2009.

MAIA DA SILVA, F.; JUNQUEIRA, A. C. V.; CAMPANER, M.; RODRIGUES, A. C.; CRISANTE, G.; RAMIREZ, L. E.; CABALLERO, Z. C. E.; MONTEIRO, F. A.; COURA, J. R.; AÑEZ, N.; TEIXEIRA, M. M. G. Comparative phylogeography of *Trypanosoma rangeli* and *Rhodnius* (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. **Molecular Ecology**. v. 16, n. 3361-3373, 2007.

MAIA DA SILVA, F.; RODRIGUES, A. C.; CAMPANER, M.; TAKATA, C. S. A.; BRIGIDO, M. C.; JUNQUEIRA, A. C. V.; COURA, J. R.; TAKEDA, G. F.; SHAW, J. J.; TEIXEIRA, M. M. G. Randomly amplified polymorphic DNA analysis of *Trypanosoma rangeli* and allied species from human, monkeys and other sylvatic mammals of the Brazilian Amazon disclosed a new group and a species-specific marker. **Parasitology**. v. 128, p. 283-294, 2004.

MAIER, A.; LORENZ, P.; VONCKEN, F.; CLAYTON, C. An essential dimeric membrane protein of trypanosome glycosomes. **Molecular Microbiology**. v. 39, n. 6, p. 1443-1451, 2001.

MALDONADO, R. A.; LINSS, J.; THOMAZ, N.; OLSON, C. L.; ENGMAN, D. M.; GOLDENBERG, S. Homologues of the 24-kDa Flagellar Ca²⁺-Binding Protein gene of *Trypanosoma cruzi* are present in other members of the

Trypanosomatidae family. Experimental Parasitology. v. 86, p. 200-205, 1997.

MARCIANO, D.; LLORENTE, C.; MAUGERI, D. A.; FUENTE, C. D. L.; OPPERDOES, F.; CAZZULO, J. J.; NOWICKI, C. Biochemical characterization of stagespecific isoforms of aspartate aminotransferases from *Trypanosoma cruzi* and *Trypanosoma brucei*. Molecular and Biochemical Parasitology. v. 161, p. 12-20, 2008.

MARCIANO, D.; MAUGERI, D. A.; CAZZULO, J. J.; NOWICKI, C. Functional characterization of stage-specific aminotransferases from trypanosomatids. **Molecular and Biochemical Parasitology**. v. 166, p. 172-182, 2009.

MARTÍNEZ-CALVILLO, S.; VIZUET-DE-RUEDA, J. C.; FLORENCIO-MART1NEZ, L. E.; MANNING-CELA, R. G.; FIGUEROA-ANGULO, E. E. Gene Expression in Trypanosomatid Parasites. Journal of Biomedicine and Biotechnology. 2010.

MCCARTHY, F. M.; WANG, N.; MAGEE, G. B.; NANDURI, B.; LAWRENCE, M. L.; CAMON, E. B.; BARRELL, D. G.; HILL, D. P.; DOLAN, M. E.; WILLIAMS, W. P.; LUTHE, D. S.; BRIDGES, S. M.; BURGESS, S. C. AgBase: a functional genomics resource for agriculture. **BMC Genomics**. v. 7, p. 229-242, 2006.

MEIRELLES, R. M. S.; HENRIQUES-PONS, A.; SOARES, M. J.; STEINDEL, M. Penetration of the salivary glands of *Rhodnius domesticus* Neiva & Pinto, 1923 (Hemiptera: Reduviidae) by *Trypanosoma rangeli* Tejera, 1920 (Protozoa: Kinetoplastida). **Parasitology Research**. v. 97, n. 4, p. 259-269, 2005.

MEJIA, J. S.; MORENO, F.; MUSKUS, C.; VELEZ, I. D.; TITUS, R. G. The surface-mosaic model in host-parasite relationships. **Trends Parasitolology**. v. 20, n. 11, p. 508-511, 2004.

MICHELS, P. A.; HANNAERT, V.; BRINGAUD, F. Metabolic aspects of glycosomes in trypanosomatidae - new data and views. **Parasitology Today**. v. 16, n. 11, p. 482-489, 2000.

MOEWS, P. C.; KRETSINGER, R. H. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. **Journal of Molecular Biology**. v. 91, p. 201-225, 1975.

MONCRIEF, N. D.; KRETSINGER, R. H.; GOODMAN, M. Evolution of EF-hand calcium-modulated proteins. I Relationships based on amino acid sequences **Journal of Molecular Evolution**. v. 30, p. 522-562., 1990.

MOTTRAM, J. C.; HELMS, M. J.; COOMBS, G. H.; SAJID, M. Clan CD cysteine peptidases of parasitic protozoa. **Trends in Parasitolology**. v. 19, n. 4, p. 182-187, 2003.

MULLER, U. F.; LAMBERT, L.; GORINGER, H. U. Annealing of RNA editing substrates facilitated by guide RNA-binding protein gBP21. **EMBO Journal**. v. 20, p. 1394-1404, 2001.

NOWICKI, C.; CAZZULO, J. J. Aromatic amino acid catabolism in trypanosomatids. **Comparative Biochemistry and Physiology**. v. 151, p. 381-390, 2008.

NUGENT, P. G.; KARSANI, S. A.; WAIT, R.; TEMPERO, J.; SMITH, D. F. Proteomic analysis of Leishmania mexicana differentiation. **Molecular and Biochemical Parasitology**. v. 136, n. 1, p. 51-62, 2004.

O'FARRELL, P. H. High resolution two dimensional electrophoresis of proteins. **The Journal of Biologycal Chemistry**. v. 250, n. 10, p. 4007-4021, 1975.

PANDEY, A.; MANN, M. Proteomics to study genes and genomes. Nature. v. 405, n. 6788, p. 837-846, 2000.

PARODI-TALICE, A.; DURÁN, R.; ARRAMBIDE, N.; PRIETO, V.; PIÑEYRO, M. D.; PRITSCH, O.; CAYOTA, A.; CERVEÑANSKY, C.; ROBELLO, C. Proteome analysis of the causative agent of Chagas disease: *Trypanosoma cruzi*. **International Journal for Parasitology**. v. 34, n. 8, p. 881-886, 2004.

PARODI-TALICE, A.; MONTEIRO-GOES, V.; ARRAMBIDE, N.; AVILA, A. R.; DURAN, R.; CORREA, A.; DALLAGIOVANNA, B.; CAYOTA, A.; KRIEGER, M.; GOLDENBERG, S.; ROBELLO, C. Proteomic analysis of metacyclic trypomastigotes undergoing *Trypanosoma cruzi* metacyclogenesis. **Journal of Mass Spectrometry**. v. 42, p. 1422-1432, 2007.

PAYS, E.; HANOCQ-QUERTIER, J.; HANOCQ, F.; ASSEL, S. V.; ROLIN, D. N. A. S. Abrupt RNA changes precede the first cell division during the differentiation

of *Trypanosoma brucei* bloodstream forms into procyclic forms *in vitro*. **Molecular & Biochemical Parasitology**. v. 61, p. 107-114, 1993.

PEGG, A. E.; WILLIAMS-ASHMAN, H. G. On the role of S-adenosyl-Lmethionine in the biosynthesis of spermidine by rat prostate. **The Journal of Biology Chemistry**. v. 224, p. 682-693, 1969.

PFAFFL, M. W. Relative quantification. In: DORAK, T. (Ed.). **Real-time PCR**. San Diego: International University Line 2004. p.63-82.

PINTO, A. P. A.; CAMPANA, P. T.; BELTRAMINI, L. M.; SILBER, A. M.; ARAÚJO, A. P. U. Structural characterization of a recombinant flagellar calciumbinding protein from *Trypanosoma cruzi*. **Biochimical and Biophysica Acta**. v. 1652, p. 107-14, 2003.

PORCEL, B. M.; BONTEMPI, E. J.; HENRIKSSON, J.; RYDÅKER, M.; ASLUND, L.; SEGURA, E. L.; PETTERSSON, U.; RUIZ, A. M. *Trypanosoma rangeli* and *Trypanosoma cruzi*: molecular characterization of genes encoding putative calcium-binding proteins, highly conserved in trypanosomatids. **Experimental Parasitology**. v. 84, n. 3, p. 387-399, 1996.

PROUDFOOT, N. J.; FURGER, A.; DYE, M. J. Integrating mRNA Processing Review with Transcription. Cell. v. 108, n. 501-512, 2002.

QUEIROZ, R. M.; CHARNEAU, S.; BASTOS, I. M.; SANTANA, J. M.; SOUSA, M. V.; ROEPSTORFF, P.; RICART, C. A. Cell surface proteome analysis of human-hosted *Trypanosoma cruzi* life stages. **Journal Proteome Research**. v. Epub ahead of print, 2014.

RAWLINGS, N. D.; BARRET, A. J. Evolutionary families of peptidases. Biochemical Journal. v. 290, p. 205-218, 1993.

RAWLINGS, N. D.; BARRET, A. J. Families of cysteine peptidases. Methods in Enzymology. v. 244, p. 461-486, 1994.

RECINOS, R. F.; KIRCHHOFF, L. V.; DONELSON, J. E. Cell cycle expression of histone genes in Trypanosoma cruzi. **Molecular & Biochemical Parasitology**. v. 113, p. 215-222, 2001.

REED, S. L.; EMBER, J. A.; HERDMAN, D. S.; DISCIPIO, R. G.; HUGLI, T. E.; GIGLI, I. The extracellular neutral cysteine proteinase of *Entamoeba histolytica* degrades anaphylatoxins C3a and C5a. **The Journal of Immunology**. v. 155, n. 1, p. 266-274, 1995.

ROBERTS, S. C.; JIANG, Y.; JARDIM, A.; CARTER, N. S.; HEBY, O.; ULLMAN, B. Genetic analysis of spermidine synthase from *Leishmania donovani*. **Molecular & Biochemical Parasitology**. v. 115, p. 217–226, 2001.

ROBERTS, S. C.; SCOTT, J.; GASTEIER, J. E.; JIANG, Y.; BROOKS, B.; JARDIM, A.; CARTER, N. S.; HEBY, O.; ULLMAN, B. S-adenosylmethionine decarboxylase from *Leishmania donovani*. Molecular, genetic, and biochemical

characterization of null mutants and overproducers. Journal of Biological Chemistry. v. 277, p. 5902-5909, 2002.

SAJID, M.; MCKERROW, J. H. Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology. v. 120, p. 1-21, 2002.

SAMBROOK, J.; RUSSEL, D. W. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor, 2001.

SANTAMARIA, C.; CHATELAIN, E.; JACKSON, Y.; MIAO, Q.; WARD, B. J.; CHAPPUIS, F.; NDAO, M. Serum biomarkers predictive of cure in Chagas disease patients after nifurtimox treatment. **BMC Infectious Diseases**. v. 14, p. 302-314, 2014.

SCHOTTELIUS, J. Neuraminidase fluorescent test for differentiation of *Trypanosoma cruzi* and *Trypanosoma rangeli*. **Tropical Medicine and Parasitology**. v. 38, p. 323-327, 1987.

SCHWEDE, T. F.; RÉTEY, J.; SCHULZ, G. E. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. **Biochemistry**. v. 38, p. 5355-5361, 1999.

SIVASHANKARI, S.; SHANMUGHAVEL, P. Functional annotation of hypothetical proteins – A review. **Bioinformation**. v. 18, p. 335-338, 2006.

STANLEY, S. L.; ZHANG, T.; RUBIN, D.; LI, E. Role of the *Entamoeba histolytica* cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice. **Infection and Immunity**. v. 63, n. 4, p. 1587-1590, 1995.

STEBECK, C. E.; BEECROFT, R. P.; SINGH, B. N.; JARDIM, A.; OLAFSON, R. W.; TUCKEY, C.; PRENEVOST, K. D.; PEARSON, T. W. Kinetoplastid membrane protein-11 (KMP-11) is differentially expressed during the life cycle of African trypanosomes and is found in a wide variety of kinetoplastid parasites. **Molecular and Biochemical Parasitology**. v. 71, n. 1, p. 1-13, 1995.

STEINDEL, M.; NETO, E. D.; PINTO, C. J. C.; GRISARD, E. C.; MENEZES, C. L. P.; MURTA, S. M. F.; SIMPSON, A. J. G.; ROMANHA, A. J. Randomly amplified polymorphic DNA (Rapd) and isoenzyme analysis of *Trypanosoma rangeli* strains. Journal of Eukaryotic Microbiology. v. 41, n. 3, p. 261-267, 1994.

STEVENS, J. R.; TEIXEIRA, M. M.; BINGLE, L. E.; GIBSON, W. C. The taxonomic position and evolutionary relationships of *Trypanosoma rangeli*. **International Journal for Parasitology**. v. 29, n. 5, p. 749-757, 1999.

STOCO, P. H. Caracterização das DNA Topoisomenrases II de *Trypanosoma rangeli*. 2010. 185 p. Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, 2010.

STOCO, P. H.; WAGNER, G.; GERBER, A.; ZAHA, A.; THOMPSON, C. E.; BARTHOLOMEU, D. C.; LÜCKEMEYER, D. D.; BAHIA, D.; LORETO, E.; PRESTES, E. B.; LIMA, F. M.; RODRIGUES-LUIZ, G.; VALLEJO, G. A.; FILHO, J. F. D. S.; SCHENKMAN, S.; MONTEIRO, K. M.; TYLER, K. M.; ALMEIDA, L. G. P. D.; ORTIZ, M. F.; CHIURILLO, M. A.; MORAES, M. H. D.; CUNHA, O. D. L.; MENDONÇA-NETO, R.; SILVA, R.; TEIXEIRA, S. M. R.; MURTA, S. M. F.; SINCERO, T. C. M.; MENDES, T. A. D. O.; URMENYI, T. P.; SILVA, V. G.; DAROCHA, W. D.; TALAVERA-LOPEZ, C.; ANDERSSON, B.; ROMANHA, Á. J.; STEINDEL, M.; VASCONCELOS, A. T. R. D.; GRISARD, E. C. Genome of the avirulent human-infective Trypanosome - *Trypanosoma rangeli*. **Submetido a Plos NTD**. 2014.

SUÁREZ, B. A.; CUERVO, C. L.; PUERTA, C. J. La región intergénica del gen H2A apoya las subpoblaciones KP1(-) y KP1(+) de *Trypanosoma rangeli*. **Biomédica**. v. 27, n. 3, p. 410-418, 2007.

SUBOTA, I.; JULKOWSKA, D.; VINCENSINI, L.; REEG, N.; BUISSON, J.; BLISNICK, T.; HUET, D.; PERROT, S.; SANTI-ROCCA, J.; DUCHATEAU, M.; HOURDEL, V.; ROUSSELLE, J. C.; CAYET, N.; NAMANE, A.; CHAMOT-ROOKE, J.; BASTIN, P. Proteomic analysis of intact flagella of procyclic *Trypanosoma brucei* cells identifies novel flagellar proteins with unique sublocalisation and dynamics. **Molecular & Cellular Proteomics**. v. Epub ahead of print, 2014.

SUBOTA, I.; ROTUREAU, B.; BLISNICK, T.; NGWABYT, S.; DURAND-DUBIEF, M.; ENGSTLER, M.; BASTIN, P. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. **Molecular Biology of the Cell.** v. 22, n. 22, p. 4205-4219, 2011.

University of Georgia Research Foundation (United States). TARLETON, R. L. *Trypanosoma cruzi* proteome compositions and methods. US7,780,696B2. 14 julho 2006. 02 agosto 2007.

TAYLOR, M. C.; KAUR, H.; BLESSINGTON, B.; KELLY, J. M.; WILKINSON, S. R. Validation of spermidine synthase as a drug target in African trypanosomes. **Biochemical Journal**. v. 409, p. 563-569, 2008.

TEIXEIRA, M. M.; YOSHIDA, N. Stage-specific surface antigens of metacyclic trypomastigotes of *Trypanosoma cruzi* identified by monoclonal antibody. **Molecular and Biochemical Parasitology**. v. 18, p. 271-282, 1986.

TEIXEIRA, S. M. R. Gene expression in Trypanosomatidae. **Brazilian Journal of** Medical and Biological Research v. 31, p. 1503-1516, 1998.

TEIXEIRA, S. M. R.; DAROCHA, W. D. Control gene expression and genetic manipulation in the trypanosomatidae. **Genetics and Molecular Research**. v. 2, n. 1, p. 148-158, 2003.

THOMAS, M. C.; GARCÍA-PÉREZ, J. L.; ALONSO, C.; LÓPEZ, M. C. Molecular characterization of KMP11 from *Trypanosoma cruzi*: a cytoskeleton-associated protein regulated at the translational level. **DNA Cell Biology**. v. 19, n. 1, p. 47-57, 2000.

THOMPSON, J. D.; HIGGINS, D. G.; GIBSON, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research. v. 22, p. 4673-4680, 1994.

TOWBIN, H.; STAEHELIN, T.; GORDON, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. **Proceedings of the National Academy of Sciences USA**. v. 76, n. 9, p. 4350-4354, 1979.

TUSNADY, G. E.; SIMON, I. The HMMTOP transmembrane topology prediction server. **Bioinformatics**. v. 17, n. 9, p. 849-850, 2001.

TYLER, J. S.; BOOTHROYD, J. C. The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. **Plos Pathogens**. v. 7, p. e1001282, 2011.

UDVARDI, M. K.; CZECHOWSKI, T.; SCHEIBLE, W. R. Eleven golden rules of quantitative RT-PCR. **Plant Cell.** v. 20, n. 7, p. 1736-1737, 2008.

VALLEJO, G. A.; GUHL, F.; CARRANZA, J. C.; LOZANO, L. E.; SÁNCHEZ, J. L.; JARAMILLO, J. C.; GUALTERO, D.; CASTAÑEDA, N.; SILVA, J. C.; STEINDEL, M. kDNA markers define two major *Trypanosoma rangeli* lineages in Latin-America. Acta Tropica. v. 81, n. 1, p. 77-82, 2002.

VALLEJO, G. A.; MACEDO, A. M.; CHIARI, E.; PENA, S. D. J. Kinetoplast DNA from *Trypanosoma rangeli* contains two distinct classes of minicircles with different size and molecular organization **Molecular and Biochemical Parasitology** v. 67, p. 245-253, 1994.

VONDRUSKOVA, E.; VAN DEN BURG, J.; ZÍKOVÁ, A.; ERNST, N. L.; STUART, K.; BENNE, R.; LUKES, J. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in *Trypanosoma brucei*. **journal of Biological Chemistry**. v. 280, p. 2429-2438, 2005.

WAGNER, G.; YAMANAKA, L. E.; MOURA, H.; LÜCKEMEYER, D. D.; SCHILINDWEIN, A. D.; STOCO, P. H.; FERREIRA, H. B.; BARR, J. R.; STEINDEL, M.; GRISARD, E. C. The *Trypanosoma rangeli* trypomastigote surfaceome reveals novel proteins and targets for specific diagnosis. Journal of **Proteomics.** v. 82, p. 52-63, 2013.

WASHBURN, M. P.; ULASZEK, R. R.; YATES, J. R. Reproducibility of quantitative proteomic analyses of complex biological mixtures by multidimensional protein identification technology. **Analytical Chemistry**. v. 75, n. 19, p. 5054-5061, 2003.

WILKINS, M. R.; SANCHEZ, J.-C.; GOOLEY, A. A.; APPEL, R. D.; HUMPHERY-SMITH, J.; HOCHSTRASSER, D. F.; WILLIAMS, K. Progress with Proteome Projects: Why all proteins pxpressed by a genome should be identified and how to do It. **Biotechnology and Genetic Engeneering Reviews**. v. 13, p. 19-50, 1995. WILKINS, M. R.; SANCHEZ, J.-C.; GOOLEY, A. A.; APPEL, R. D.; HUMPHERY-SMITH, J.; HOCHSTRASSER, D. F.; WILLIAMS, K. Progress with Proteome Projects: Why all proteins pxpressed by a genome should be identified and how to do It. **Biotechnology and Genetic Engeneering Reviews**. v. 13, p. 19-50, 1996.

WILLERT, E. K.; PHILLIPS, M. A. Regulated expression of an essential allosteric activator of polyamine biosynthesis in African Trypanosomes. **Plos Pathogens**. v. 4, n. 10, p. 1-12, 2008.

ZÍKOVÁ, A.; KOPECNÁ, J.; SCHUMACHER, M. A.; STUART, K.; TRANTÍREKA, L.; LUKES, J. Structure and function of the native and recombinant mitochondrial MRP1/MRP2 complex from *Trypanosoma brucei*. International Journal for Parasitology. v. 38, p. 901-912, 2008.

APÊNDICE

APÊNDICE A

A.1.	Tabela	contendo	todas as	proteínas	identificadas	pelas três	abordagens	proteômicas	urilizadas	neste estudo.
				1		1	0	1		

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1	3-hydroxy-3-methylglutaryl-CoA reductase	TR00190	46 kDa	1DE	0	Mitocôndria
2	3-methylcrotonyl-CoA carboxylase	TR02338	74 kDa	1DE	0	Mitocôndria
3	actin interacting protein-like protein	TR05426	39 kDa	1DE / gel free	0	Mitocôndria
4	adenylate kinase	TR03040	22 kDa	1DE	0	Citosol
5	cytochrome b-domain protein	TR06233	25 kDa	1DE	0	Citosol
6	cytochrome c oxidase subunit IX	TR03705	14 kDa	1DE	0	Mitocôndria
7	cytochrome P450	TR01631	67 kDa	1DE	0	Citosol
8	deoxyhypusine synthase	TR04560	51 kDa	1DE	0	Extracelular
9	dihydrolipoamide dehydrogenase	TR04319	64 kDa	1DE	0	Mitocôndria
10	DnaJ chaperone protein	TR00466	84 kDa	1DE	0	Complexo de Golgi
11	d-xylulose reductase	TR02795	37 kDa	1DE	0	Membrana Plasmática
12	fatty acid desaturase	TR06644	35 kDa	1DE / gel free	0	Citosol
13	gamma-glutamylcysteine synthetase	TR05917	78 kDa	1DE	0	Citosol
14	glutathione synthetase	TR04279	58 kDa	1DE	0	Citosol Núcleo
15	heat shock protein DnaJ	TR03944	36 kDa	1DE	0	Extracelular

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
16	helicase	TR04665	109 kDa	1DE	0	Citosol
17	hypothetical protein	TR00016	31 kDa	1DE	0	Extracelular
18	hypothetical protein	TR00235	32 kDa	1DE / gel free	0	Citosol Núcleo
19	hypothetical protein	TR00360	22 kDa	1DE	0	Mitocôndria
20	hypothetical protein	TR00550	26 kDa	1DE	0	Extracelular
21	hypothetical protein	TR00595	24 kDa	1DE	0	Extracelular
22	hypothetical protein	TR00628	19 kDa	1DE	0	Extracelular
23	hypothetical protein	TR00722	16 kDa	1DE	0	Núcleo
24	hypothetical protein	TR00861	25 kDa	1DE	0	Núcleo
25	hypothetical protein	TR01072	17 kDa	1DE	0	Extracelular
26	hypothetical protein	TR01085	56 kDa	1DE	0	Citosol
27	hypothetical protein	TR01272	23 kDa	1DE	0	Núcleo
28	hypothetical protein	TR01281	30 kDa	1DE	0	Citosol Núcleo
29	hypothetical protein	TR01748	66 kDa	1DE	0	Citosol
30	hypothetical protein	TR02085	14 kDa	1DE	0	Citosol
31	hypothetical protein	TR02110	89 kDa	1DE	0	Núcleo
32	hypothetical protein	TR02337	58 kDa	1DE	0	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
33	hypothetical protein	TR02339	25 kDa	1DE	0	Citosol
34	hypothetical protein	TR02343	68 kDa	1DE / gel free	0	Membrana Plasmática
35	hypothetical protein	TR02400	27 kDa	1DE	0	Extracelular
36	hypothetical protein	TR02567	94 kDa	1DE	0	Mitocôndria
37	hypothetical protein	TR02579	78 kDa	1DE	0	Núcleo
38	hypothetical protein	TR02603	25 kDa	1DE	0	Mitocôndria
39	hypothetical protein	TR03827	70 kDa	1DE	0	Citosol Núcleo
40	hypothetical protein	TR03939	67 kDa	1DE	0	Mitocôndria
41	hypothetical protein	TR04141	49 kDa	1DE	0	Citosol
42	hypothetical protein	TR04216	62 kDa	1DE	0	Núcleo
43	hypothetical protein	TR04264	20 kDa	1DE	0	Extracelular
44	hypothetical protein	TR04632	147 kDa	1DE	0	Citosol
45	hypothetical protein	TR04964	21 kDa	1DE	0	Citosol
46	hypothetical protein	TR05529	32 kDa	1DE	0	Núcleo
47	hypothetical protein	TR05560	32 kDa	1DE	0	Citosol
48	hypothetical protein	TR05710	19 kDa	1DE	0	Núcleo
49	hypothetical protein	TR05976	44 kDa	1DE	0	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
50	hypothetical protein	TR06236	59 kDa	1DE	0	Núcleo
51	hypothetical protein	TR06309	43 kDa	1DE	0	Citosol
52	hypothetical protein	TR06513	51 kDa	1DE	0	Membrana Plasmática
53	hypothetical protein	TR06580	257 kDa	1DE	0	Membrana Plasmática
54	hypothetical protein	TR06584	55 kDa	1DE	0	Membrana Plasmática
55	hypothetical protein	TR06656	380 kDa	1DE	0	Membrana Plasmática
56	hypothetical protein	TR07288	42 kDa	1DE	0	Citosol Núcleo
57	kinesin	TR03704	32 kDa	1DE / gel free	0	Citoesqueleto
58	lipin	TR00717	93 kDa	1DE	0	Núcleo
59	mercaptopyruvate sulfurtransferase	TR06408	48 kDa	1DE	0	Extracelular
60	methyltransferase	TR01481	45 kDa	1DE	0	Extracelular
61	nitrilase	TR03647	31 kDa	1DE	0	Mitocôndria
62	O-sialoglycoprotein endopeptidase	TR06640	40 kDa	1DE	0	Mitocôndria
63	oxidoreductase	TR03783	36 kDa	1DE / gel free	0	Mitocôndria
64	pantothenate kinase subunit	TR04937	163 kDa	1DE	0	Membrana Plasmática
65	peroxin 14	TR04145	41 kDa	1DE	0	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
66	peroxisome biogenesis factor 1	TR03995	101 kDa	1DE	0	Citosol
67	pumilio/PUF RNA binding protein 2	TR01907	100 kDa	1DE	0	Núcleo
68	ribosomal P protein AGP2beta-1	TR06483	19 kDa	1DE	0	Citosol
69	ribulose-phosphate 3-epimerase	TR02591	24 kDa	1DE	0	Citosol
70	signal recognition particle receptor like protein	TR02006	63 kDa	1DE	0	Citosol
71	threonine dehydratase-like protein	TR01154	15 kDa	1DE	0	Citosol
72	TPR-repeat protein	TR00045	62 kDa	1DE	0	Retículo Endoplasmático
73	translation initiation factor	TR05217	38 kDa	1DE	0	Núcleo
74	trans-sialidase	TR07108	44 kDa	1DE	0	Extracelular
75	ubiquinone biosynthesis methyltransferase	TR02714	33 kDa	1DE	0	Citosol
76	ubiquitin-like protein	TR03314	67 kDa	1DE	0	Núcleo
77	UDP-galactose 4-epimerase	TR03741	42 kDa	1DE	0	Mitocôndria
78	ATP-dependent DEAD/H RNA helicase	TR01766	107 kDa	1DE	2	Citosol
79	carnitine O-acetyltransferase	TR03288	61 kDa	1DE / gel free	0, 2	Núcleo
80	chaperone DnaJ protein	TR02336	54 kDa	1DE	2	Citosol
81	cyclin	TR06245	23 kDa	1DE	2	Citosol Núcleo
82	cyclophilin	TR01039	28 kDa	1DE	2	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
83	cyclophilin	TR02926	24 kDa	1DE	0, 2	Extracelular
84	cysteine protease	TR03961	48 kDa	1DE	2	Membrana Plasmática
85	cytochrome c oxidase VIII (COX VIII)	TR02037	19 kDa	1DE	0, 2	Mitocôndria
86	developmentally regulated GTP-binding protein	TR04532	41 kDa	1DE	2	Citosol
87	dihydrolipoamide acetyltransferase precursor	TR00468	48 kDa	1DE	2	Mitocôndria
88	dihydroxyacetone kinase 1	TR01006	62 kDa	1DE	0, 2	Núcleo
89	DNA-directed RNA polymerase, alpha subunit	TR02623	43 kDa	1DE	2	Citosol
90	endoribonuclease L-PSP (pb5)	TR01933	16 kDa	1DE	2	Mitocôndria
91	fatty acid desaturase	TR03593	47 kDa	1DE / gel free	0, 2	Mitocôndria
92	fatty acid elongase	TR04288	33 kDa	1DE	2	Citosol
93	fatty acyl CoA syntetase 1	TR00504	40 kDa	1DE	2	Citosol
94	FG-GAP repeat protein	TR02043	93 kDa	1DE	2	Membrana Plasmática
95	glutamamyl carboxypeptidase	TR06296	43 kDa	1DE / gel free	0, 2	Citosol
96	glutaminyl-tRNA synthetase	TR00668	67 kDa	1DE / gel free	0, 2	Citosol
97	glutaredoxin-like protein	TR00513	20 kDa	1DE	2	Mitocôndria
98	GMP synthase	TR02060	75 kDa	1DE	2	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
99	GPR1/FUN34/yaaH family	TR06254	30 kDa	1DE	2	Membrana Plasmática
100	hypothetical protein	TR00155	45 kDa	1DE	2	Membrana Plasmática
101	hypothetical protein	TR00480	31 kDa	1DE	2	Mitocôndria
102	hypothetical protein	TR00573	116 kDa	1DE	2	Núcleo
103	hypothetical protein	TR00822	91 kDa	1DE	2	Núcleo
104	hypothetical protein	TR00869	140 kDa	1DE	2	Citosol
105	hypothetical protein	TR01047	16 kDa	1DE	0, 2	Mitocôndria
106	hypothetical protein	TR01286	71 kDa	1DE	2	Núcleo
107	hypothetical protein	TR01330	58 kDa	1DE	2	Extracelular
108	hypothetical protein	TR01375	38 kDa	1DE	2	Extracelular
109	hypothetical protein	TR01446	14 kDa	1DE	0, 2	Núcleo
110	hypothetical protein	TR01851	65 kDa	1DE	2	Membrana Plasmática
111	hypothetical protein	TR01999	16 kDa	1DE	0, 2	Citosol
112	hypothetical protein	TR02003	102 kDa	1DE	2	Citosol Núcleo
113	hypothetical protein	TR02099	81 kDa	1DE	2	Núcleo
114	hypothetical protein	TR02219	129 kDa	1DE	2	Citosol
115	hypothetical protein	TR02299	154 kDa	1DE	2	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
116	hypothetical protein	TR02307	89 kDa	1DE	2	Citosol
117	hypothetical protein	TR02348	24 kDa	1DE	2	Membrana Plasmática
118	hypothetical protein	TR02439	33 kDa	1DE	2	Citosol
119	hypothetical protein	TR02618	14 kDa	1DE	2	Mitocôndria
120	hypothetical protein	TR02907	117 kDa	1DE	2	Membrana Plasmática
121	hypothetical protein	TR02968	65 kDa	1DE	2	Citosol
122	hypothetical protein	TR03471	60 kDa	1DE	2	Núcleo
123	hypothetical protein	TR03661	40 kDa	1DE	0, 2	Núcleo
124	hypothetical protein	TR03712	155 kDa	1DE	2	Núcleo
125	hypothetical protein	TR03801	15 kDa	1DE	2	Extracelular
126	hypothetical protein	TR03819	145 kDa	1DE	2	Membrana Plasmática
127	hypothetical protein	TR03980	15 kDa	1DE	2	Mitocôndria
128	hypothetical protein	TR04095	17 kDa	1DE	0, 2	Citosol Núcleo
129	hypothetical protein	TR04135	57 kDa	1DE	2	Núcleo
130	hypothetical protein	TR04160	23 kDa	1DE	2	Núcleo
131	hypothetical protein	TR04254	33 kDa	1DE / gel free	0, 2	Citosol
132	hypothetical protein	TR04538	179 kDa	1DE	2	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
133	hypothetical protein	TR04759	16 kDa	1DE	2	Extracelular
134	hypothetical protein	TR04782	191 kDa	1DE	2	Membrana Plasmática
135	hypothetical protein	TR04836	37 kDa	1DE	0, 2	Citosol Núcleo
136	hypothetical protein	TR04923	34 kDa	1DE	2	Membrana Plasmática
137	hypothetical protein	TR04936	41 kDa	1DE	0, 2	Mitocôndria
138	hypothetical protein	TR04966	28 kDa	1DE	2	Mitocôndria
139	hypothetical protein	TR05033	27 kDa	1DE	2	Citosol
140	hypothetical protein	TR05183	55 kDa	1DE	2	Mitocôndria
141	hypothetical protein	TR05345	39 kDa	1DE	2	Extracelular
142	hypothetical protein	TR05423	104 kDa	1DE	2	Citosol
143	hypothetical protein	TR05484	128 kDa	1DE	0, 2	Membrana Plasmática
144	hypothetical protein	TR05527	18 kDa	1DE	2	Núcleo
145	hypothetical protein	TR05986	62 kDa	1DE	2	Citosol
146	hypothetical protein	TR06336	193 kDa	1DE	2	Mitocôndria
147	hypothetical protein	TR06788	18 kDa	1DE	0, 2	Citosol
148	hypothetical protein	TR06883	17 kDa	1DE	2	Citoesqueleto
148	hypothetical protein	TR06939	464 kDa	1DE	0, 2	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
150	hypothetical protein	TR06941	485 kDa	1DE	2	Membrana Plasmática
151	hypothetical protein	TR06954	65 kDa	1DE	2	Membrana Plasmática
152	iron-sulfur cluster assembly protein	TR01562	18 kDa	1DE	2	Mitocôndria
153	kinesin	TR02206	122 kDa	1DE	2	Núcleo
154	lanosterol 14-alpha-demethylase	TR01535	60 kDa	1DE / gel free	0, 2	Mitocôndria
155	malate dehydrogenase	TR03544	38 kDa	1DE	0, 2	Mitocôndria
156	mevalonate kinase	TR04986	35 kDa	1DE	0, 2	Mitocôndria
157	mitochondrial DNA topoisomerase II	TR02138	138 kDa	1DE	0, 2	Citosol
158	mitochondrial elongation factor G	TR05983	84 kDa	1DE	2	Mitocôndria
159	mitochondrial import inner membrane translocase subunit Tim17	TR02497	16 kDa	1DE	2	Citosol
160	multidrug resistance protein E	TR06921	148 kDa	1DE	2	Membrana Plasmática
161	nucleolar complex protein 2	TR01438	51 kDa	1DE	2	Mitocôndria
162	peptidase T	TR02511	47 kDa	1DE	0, 2	Citosol
163	peptide-methionine (S)-S-oxide reductase	TR05106	17 kDa	1DE	2	Mitocôndria
164	peptidyl-prolyl cis-trans isomerase	TR00788	12 kDa	1DE	0, 2	Mitocôndria
165	peroxisomal membrane protein 4	TR02822	29 kDa	1DE	2	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
166	peroxisome assembly protein	TR01371	110 kDa	1DE	0, 2	Mitocôndria
167	phosphatidylinositol kinase related TOR-like 1	TR06093	292 kDa	1DE	0, 2	Citosol
168	pre-mRNA-processing factor 8	TR02457	185 kDa	1DE	0, 2	Núcleo
169	proliferative cell nuclear antigen (PCNA)	TR04562	32 kDa	1DE / gel free	2	Núcleo
170	protein disulfide isomerase	TR00993	16 kDa	1DE	0, 2	Extracelular
171	protein kinase	TR05956	127 kDa	1DE	0, 2	Membrana Plasmática
172	Protein with unknown function	TR02288	14 kDa	1DE / gel free	2	Mitocôndria
173	receptor-type adenylate cyclase	TR07036	56 kDa	1DE	2	Membrana Plasmática
174	replication factor A, 51kDa subunit	TR03281	52 kDa	1DE	2	Citosol
175	rhomboid-like protein	TR04387	36 kDa	1DE	2	Membrana Plasmática
176	ribonuclease II-like protein	TR06650	101 kDa	1DE	2	Núcleo
177	S-adenosylmethionine decarboxylase proenzyme	TR03913	42 kDa	2DE	2	Mitocôndria
178	serine/threonine protein kinase	TR01673	33 kDa	1DE	0, 2	Citosol
179	serine/threonine protein phosphatase type 5	TR01305	53 kDa	1DE / gel free	0, 2	Citosol
180	structural maintenance of chromosome 3 protein	TR04549	138 kDa	1DE	0, 2	Mitocôndria
181	telomerase-associated protein	TR06699	175 kDa	1DE	0, 2	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
182	trafficking protein particle complex subunit 3	TR03780	21 kDa	1DE	0, 2	Citosol
183	translation initiation factor	TR06124	52 kDa	1DE	2	Citosol
184	Trans-sialidase	TR06873	70 kDa	1DE	0, 2	Retículo Endoplasmático
185	tryparedoxin	TR02786	22 kDa	1DE	2	Núcleo
186	U-box domain protein	TR00418	48 kDa	1DE	2	Citosol Núcleo
187	vesicule-associated membrane protein	TR03856	27 kDa	1DE	0, 2	Citosol
188	zinc-finger protein ZPR1	TR06240	52 kDa	1DE/ gelfree	0, 2	Citosol
189	ABC transporter	TR02072	71 kDa	1DE	4	Membrana Plasmática
190	acyl-CoA dehydrogenase	TR02224	69 kDa	1DE	4	Mitocôndria
191	ATP-dependent RNA helicase	TR04252	80 kDa	1DE	4	Retículo Endoplasmático
192	calmodulin	TR01889	17 kDa	gel free	4	Citoesqueleto
193	enoyl-CoA hydratase, mitochondrial precursor	TR05658	28 kDa	1DE	4	Mitocôndria
194	eukaryotic release factor 3	TR00938	59 kDa	1-D	4	Citosol Núcleo
195	glycerol-3-phosphate dehydrogenase	TR03201	67 kDa	1DE	4	Mitocôndria
196	glycine dehydrogenase	TR00769	106 kDa	1DE	0, 4	Mitocôndria
197	hypothetical protein	TR00381	31 kDa	1DE	0, 4	Extracelular
199	hypothetical protein	TR00808	27 kDa	1DE	4	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
200	hypothetical protein	TR00826	102 kDa	1DE	4	Mitocôndria
201	hypothetical protein	TR00873	62 kDa	1DE	4	Membrana Plasmática
202	hypothetical protein	TR01142	34 kDa	1DE	4	Mitocôndria
203	hypothetical protein	TR01441	94 kDa	1DE	4	Citosol
204	hypothetical protein	TR01456	25 kDa	1DE	4	Membrana Plasmática
205	hypothetical protein	TR01533	103 kDa	1DE	4	Membrana Plasmática
206	hypothetical protein	TR01612	98 kDa	1DE	4	Citosol
207	hypothetical protein	TR01734	20 kDa	1DE	4	Extracelular
208	hypothetical protein	TR01765	25 kDa	1DE	4	Citosol
209	hypothetical protein	TR01935	15 kDa	1DE	4	Extracelular
210	hypothetical protein	TR02522	65 kDa	1DE	4	Mitocôndria
211	hypothetical protein	TR02544	32 kDa	1DE	4	Núcleo
212	hypothetical protein	TR02607	63 kDa	1DE	4	Citosol
213	hypothetical protein	TR02878	140 kDa	1DE	4	Citosol
214	hypothetical protein	TR03258	44 kDa	1DE	0, 4	Núcleo
215	hypothetical protein	TR03271	29 kDa	1DE	0, 4	Citosol Núcleo
216	hypothetical protein	TR03339	29 kDa	1DE	4	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
217	hypothetical protein	TR03559	15 kDa	1DE	0, 4	Extracelular
218	hypothetical protein	TR03781	120 kDa	1DE	0, 4	Citosol
219	hypothetical protein	TR03806	27 kDa	1DE	4	Mitocôndria
220	hypothetical protein	TR03888	144 kDa	1DE	0,4	Mitocôndria
221	hypothetical protein	TR03976	155 kDa	1DE	4	Membrana Plasmática
222	hypothetical protein	TR04073	27 kDa	1DE	0, 4	Citosol Núcleo
223	hypothetical protein	TR04691	49 kDa	1DE	4	Extracelular
224	hypothetical protein	TR04791	118 kDa	1DE	0, 4	Núcleo
225	hypothetical protein	TR04828	28 kDa	1DE	4	Citosol
226	hypothetical protein	TR05431	20 kDa	1DE	4	Citosol
227	hypothetical protein	TR05550	15 kDa	1DE	0, 4	Membrana Plasmática
228	hypothetical protein	TR05722	149 kDa	1DE	4	Extracelular Membrana Plasmática
229	hypothetical protein	TR05751	37 kDa	1DE	0, 4	Citosol
230	hypothetical protein	TR05898	18 kDa	1DE	4	Mitocôndria
231	hypothetical protein	TR06192	70 kDa	1DE	0, 4	Retículo Endoplasmático
232	hypothetical protein	TR06241	13 kDa	1DE	4	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
233	kinesin	TR04991	93 kDa	1DE	4	Mitocôndria
234	kinetoplast DNA-associated protein	TR05866	21 kDa	1DE	4	Mitocôndria
235	mago nashi-like protein	TR05908	19 kDa	1DE	4	Citosol
236	mannosyl-oligosaccharide 1,2-alpha- mannosidase IB	TR05406	56 kDa	1DE	4	Extracelular
237	MCAK-like kinesin	TR05687	53 kDa	1DE	4	Citosol
238	mitochondrial DNA polymerase I protein B	TR06113	159 kDa	1DE	4	Mitocôndria
239	NAD(P)-dependent oxidoreductase	TR03303	33 kDa	1DE	0, 4	Extracelular
240	OSM3-like kinesin	TR00581	130 kDa	1DE	4	Citosol
241	paraflagellar rod protein	TR01222	33 kDa	1DE	4	Citosol
242	phosphotransferase	TR07043	61 kDa	1DE	4	Mitocôndria Núcleo
243	prolyl oligopeptidase	TR05371	78 kDa	1DE	0, 4	Núcleo
244	proteasome beta-1 subunit	TR04407	31 kDa	1DE	0,4	Citosol Núcleo
245	proteasome regulatory ATPase subunit	TR00955	45 kDa	1DE	4	Citosol
246	Protein with unknown function	TR00728	54 kDa	1DE	4	Mitocôndria
247	ribose-phosphate pyrophosphokinase	TR04952	82 kDa	1DE	0,4	Citosol
248	sedoheptulose-1,7-bisphosphatase	TR02909	35 kDa	1DE	0,4	Núcleo
249	T-lymphocyte triggering factor	TR03641	54 kDa	1DE	4	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
250	trans-sialidase	TR07185	37 kDa	1DE	4	Mitocôndria
251	tubulin binding protein cofactor A-like protein	TR04019	15 kDa	1DE / gel free	0, 4	Citosol
252	ubiquitin-conjugating enzyme E2	TR01971	25 kDa	1DE	0, 4	Citosol
253	ubiquitin-conjugating enzyme protein	TR02384	28 kDa	1DE	4	Núcleo
	3-methylcrotonoyl-CoA carboxylase beta subunit	TR04558	67 kDa	1DE	0, 2, 4	Membrana Plasmática
254	60S ribosomal protein L37	TR02574	10 kDa	Gel free	2,4	Citosol
255	6-phosphogluconolactonase	TR00319	29 kDa	1DE	0, 2, 4	Citosol
256	AAA ATPase	TR02406	140 kDa	1DE	0, 2, 4	Mitocôndria
257	ABC transporter	TR06478	206 kDa	1DE	2,4	Membrana Plasmática
258	acidocalcisomal pyrophosphatase	TR03555	48 kDa	1DE	6	Citosol
259	acyl-CoA binding protein	TR04072	83 kDa	1DE	6	Membrana Plasmática
260	acyltransferase	TR03049	34 kDa	1DE	0, 2, 4	Membrana Plasmática
261	ADP-ribosylation factor	TR00574	21 kDa	1DE	0, 2, 4	Citosol
262	arginase	TR05977	33 kDa	1DE	0, 2, 4	Citosol
263	aspartyl-tRNA synthetase	TR06488	32 kDa	1DE	2,4	Citoesqueleto
264	ATP-binding protein cassette protein	TR01030	77 kDa	1DE	2,4	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
265	clathrin coat assembly protein	TR01470	56 kDa	1DE / gel free	0,6	Citosol
266	cystinosin	TR04169	42 kDa	1DE	0, 2, 4	Membrana Plasmática
267	delta-adaptin	TR02391	36 kDa	1DE	6	Citosol
268	deoxyuridine triphosphatase	TR02843	32 kDa	1DE	2,4	Citosol
269	dihydrolipoamide acetyltransferase	TR00830	28 kDa	1DE	6	Mitocôndria
270	DNA topoisomerase III	TR07169	95 kDa	1DE	0,6	Citosol Núcleo
271	DNA-directed RNA polymerase I largest subunit	TR04242	204 kDa	1DE	2,4	Citosol
272	electron transfer flavoprotein	TR06341	30 kDa	1DE	2,4	Mitocôndria
273	electron-transfer-flavoprotein, alpha polypeptide	TR03871	33 kDa	1DE / gel free	0, 2, 4	Mitocôndria
274	elongation factor	TR05906	76 kDa	1DE	2,4	Retículo Endoplasmático
275	endoplasmatic reticulum retrieval protein	TR02422	14 kDa	1DE	6	Extracelular
276	enoyl-CoA hydratase/isomerase family protein	TR05930	30 kDa	1DE	0, 2, 4	Mitocôndria
277	eukaryotic translation initiation factor 3 (eIF- 3) interacting protein	TR03933	56 kDa	1DE	0, 6	Citosol
278	glucose-6-phosphate 1-dehydrogenase	TR06495	39 kDa	1DE	2,4	Citosol
279	GPI inositol deacylase precursor	TR04373	63 kDa	1DE	6	Complexo de Golgi
280	guanylate kinase	TR04148	24 kDa	1DE	6	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
281	heat shock protein HslVU, ATPase subunit HslU	TR01986	54 kDa	1DE	2,4	Mitocôndria
282	histidyl-tRNA synthetase	TR01739	53 kDa	1DE	6	Citosol
283	hypothetical protein	TR00153	40 kDa	1DE	6	Citosol
284	hypothetical protein	TR00313	12 kDa	1DE	6	Extracelular
285	hypothetical protein	TR00333	61 kDa	1DE	6	Citosol Núcleo
286	hypothetical protein	TR00996	82 kDa	1DE	6	Citosol
287	hypothetical protein	TR01115	17 kDa	1DE / gel free	0, 2, 4	Mitocôndria
288	hypothetical protein	TR01163	173 kDa	1DE	6	Membrana Plasmática
289	hypothetical protein	TR01220	87 kDa	1DE	0, 2, 4	Membrana Plasmática
290	hypothetical protein	TR01232	24 kDa	1DE	2,4	Mitocôndria
291	hypothetical protein	TR01377	37 kDa	1DE	2,4	Citosol
292	hypothetical protein	TR01475	81 kDa	1DE	6	Núcleo
293	hypothetical protein	TR01524	84 kDa	1DE	6	Citosol
294	hypothetical protein	TR01584	44 kDa	1DE	6	Membrana Plasmática
295	hypothetical protein	TR01698	71 kDa	1DE	0, 2, 4	Núcleo
296	hypothetical protein	TR01702	97 kDa	1DE	0, 2, 4	Citosol Núcleo
297	hypothetical protein	TR01715	18 kDa	1DE / gel free	0, 2, 4	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
298	hypothetical protein	TR01738	49 kDa	1DE	2,4	Citosol Núcleo
299	hypothetical protein	TR01827	27 kDa	1DE	2,4	Núcleo
300	hypothetical protein	TR01849	115 kDa	1DE	6	Mitocôndria
301	hypothetical protein	TR02079	23 kDa	1DE	6	Núcleo
302	hypothetical protein	TR02214	49 kDa	1DE	6	Membrana Plasmática
303	hypothetical protein	TR02258	62 kDa	1DE / gel free	2, 4	Citosol
304	hypothetical protein	TR02326	128 kDa	1DE	6	Citosol
305	hypothetical protein	TR02474	102 kDa	1DE	6	Núcleo
306	hypothetical protein	TR02493	40 kDa	1DE	6	Retículo Endoplasmático
307	hypothetical protein	TR02726	237 kDa	1DE	0, 2, 4	Membrana Plasmática
308	hypothetical protein	TR02816	46 kDa	1DE	6	Núcleo
309	hypothetical protein	TR02853	75 kDa	1DE	6	Citosol
310	hypothetical protein	TR03300	93 kDa	1DE	6	Membrana Plasmática
311	hypothetical protein	TR03598	14 kDa	1DE	2,4	Membrana Plasmática
312	hypothetical protein	TR03824	42 kDa	1DE	2, 4	Núcleo
313	hypothetical protein	TR04002	90 kDa	1DE / gel free	0, 2, 4	Citosol Núcleo

168			

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
314	hypothetical protein	TR04119	18 kDa	1DE	0, 2, 4	Citosol Núcleo
315	hypothetical protein	TR04225	94 kDa	1DE	6	Citosol
316	hypothetical protein	TR04392	22 kDa	1DE / gel free	0, 2, 4	Citosol Núcleo
317	hypothetical protein	TR04474	65 kDa	1DE	0, 6	Mitocôndria
318	hypothetical protein	TR04497	21 kDa	1DE	6	Citosol
319	hypothetical protein	TR04662	12 kDa	1DE / gel free	0, 2, 4	Extracelular
320	hypothetical protein	TR04866	22 kDa	1DE / gel free	0, 2, 4	Mitocôndria
321	hypothetical protein	TR04955	41 kDa	1DE	6	Citosol Núcleo
322	hypothetical protein	TR05084	56 kDa	1DE / gel free	0, 2, 4	Núcleo
323	hypothetical protein	TR05174	138 kDa	1DE	6	Núcleo
324	hypothetical protein	TR05248	12 kDa	1DE	0,6	Extracelular
325	hypothetical protein	TR05445	48 kDa	1DE	2,4	Mitocôndria
326	hypothetical protein	TR05620	36 kDa	1DE	0, 2, 4	Núcleo
327	hypothetical protein	TR05678	43 kDa	1DE	6	Extracelular
328	hypothetical protein	TR05697	54 kDa	1DE / gel free	0,6	Núcleo
329	hypothetical protein	TR05842	74 kDa	1DE	6	Membrana Plasmática
330	hypothetical protein	TR06085	43 kDa	1DE	6	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
331	hypothetical protein	TR06166	28 kDa	1DE / gel free	0, 2, 4	Citosol
332	hypothetical protein	TR06294	14 kDa	1DE	6	Mitocôndria
333	hypothetical protein	TR06514	195 kDa	1DE	0, 2, 4	Membrana Plasmática
334	hypothetical protein	TR06617	286 kDa	1DE	2,4	Membrana Plasmática
335	hypothetical protein	TR06659	281 kDa	1DE	2,4	Núcleo
336	hypothetical protein	TR07251	48 kDa	1DE	6	Núcleo
337	isopentenyl-diphosphate delta-isomerase	TR07101	39 kDa	1DE	2,4	Citosol
338	kinesin	TR01444	212 kDa	1DE	0, 2, 4	Citosol
338	kinesin	TR05621	76 kDa	1DE	0, 2, 4	Núcleo
340	kynureninase	TR03736	52 kDa	1DE	6	Mitocôndria
341	leucine rich	TR02575	74 kDa	1DE / gel free	0, 2, 4	Núcleo
342	methionine aminopeptidase 2	TR03897	52 kDa	1DE	6	Citosol
343	mitochondrial carrier protein	TR04354	35 kDa	1DE / gel free	0, 2, 4	Citosol
344	myo-inositol-1-phosphate synthase	TR01103	62 kDa	1DE / gel free	0, 2, 4	Peroxisomo
345	N-acetyltransferase subunit Nat1	TR01853	82 kDa	1DE	2,4	Núcleo
346	nucleolar protein	TR00978	68 kDa	1DE	2,4	Retículo Endoplasmático
347	nucleolar RNA helicase II	TR05524	71 kDa	1DE	2,4	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
348	nucleoside diphosphate kinase	TR00874	39 kDa	1DE	6	Citosol
349	nucleoside transporter	TR00386	49 kDa	1DE	0, 2, 4	Membrana Plasmática
350	oxidoreductase-protein	TR00080	22 kDa	1DE	6	Mitocôndria
351	paraflagellar rod protein	TR01948	63 kDa	1DE	6	Citosol
352	PAS-domain containing phosphoglycerate kinase	TR04456	58 kDa	1DE	0, 2, 4	Citosol
353	peptidyl-prolyl cis-trans isomerase NIMA- interacting 4	TR06563	13 kDa	1DE	6	Citosol
354	phosphatidylinositol kinase related TOR1	TR06561	273 kDa	1DE	0, 2, 4	Núcleo
355	phosphoribosylpyrophosphate synthetase	TR02929	43 kDa	1DE	6	Citosol Núcleo
356	protein farnesyltransferase	TR02648	64 kDa	1DE	6	Núcleo
357	protein kinase	TR06510	76 kDa	1DE	0,6	Núcleo
358	Protein with unknown function	TR00422	9 kDa	1DE	6	Extracelular
359	pumilio-repeat, RNA-binding protein	TR01606	78 kDa	1DE	2,4	Núcleo
360	ribonuclease mar1	TR00916	21 kDa	1DE	0, 2, 4	Mitocôndria
361	RNA polymerase I second largest subunit	TR03682	179 kDa	1DE	0, 2, 4	Núcleo
362	serine/threonine protein kinase	TR05729	45 kDa	1DE / gel free	2,4	Citosol Núcleo
363	signal peptidase protein type I	TR02668	23 kDa	1DE	6	Citosol
364	small nuclear ribonucleoprotein Sm-G	TR02253	9 kDa	1DE	6	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
365	structural maintenance of chromosome (SMC) family protein	TR03118	143 kDa	1DE	0, 2, 4	Citosol
366	surface protease GP63	TR07141	66 kDa	1DE / gel free	0, 2, 4	Mitocôndria
367	syntaxin	TR06065	35 kDa	1DE	6	Citosol
368	tRNA exportin	TR03220	123 kDa	1DE	2,4	Citosol
369	ubiquitin-activating enzyme E1	TR01716	55 kDa	1DE	0, 2, 4	Membrana Plasmática
370	ADP-ribosylation factor	TR00687	21 kDa	1DE	0, 2, 6	Mitocôndria
371	aspartyl-tRNA synthetase	TR05583	22 kDa	1DE / gel free	2, 6	Mitocôndria
372	ATP-dependent RNA helicase DDX5/DBP2	TR04711	66 kDa	1DE	2, 6	Núcleo
373	ATP-dependent zinc metallopeptidase	TR05030	65 kDa	1DE	2, 6	Núcleo
374	cleavage and polyadenylation specificity factor	TR04999	159 kDa	1DE	2,6	Citosol
375	deoxyhypusine synthase	TR00528	38 kDa	1DE	0, 2, 6	Citosol
376	dynein light chain	TR00988	11 kDa	1DE	8	Citosol
377	dynein light chain lc6, flagellar outer arm	TR04795	11 kDa	1DE	8	Citosol
378	endoplasmic reticulum oxidoreductin	TR05034	52 kDa	1DE	0, 8	Extracelular
379	heat shock protein HslVU, ATPase subunit HslU	TR04483	52 kDa	1DE / gel free	0, 2, 6	Mitocôndria
380	hypothetical protein	TR00127	56 kDa	1DE	8	Núcleo
381	hypothetical protein	TR00191	48 kDa	1DE	8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
382	hypothetical protein	TR00198	53 kDa	1DE	8	Núcleo
383	hypothetical protein	TR00218	31 kDa	1DE	2,6	Citosol
384	hypothetical protein	TR00383	100 kDa	1DE	0, 8	Núcleo
385	hypothetical protein	TR00723	113 kDa	1DE	8	Núcleo
386	hypothetical protein	TR00790	17 kDa	1DE	8	Extracelular
387	hypothetical protein	TR00911	124 kDa	1DE	8	Extracelular
388	hypothetical protein	TR00939	27 kDa	1DE	8	Mitocôndria
389	hypothetical protein	TR01084	181 kDa	1DE	0, 8	Citosol
390	hypothetical protein	TR01095	99 kDa	1DE	8	Membrana Plasmática
391	hypothetical protein	TR01448	16 kDa	1DE	2,6	Membrana Plasmática
392	hypothetical protein	TR01554	13 kDa	1DE	0, 2, 6	Membrana Plasmática
393	hypothetical protein	TR01615	14 kDa	1DE / gel free	0, 8	Citosol Núcleo
394	hypothetical protein	TR01879	42 kDa	1DE	8	Citosol Núcleo
395	hypothetical protein	TR01946	22 kDa	1DE / gel free	0, 8	Citosol
396	hypothetical protein	TR01973	27 kDa	1DE	8	Citosol
397	hypothetical protein	TR02004	30 kDa	1DE	2,6	Citosol
398	hypothetical protein	TR02106	29 kDa	1DE	8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
399	hypothetical protein	TR02203	118 kDa	1DE	8	Mitocôndria
400	hypothetical protein	TR02212	37 kDa	1DE / gel free	0, 2, 6	Membrana Plasmática
401	hypothetical protein	TR02488	29 kDa	1DE	8	Citosol
402	hypothetical protein	TR02491	34 kDa	1DE	8	Citosol Núcleo
403	hypothetical protein	TR02505	71 kDa	1DE	8	Mitocôndria
404	hypothetical protein	TR02519	83 kDa	1DE	0, 8	Citosol
405	hypothetical protein	TR02521	104 kDa	1DE	8	Citosol
406	hypothetical protein	TR02992	16 kDa	1DE	8	Mitocôndria
407	hypothetical protein	TR03112	11 kDa	1DE	8	Membrana Plasmática
408	hypothetical protein	TR03377	67 kDa	1DE	2,6	Citosol
409	hypothetical protein	TR03527	13 kDa	1DE	8	Extracelular
410	hypothetical protein	TR03537	23 kDa	1DE	8	Núcleo
411	hypothetical protein	TR03779	57 kDa	1DE	8	Núcleo
412	hypothetical protein	TR04067	104 kDa	1DE	0, 8	Citosol
413	hypothetical protein	TR04906	171 kDa	1DE	0, 2, 6	Membrana Plasmática
414	hypothetical protein	TR04958	55 kDa	1DE	0, 2, 6	Mitocôndria
415	hypothetical protein	TR05201	8 kDa	1DE	8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
416	hypothetical protein	TR05428	98 kDa	1DE	8	Núcleo
417	hypothetical protein	TR05619	120 kDa	1DE	2,6	Núcleo
418	hypothetical protein	TR05689	13 kDa	1DE	8	Citosol
419	hypothetical protein	TR05755	27 kDa	1DE	8	Núcleo
420	hypothetical protein	TR05830	11 kDa	1DE	8	Extracelular
421	hypothetical protein	TR06311	106 kDa	1DE	2,6	Núcleo
422	hypothetical protein	TR06511	52 kDa	1DE	8	Núcleo
423	hypothetical protein	TR06529	188 kDa	1DE	0, 2, 6	Membrana Plasmática
424	hypothetical protein	TR06631	23 kDa	1DE	8	Extracelular
425	hypothetical protein	TR06837	44 kDa	1DE	8	Núcleo
426	mitogen activated protein kinase	TR04475	48 kDa	1DE	8	Citosol
427	multidrug resistance protein A	TR06843	172 kDa	1DE	0, 2, 6	Membrana Plasmática
428	N-acetylglucosamine-6-phosphate deacetylase-like protein	TR02565	47 kDa	1DE	0, 2, 6	Mitocôndria
429	phosphoinositide-specific phospholipase C	TR06642	80 kDa	1DE	8	Mitocôndria Núcleo
430	phosphonopyruvate decarboxylase	TR03822	47 kDa	1DE	0, 8	Extracelular
431	protein transport protein Sec23	TR00644	97 kDa	1DE	8	Núcleo
432	Protein with unknown function	TR00856	12 kDa	1DE	8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
433	Protein with unknown function	TR04220	15 kDa	1DE / gel free	0, 2, 6	Mitocôndria
434	Protein with unknown function	TR05525	42 kDa	1DE	2,6	Núcleo
435	RNA editing complex protein MP63	TR01506	65 kDa	1DE	8	Núcleo
436	small GTP-binding protein Rab18	TR01267	24 kDa	1DE	8	Mitocôndria
437	small nuclear ribonucleoprotein Sm-F	TR05170	8 kDa	1DE	8	Citosol
438	SNF-7-like protein	TR05970	25 kDa	1DE	8	Mitocôndria
439	surface protease GP63	TR07054	38 kDa	1DE	8	Mitocôndria
440	ubiquitin hydrolase	TR01462	134 kDa	1DE	0, 2, 6	Citosol
441	ubiquitin-conjugating enzyme variant Kua like proteinue	TR00105	31 kDa	1DE	0, 8	Membrana Plasmática
442	vacuolar ATP synthase	TR00228	20 kDa	1DE	2,6	Membrana Plasmática
443	vacuolar transporter chaperone [T.rangeli]	TR03978	20 kDa	1DE	2,6	Membrana Plasmática
444	aminopeptidase	TR03293	60 kDa	1DE / gel free	0, 2, 8	Núcleo
445	calpain-like cysteine peptidase	TR00426	17 kDa	1DE	0, 4, 6	Mitocôndria
446	chaperone DnaJ protein	TR03846	23 kDa	1DE / gel free	2, 8	Mitocôndria
447	glycosylphosphatidylinositol (GPI) anchor	TR01942	43 kDa	1DE / gel free	4,6	Citosol
448	guanine deaminase	TR02197	51 kDa	1DE	2, 8	Citoesqueleto
449	H+-transporting ATPase	TR07115	57 kDa	1DE / gel free	0, 4, 6	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
450	hypothetical protein	TR00227	23 kDa	1DE	2, 8	Citosol
451	hypothetical protein	TR01626	109 kDa	1DE	2, 8	Núcleo
452	hypothetical protein	TR02067	40 kDa	1DE	2, 8	Citosol
453	hypothetical protein	TR02377	28 kDa	1DE	0, 2, 8	Mitocôndria
454	hypothetical protein	TR02730	50 kDa	1DE / gel free	2, 8	Mitocôndria
455	hypothetical protein	TR02876	143 kDa	1DE	4,6	Núcleo
456	hypothetical protein	TR02896	141 kDa	1DE	0, 2, 8	Núcleo
457	hypothetical protein	TR03363	72 kDa	1DE	2, 8	Núcleo
458	hypothetical protein	TR04217	101 kDa	1DE	0, 2, 8	Núcleo
459	hypothetical protein	TR04238	40 kDa	1DE	0, 4, 6	Extracelular
460	hypothetical protein	TR04267	30 kDa	1DE	4, 6	Núcleo
461	hypothetical protein	TR04588	15 kDa	1DE	4,6	Núcleo
462	hypothetical protein	TR04716	22 kDa	1DE / gel free	2, 8	Extracelular
463	hypothetical protein	TR05945	39 kDa	2DE / 1DE	0, 2, 8	Citosol
464	hypothetical protein	TR06368	236 kDa	1DE	0, 2, 8	Extracelular
465	hypothetical protein	TR06486	30 kDa	1DE	0, 2, 8	Núcleo
466	lactoylglutathione lyase-like protein	TR00965	16 kDa	1DE	0, 2, 8	Mitocôndria
467	methylthioadenosine phosphorylase	TR03256	33 kDa	1DE	4, 6	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
468	NGG1 interacting factor 3	TR01249	31 kDa	1DE	2, 8	Extracelular
469	nuclear receptor binding protein factor	TR02582	36 kDa	1DE	2, 8	Mitocôndria
470	phosphatase-like protein	TR02839	24 kDa	2DE/1DE/ gel free	0, 4, 6	Mitocôndria
471	Protein with unknown function	TR03110	91 kDa	1DE	4, 6	Membrana Plasmática
472	Protein with unknown function	TR04152	32 kDa	1DE	2, 8	Extracelular
473	RNA binding protein rggm	TR06422	22 kDa	1DE / gel free	0, 2, 8	Núcleo
474	RNA-binding protein	TR00782	45 kDa	1DE / gel free	0, 2, 8	Citosol
475	small nuclear ribonucleoprotein	TR05007	12 kDa	1DE	0, 4, 6	Citosol
476	ubiquitin fusion degradation protein 2	TR00237	114 kDa	1DE	2,8	Membrana Plasmática
477	ubiquitin ligase	TR06031	143 kDa	1DE	4,6	Citosol
478	vacuolar protein sorting-associated protein	TR03142	64 kDa	1DE	4,6	Núcleo
479	adenylate kinase	TR04874	28 kDa	1DE	0, 2, 4, 6	Citosol
480	ankyrin repeat protein	TR06015	260 kDa	1DE	4, 8	Membrana Plasmática
481	arginyl-tRNA synthetase	TR00604	84 kDa	1DE	2, 4, 6	Retículo Endoplasmático
482	beta-adaptin	TR00787	106 kDa	1DE	2, 4, 6	Núcleo
483	cleavage and polyadenylation specificity factor subunit	TR04263	78 kDa	1DE	2, 4, 6	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
484	cytochrome c oxidase copper chaperone	TR00416	8 kDa	1DE	4, 8	Extracelular
485	cytochrome c oxidase VII	TR00781	19 kDa	1DE	0, 2, 4, 6	Mitocôndria
486	endo-beta-N-acetylglucosaminidase	TR01367	118 kDa	1DE	4, 8	Extracelular
487	endosomal trafficking protein RME-8	TR04849	119 kDa	1DE	2, 4, 6	Citosol
488	glucosamine-fructose-6-phosphate aminotransferase	TR05065	82 kDa	1DE	0, 4, 8	Membrana Plasmática
489	heat shock protein 70	TR05103	37 kDa	1DE	2, 4, 6	Citoesqueleto
490	hypothetical protein	TR00057	18 kDa	1DE	4, 8	Mitocôndria
491	hypothetical protein	TR00252	33 kDa	1DE	0, 4, 8	Núcleo
492	hypothetical protein	TR00489	27 kDa	1DE	4, 8	Citosol Núcleo
493	hypothetical protein	TR00543	22 kDa	1DE	0, 2, 4, 6	Extracelular
494	hypothetical protein	TR00627	188 kDa	1DE	0, 2, 4, 6	Citosol
495	hypothetical protein	TR00630	80 kDa	1DE	4, 8	Citosol
496	hypothetical protein	TR00995	29 kDa	1DE	0, 2, 4, 6	Mitocôndria
497	hypothetical protein	TR01022	125 kDa	1DE	4, 8	Retículo Endoplasmático
498	hypothetical protein	TR01104	34 kDa	1DE	4, 8	Núcleo
499	hypothetical protein	TR01279	181 kDa	1DE	0, 2, 4, 6	Núcleo
500	hypothetical protein	TR01336	23 kDa	1DE	0, 2, 4, 6	Citoesqueleto

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
501	hypothetical protein	TR01572	18 kDa	1DE	0, 2, 4, 6	Núcleo
502	hypothetical protein	TR01662	49 kDa	1DE	2, 4, 6	Núcleo
503	hypothetical protein	TR01794	23 kDa	1DE	0, 2, 4, 6	Mitocôndria
504	hypothetical protein	TR02051	26 kDa	1DE	2, 4, 6	Extracelular
505	hypothetical protein	TR02425	65 kDa	1DE	4, 8	Citosol Núcleo
506	hypothetical protein	TR03129	131 kDa	1DE	4, 8	Núcleo
507	hypothetical protein	TR03472	18 kDa	1DE / gel free	0, 4, 8	Extracelular
508	hypothetical protein	TR03584	55 kDa	1DE	4, 8	Extracelular
509	hypothetical protein	TR03626	22 kDa	1DE / gel free	0, 2, 4, 6	Citosol
510	hypothetical protein	TR03709	110 kDa	1DE	2, 4, 6	Citosol
511	hypothetical protein	TR03728	13 kDa	1DE	0, 2, 4, 6	Citosol
512	hypothetical protein	TR03931	35 kDa	1DE	0, 2, 4, 6	Citosol
513	hypothetical protein	TR04071	231 kDa	1DE	0, 2, 4, 6	Membrana Plasmática
514	hypothetical protein	TR04317	39 kDa	1DE	0, 2, 4, 6	Mitocôndria
515	hypothetical protein	TR04733	120 kDa	1DE	0, 4, 8	Mitocôndria
516	hypothetical protein	TR05119	89 kDa	1DE	0, 4, 8	Citosol
517	hypothetical protein	TR05251	71 kDa	1DE	0, 2, 4, 6	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
518	hypothetical protein	TR05475	45 kDa	1DE / gel free	0, 2, 4, 6	Mitocôndria
519	hypothetical protein	TR05487	10 kDa	1DE / gel free	4, 8	Citosol
520	hypothetical protein	TR05523	16 kDa	1DE	0, 2, 4, 6	Extracelular
521	hypothetical protein	TR05615	29 kDa	1DE	2, 4, 6	Núcleo
522	hypothetical protein	TR05690	177 kDa	1DE	0, 2, 4, 6	Citosol
523	hypothetical protein	TR05961	59 kDa	1DE	4, 8	Núcleo
524	hypothetical protein	TR06129	134 kDa	1DE	0, 2, 4, 6	Citosol
525	hypothetical protein	TR06162	189 kDa	1DE	0, 2, 4, 6	Núcleo
526	hypothetical protein	TR06184	47 kDa	1DE / gel free	4, 8	Núcleo
527	hypothetical protein	TR06297	52 kDa	1DE	0, 4, 8	Citosol Núcleo
528	mitochondrial DNA polymerase I protein C	TR01990	164 kDa	1DE	0, 4, 8	Núcleo
529	NADH-cytochrome B5 reductase	TR03364	32 kDa	2DE / 1DE	0, 2, 4, 6	Extracelular
530	otubain	TR04864	30 kDa	1DE	4, 8	Citosol
531	oxidoreductase	TR06940	43 kDa	1DE / gel free	0, 2, 4, 6	Membrana Plasmática
532	procyclic form surface glycoprotein	TR02432	44 kDa	1DE / gel free	0, 2, 4, 6	Membrana Plasmática
533	profilin	TR01080	16 kDa	1DE	0, 2, 4, 6	Núcleo
534	pumilio/PUF RNA binding protein 6	TR05883	68 kDa	1DE	0, 4, 8	Mitocôndria
	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
-----	--	----------------------	--------	----------------	------------	------------------------
535	replication Factor A 28 kDa subunit	TR05810	29 kDa	1DE / gel free	0, 2, 4, 6	Citosol
536	ribose 5-phosphate isomerase	TR04687	17 kDa	1DE	0, 2, 4, 6	Citosol
537	ribosomal protein L24	TR05424	15 kDa	1DE	0, 2, 4, 6	Núcleo
538	ribosomal protein S26	TR00968	13 kDa	1DE / gel free	0, 2, 4, 6	Núcleo
538	RuvB-like DNA helicase	TR00700	50 kDa	1DE	0, 2, 4, 6	Citosol
540	serine/threonine protein kinase	TR05574	27 kDa	1DE	2, 4, 6	Mitocôndria
541	small subunit ribosomal protein S27Ae	TR06496	20 kDa	1DE	0, 2, 4, 6	Mitocôndria
542	solute carrier family 30 (zinc transporter), member 2	TR06970	47 kDa	1DE / gel free	0, 2, 4, 6	Membrana Plasmática
543	trans-sialidase	TR01056	73 kDa	1DE / gel free	0, 2, 4, 6	Extracelular
544	tyrosyl or methionyl-tRNA synthetase	TR01178	26 kDa	2DE / 1DE	0, 2, 4, 6	Citosol
545	ubiquitin carboxyl-terminal hydrolase	TR04039	26 kDa	1DE	4, 8	Citoesqueleto
546	ubiquitin hydrolase	TR06291	52 kDa	1DE	0, 4, 8	Núcleo
547	vacuolar protein sorting-associated protein 35	TR02969	99 kDa	1DE	4, 8	Citosol
548	vesicular-fusion ATPase-like protein	TR01265	97 kDa	1DE	0, 2, 4, 6	Extracelular
549	25 kDa translation elongation factor 1-beta	TR03422	21 kDa	2DE	6, 8	Mitocôndria
550	26S proteasome regulatory subunit N11	TR04555	34 kDa	1DE	0, 2, 4, 8	Citosol Núcleo
551	aspartyl aminopeptidase	TR02762	48 kDa	1DE / gel free	0, 2, 4, 8	Citoesqueleto

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
552	ATP-dependent DEAD/H RNA helicase	TR05054	45 kDa	1DE	0, 6, 8	Núcleo
553	ATP-dependent zinc metallopeptidase	TR02486	88 kDa	1DE	6, 8	Membrana Plasmática
554	biotin/lipoate protein ligase	TR04409	26 kDa	1DE	0, 2, 4, 8	Citosol
555	calcium-binding protein	TR01217	43 kDa	1DE	6, 8	Citosol
556	calpain cysteine peptidase	TR05649	82 kDa	1DE / gel free	6, 8	Citosol Núcleo
557	COP-coated vesicle membrane protein p24 precursor	TR01260	25 kDa	1DE	6, 8	Membrana Plasmática
558	cysteine peptidase C (CPC)	TR04674	39 kDa	1DE / gel free	0, 2, 4, 8	Extracelular
559	dynein heavy chain	TR01219	64 kDa	1DE	0, 2, 4, 8	Núcleo
560	dynein light chain	TR06303	13 kDa	1DE	0, 6, 8	Citosol
561	ecotin	TR01503	20 kDa	1DE / gel free	6, 8	Extracelular
562	eukaryotic translation initiation factor 2 subunit	TR04608	52 kDa	1DE	0, 2, 4, 8	Citosol
563	folate/pteridine transporter	TR06916	76 kDa	1DE	6, 8	Membrana Plasmática
564	heat shock protein 20	TR04685	16 kDa	1DE / gel free	0, 2, 4, 8	Citosol Núcleo
565	hypothetical protein	TR00033	25 kDa	1DE	0, 2, 4, 8	Mitocôndria
566	hypothetical protein	TR00085	80 kDa	1DE	6, 8	Núcleo
567	hypothetical protein	TR00147	36 kDa	1DE / gel free	6, 8	Citosol
568	hypothetical protein	TR00583	14 kDa	1DE	0, 2, 4, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
569	hypothetical protein	TR01161	55 kDa	1DE / gel free	0, 2, 4, 8	Mitocôndria
570	hypothetical protein	TR01424	22 kDa	1DE	0, 2, 4, 8	Citosol
571	hypothetical protein	TR01617	76 kDa	1DE	6, 8	Extracelular
572	hypothetical protein	TR01788	19 kDa	1DE / gel free	0, 2, 4, 8	Citosol
573	hypothetical protein	TR01866	58 kDa	1DE / gel free	0, 2, 4, 8	Mitocôndria
574	hypothetical protein	TR01899	43 kDa	1DE / gel free	2, 4, 8	Citosol
575	hypothetical protein	TR01915	48 kDa	2DE / 1DE	6, 8	Citosol
576	hypothetical protein	TR01928	164 kDa	1DE	0, 2, 4, 8	Núcleo
577	hypothetical protein	TR02008	30 kDa	1DE	6, 8	Citosol
578	hypothetical protein	TR02089	19 kDa	1DE / gel free	2, 4, 8	Citosol
579	hypothetical protein	TR02146	53 kDa	2DE/ 1DE / gel free	2, 4, 8	Núcleo
580	hypothetical protein	TR02158	12 kDa	1DE	6, 8	Citosol Núcleo
581	hypothetical protein	TR02608	27 kDa	1DE	6, 8	Núcleo
582	hypothetical protein	TR02842	51 kDa	1DE / gel free	0, 2, 4, 8	Citosol Núcleo
583	hypothetical protein	TR02980	54 kDa	1DE	0, 2, 4, 8	Citosol
584	hypothetical protein	TR03305	34 kDa	1DE	0, 2, 4, 8	Mitocôndria
585	hypothetical protein	TR03614	11 kDa	1DE	6, 8	Citosol
586	hypothetical protein	TR03645	26 kDa	1DE / gel free	2, 4, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
587	hypothetical protein	TR03830	31 kDa	1DE / gel free	6, 8	Núcleo
588	hypothetical protein	TR03840	15 kDa	1DE / gel free	2, 4, 8	Extracelular
589	hypothetical protein	TR03891	101 kDa	1DE	6, 8	Citosol
590	hypothetical protein	TR03971	20 kDa	1DE	6, 8	Citosol Núcleo
591	hypothetical protein	TR04212	108 kDa	1DE / gel free	2, 4, 8	Citosol Núcleo
592	hypothetical protein	TR04251	13 kDa	1DE	0, 6, 8	Extracelular
593	hypothetical protein	TR04453	27 kDa	1DE	2, 4, 8	Citosol
594	hypothetical protein	TR04490	99 kDa	1DE / gel free	0, 2, 4, 8	Citosol
595	hypothetical protein	TR04531	21 kDa	1DE	0, 2, 4, 8	Peroxisomo
596	hypothetical protein	TR04996	12 kDa	1DE	0, 6, 8	Citosol
597	hypothetical protein	TR05140	78 kDa	1DE	0, 2, 4, 8	Citosol
598	hypothetical protein	TR05167	22 kDa	1DE	2, 4, 8	Citosol
599	hypothetical protein	TR05179	147 kDa	1DE	0, 2, 4, 8	Núcleo
600	hypothetical protein	TR05972	60 kDa	1DE / gel free	6, 8	Mitocôndria
601	hypothetical protein	TR06160	232 kDa	1DE	0, 2, 4, 8	Extracelular
602	hypothetical protein	TR06354	56 kDa	1DE / gel free	6, 8	Núcleo
603	hypothetical protein	TR06692	45 kDa	1DE	6, 8	Citosol Núcleo
604	inosine-5'-monophosphate dehydrogenase	TR05816	56 kDa	2DE/ 1DE / gel free	0, 2, 4, 8	Citosol Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
605	peptidyl-prolyl cis-trans isomerase	TR05165	12 kDa	1DE / gel free	0, 6, 8	Citosol Núcleo
606	phenylalanyl-tRNA synthetase	TR03792	71 kDa	1DE	0, 2, 4, 8	Citosol
607	proteasome beta 2 subunit	TR00498	23 kDa	1DE / gel free	0, 2, 4, 8	Extracelular
608	proteasome regulatory ATPase subunit 2	TR04941	49 kDa	1DE / gel free	2, 4, 8	Núcleo
609	protein phosphatase 2C	TR04896	29 kDa	1DE / gel free	2, 4, 8	Extracelular
610	Protein with unknown function	TR01065	17 kDa	1DE	0, 2, 4, 8	Membrana Plasmática
611	Protein with unknown function	TR04025	18 kDa	1DE	6, 8	Citosol
612	Protein with unknown function	TR04953	38 kDa	1DE / gel free	2, 4, 8	Núcleo
613	Protein with unknown function	TR05298	29 kDa	1DE / gel free	0, 2, 4, 8	Membrana Plasmática
614	Protein with unknown function	TR06159	14 kDa	1DE / gel free	2, 4, 8	Mitocôndria
615	ribosomal protein S29	TR01005	7 kDa	1DE	6, 8	Extracelular
616	RNA helicase	TR01183	238 kDa	1DE	0, 2, 4, 8	Núcleo
617	small nuclear ribonucleoprotein SmD2	TR05508	12 kDa	1DE	0, 6, 8	Citosol Núcleo
618	ubiquitin-like protein	TR01704	34 kDa	1DE / gel free	0, 2, 4, 8	Extracelular
619	valyl-tRNA synthetase	TR03936	43 kDa	1DE	0, 2, 4, 8	Citosol
620	60S acidic ribosomal protein	TR00044	26 kDa	1DE	2, 6, 8	Núcleo
621	adenylosuccinate lyase	TR00907	52 kDa	1DE / gel free	0, 2, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
622	ATP synthase	TR00774	54 kDa	1DE / gel free	2, 6, 8	Membrana Plasmática
623	hypothetical protein	TR00732	26 kDa	1DE	0, 2, 6, 8	Núcleo
624	hypothetical protein	TR01326	57 kDa	1DE	2, 6, 8	Mitocôndria
625	hypothetical protein	TR01502	152 kDa	1DE	0, 2, 6, 8	Citosol
626	hypothetical protein	TR03316	33 kDa	2DE	0, 2, 6, 8	Mitocôndria
627	hypothetical protein	TR03651	34 kDa	1DE / gel free	0, 2, 6, 8	Mitocôndria
628	hypothetical protein	TR04988	36 kDa	1DE	0, 2, 6, 8	Extracelular
629	NADH-cytochrome B5 reductase	TR05530	34 kDa	1DE	0, 2, 6, 8	Extracelular
630	outer arm dynein	TR03003	13 kDa	1DE	2, 6, 8	Citosol
631	proteasome regulatory non-ATPase subunit	TR00607	32 kDa	1DE	0, 2, 6, 8	Citosol
632	proteasome regulatory non-ATPase subunit 7	TR04743	46 kDa	1DE / gel free	2, 6, 8	Citosol
633	pyroglutamyl-peptidase I (PGP)	TR02989	26 kDa	1DE	0, 2, 6, 8	Citosol
634	UV excision repair RAD23-like protein	TR05052	39 kDa	1DE / gel free	0, 2, 6, 8	Citosol
635	26S protease regulatory subunit	TR05184	45 kDa	1DE	4, 6, 8	Citosol
636	calcium channel protein	TR06533	287 kDa	1DE	0, 4, 6, 8	Membrana Plasmática
637	dynein intermediate chain	TR04218	75 kDa	1DE	0, 4, 6, 8	Núcleo
638	extracellular receptor	TR07090	63 kDa	1DE	4, 6, 8	Peroxisomo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
638	fatty acid elongase	TR04527	32 kDa	1DE	4, 6, 8	Membrana Plasmática
640	heat shock protein 70 (HSP70)	TR00557	101 kDa	1DE	4, 6, 8	Mitocôndria
641	hypothetical protein	TR00140	42 kDa	1DE	4, 6, 8	Núcleo
642	hypothetical protein	TR00409	109 kDa	1DE / gel free	0, 4, 6, 8	Citosol
643	hypothetical protein	TR00434	90 kDa	1DE	0, 4, 6, 8	Retículo Endoplasmático
644	hypothetical protein	TR00560	30 kDa	1DE	4, 6, 8	Extracelular
645	hypothetical protein	TR00748	142 kDa	1DE	0, 4, 6, 8	Membrana Plasmática
646	hypothetical protein	TR00810	17 kDa	1DE	4, 6, 8	Citosol
647	hypothetical protein	TR01139	53 kDa	1DE	4, 6, 8	Citosol
648	hypothetical protein	TR01437	80 kDa	1DE	4, 6, 8	Núcleo
649	hypothetical protein	TR01486	16 kDa	1DE / gel free	4, 6, 8	Mitocôndria
650	hypothetical protein	TR01618	111 kDa	1DE	4, 6, 8	Núcleo
651	hypothetical protein	TR01896	47 kDa	1DE	4, 6, 8	Núcleo
652	hypothetical protein	TR02044	78 kDa	1DE / gel free	4, 6, 8	Núcleo
653	hypothetical protein	TR02160	64 kDa	1DE / gel free	4, 6, 8	Extracelular
654	hypothetical protein	TR02184	33 kDa	1DE	4, 6, 8	Citosol
655	hypothetical protein	TR02412	66 kDa	1DE	0, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
656	hypothetical protein	TR02476	58 kDa	1DE / gel free	0, 4, 6, 8	Citosol
657	hypothetical protein	TR02695	33 kDa	1DE / gel free	0, 4, 6, 8	Núcleo
658	hypothetical protein	TR02716	137 kDa	1DE	0, 4, 6, 8	Citosol
659	hypothetical protein	TR02923	38 kDa	1DE / gel free	0, 4, 6, 8	Citosol Núcleo
660	hypothetical protein	TR03214	100 kDa	1DE	0, 4, 6, 8	Citosol
661	hypothetical protein	TR03266	40 kDa	1DE	4, 6, 8	Núcleo
662	hypothetical protein	TR03320	28 kDa	1DE / gel free	4, 6, 8	Citosol
663	hypothetical protein	TR03507	14 kDa	1DE	4, 6, 8	Mitocôndria
664	hypothetical protein	TR03591	51 kDa	1DE / gel free	4, 6, 8	Núcleo
665	hypothetical protein	TR03617	49 kDa	1DE / gel free	0, 4, 6, 8	Núcleo
666	hypothetical protein	TR03627	131 kDa	1DE	0, 4, 6, 8	Membrana Plasmática
667	hypothetical protein	TR03718	122 kDa	1DE	4, 6, 8	Citosol
668	hypothetical protein	TR03883	62 kDa	1DE	4, 6, 8	Mitocôndria
669	hypothetical protein	TR04376	20 kDa	1DE	4, 6, 8	Citosol
670	hypothetical protein	TR04443	201 kDa	1DE / gel free	4, 6, 8	Núcleo
671	hypothetical protein	TR04572	34 kDa	1DE / gel free	0, 4, 6, 8	Citosol Núcleo
672	hypothetical protein	TR04728	65 kDa	1DE	0, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
673	hypothetical protein	TR04870	39 kDa	2DE/ 1DE / gel free	0, 4, 6, 8	Citosol
674	hypothetical protein	TR05107	32 kDa	1DE	4, 6, 8	Citosol
675	hypothetical protein	TR05114	25 kDa	1DE / gel free	0, 4, 6, 8	Citosol
676	hypothetical protein	TR05321	30 kDa	1DE	0, 4, 6, 8	Citosol Núcleo
677	hypothetical protein	TR05390	26 kDa	1DE	4, 6, 8	Membrana Plasmática
678	hypothetical protein	TR05577	113 kDa	1DE	0, 4, 6, 8	Citosol
679	hypothetical protein	TR05633	91 kDa	1DE	4, 6, 8	Citosol
680	hypothetical protein	TR05685	34 kDa	1DE	4, 6, 8	Citosol
681	hypothetical protein	TR06027	30 kDa	1DE	4, 6, 8	Citosol
682	hypothetical protein	TR06361	16 kDa	1DE	4, 6, 8	Núcleo
683	hypothetical protein	TR06753	29 kDa	1DE	0, 4, 6, 8	Citosol
684	hypothetical protein	TR06945	150 kDa	1DE	4, 6, 8	Citosol
685	lanosterol synthase	TR04783	104 kDa	1DE	0, 4, 6, 8	Membrana Plasmática
686	major vault protein	TR06301	96 kDa	1DE	4, 6, 8	Citosol
687	myo-inositol-1(or 4)-monophosphatase 1	TR03732	31 kDa	2DE / 1DE	0, 4, 6, 8	Citosol
688	nucleoporin interacting component (NUP93)	TR01778	78 kDa	1DE	0, 4, 6, 8	Núcleo
689	phosphoprotein phosphatase	TR02144	71 kDa	1DE / gel free	0, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
690	pitrilysin-like metalloprotease	TR04547	114 kDa	1DE	0, 4, 6, 8	Mitocôndria
691	Protein with unknown function	TR06705	36 kDa	1DE / gel free	4, 6, 8	Citosol
692	ribosomal protein L38	TR00210	13 kDa	1DE	0, 4, 6, 8	Mitocôndria
693	serine/threonine- AGC PDK1	TR06108	50 kDa	1DE / gel free	0, 4, 6, 8	Citosol
694	serine/threonine protein phosphatase	TR01234	41 kDa	1DE	4, 6, 8	Peroxisomo
695	small nuclear ribonucleoprotein Sm-E	TR04189	9 kDa	1DE / gel free	4, 6, 8	Mitocôndria
696	surface protein TolT	TR01858	34 kDa	1DE / gel free	4, 6, 8	Extracelular
697	trans-sialidase	TR06688	26 kDa	1DE	4, 6, 8	Mitocôndria
698	trans-sialidase	TR06879	61 kDa	1DE / gel free	4, 6, 8	Extracelular
699	trans-sialidase	TR07052	73 kDa	1DE / gel free	4, 6, 8	Mitocôndria
600	trans-sialidase	TR07135	65 kDa	1DE / gel free	4, 6, 8	Núcleo
701	trans-sialidase	TR07145	56 kDa	1DE / gel free	4, 6, 8	Citosol
702	ubiquitin	TR02952	9 kDa	1DE / gel free	4, 6, 8	Citosol
703	(H+)-ATPase G subunit	TR05800	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
704	10 kDa heat shock protein	TR01781	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
705	14-3-3 protein	TR00226	30 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
706	14-3-3 protein	TR02934	29 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
707	2,3-bisphosphoglycerate-independent	TR01051	61 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
	phosphoglycerate mutase					
708	26S proteasome regulatory subunit N1	TR06330	47 kDa	1DE	0, 2, 4, 6, 8	Núcleo
709	26S proteasome regulatory subunit N1	TR07068	70 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
710	26S proteasome regulatory subunit T5	TR06658	42 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
711	2-amino-3-ketobutyrate coenzyme A ligase	TR05897	44 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
712	2-hydroxy-3-oxopropionate reductase	TR02847	32 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
713	2-oxoglutarate dehydrogenase E1 component	TR03946	113 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
714	2-oxoglutarate dehydrogenase subunit	TR03229	113 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
715	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	TR01071	49 kDa	1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
716	2-oxoisovalerate dehydrogenase alpha subunit	TR05730	49 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
717	2-oxoisovalerate dehydrogenase beta subunit, mitochondrial precursor	TR04750	40 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
718	3,2-trans-enoyl-CoA isomerase	TR00230	39 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
719	3-ketoacyl-CoA thiolase	TR01887	46 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
720	3-oxo-5-alpha-steroid 4-dehydrogenase	TR04203	33 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
721	40 kDa cyclophilin	TR03793	38 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
722	40S ribosomal protein L14	TR04959	20 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
723	40S ribosomal protein S10	TR04920	18 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
724	40S ribosomal protein S12	TR00431	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
725	40S ribosomal protein S12	TR01941	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
726	40S ribosomal protein S13	TR02573	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
727	40S ribosomal protein S14	TR03959	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
728	40S ribosomal protein S15	TR00740	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
729	40S ribosomal protein S15a	TR00937	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
730	40S ribosomal protein S16	TR07098	27 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
731	40S ribosomal protein S18	TR04111	14 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
732	40S ribosomal protein S2	TR06607	19 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
733	40S ribosomal protein S23	TR04672	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
734	40S ribosomal protein S24e	TR02776	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
735	40S ribosomal protein S27	TR02886	10 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
736	40S ribosomal protein S3	TR05151	27 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
737	40S ribosomal protein S33	TR02430	10 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
738	40S ribosomal protein S3a	TR07060	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
738	40S ribosomal protein S4	TR01009	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
740	40S ribosomal protein S5	TR04802	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
741	40S ribosomal protein S6	TR01016	18 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
742	40S ribosomal protein SA	TR05337	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
743	50S ribosomal protein	TR07733	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
744	5'-3' exoribonuclease 1	TR02429	48 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
745	5'-3' exoribonuclease 1	TR06927	82 kDa	1DE	0, 2, 4, 6, 8	Núcleo
746	60S acidic ribosomal protein	TR02892	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
747	60S acidic ribosomal protein P0	TR03071	35 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
748	60S acidic ribosomal protein P2	TR05578	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
749	60S acidic ribosomal protein P2	TR05740	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
750	60S ribosomal protein L10	TR02763	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
751	60S ribosomal protein L10a	TR00721	18 kDa	1DE	0, 2, 4, 6, 8	Citosol
752	60S ribosomal protein L12	TR04571	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
753	60S ribosomal protein L13	TR01186	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
754	60S ribosomal protein L19	TR07734	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
755	60S ribosomal protein L2	TR01682	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
756	60S ribosomal protein L22	TR03552	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
757	60S ribosomal protein L23	TR06044	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
758	60S ribosomal protein L23a	TR06697	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
759	60S ribosomal protein L26	TR06588	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
760	60S ribosomal protein L27A/L29	TR06050	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
761	60S ribosomal protein L30	TR00541	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
762	60S ribosomal protein L34	TR00242	20 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
763	60S ribosomal protein L35	TR04395	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
764	60S ribosomal protein L37a	TR00613	10 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
765	60S ribosomal protein L4	TR06255	41 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
766	60S ribosomal protein L7a	TR03561	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
767	69 kDa paraflagellar rod protein	TR02042	44 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
768	69 kDa paraflagellar rod protein	TR04024	63 kDa	2DE	2, 4, 6, 8	Membrana Plasmática
769	6-phospho-1-fructokinase	TR01826	54 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
770	6-phosphogluconate dehydrogenase, decarboxylating	TR02154	52 kDa	1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
771	acetyl-CoA carboxylase	TR02390	127 kDa	1DE	0, 2, 4, 6, 8	Núcleo
772	acetyl-CoA carboxylase	TR06401	163 kDa	1DE	0, 2, 4, 6, 8	Núcleo
773	acetyl-CoA synthetase	TR06230	64 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
774	actin beta/gamma 1	TR01023	42 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
775	activated protein kinase C receptor	TR06474	35 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
776	adenine phosphoribosyltransferase	TR04012	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
777	adenosine 5'-monophosphoramidase	TR00559	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
778	adenosine monophosphate deaminase	TR04557	118 kDa	1DE	0, 2, 4, 6, 8	Núcleo
779	adenylate kinase	TR01680	29 kDa	2DE /1DE / gel free	0, 2, 4, 6, 8	Citosol
780	adenylate kinase	TR02653	24 kDa	2DE1DE / gel free	0, 2, 4, 6, 8	Citosol
781	adenylate kinase	TR06169	30 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
782	adenylosuccinate synthetase	TR00593	69 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
783	ADP,ATP carrier protein 1, mitochondrial precursor	TR06358	34 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
784	ADP-ribosylation factor 3	TR06196	20 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
785	ADP-ribosylation factor-like protein	TR04417	21 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
786	alanine aminotransferase	TR01347	55 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
787	alanyl-tRNA synthetase	TR03727	106 kDa	1DE	0, 2, 4, 6, 8	Citosol
788	alcohol dehydrogenase	TR05738	42 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
789	aldose 1-epimerase-like protein	TR05451	42 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
790	alkyl-dihydroxyacetone phosphate synthase	TR00912	69 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
791	alpha tubulin	TR05056	50 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
792	ama1 protein	TR06390	20 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular

	Proteínas	Códigos de Aces <u>so</u>	MW	Abordagem	Dia	Localização Celular
793	amidohydrolase	TR06350	38 kDa	1DE	0, 2, 4, 6, 8	Citosol
794	aminopeptidase	TR01327	97 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
795	aminopeptidase	TR02075	43 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
796	aminopeptidase	TR02928	55 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
797	aminopeptidase P	TR01740	55 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
798	AMP deaminase 2	TR05974	57 kDa	1DE	2, 4, 6, 8	Núcleo
799	anion-transporting ATPase	TR00536	39 kDa	1DE	0, 2, 4, 6, 8	Núcleo
800	Arf/Sar family, other	TR00981	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
801	arginine kinase	TR00214	35 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
802	asparagine synthetase A	TR05413	39 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
803	asparaginyl-tRNA synthetase	TR04909	85 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
804	aspartate aminotransferase	TR05843	46 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
805	aspartate aminotransferase, mitochondrial	TR04043	51 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
806	aspartate carbamoyltransferase	TR07032	36 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
807	ATP synthase	TR03167	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
808	ATP synthase F1 subunit gamma protein	TR05688	35 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
809	ATP synthase, epsilon chain	TR01540	21 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
810	ATPase beta subunit	TR01705	56 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
811	ATP-dependent Clp protease subunit, heat shock protein 100	TR06000	102 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
812	ATP-dependent Clp protease subunit, heat shock protein 78	TR01212	90 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
813	ATP-dependent DEAD/H RNA helicase	TR04112	47 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
814	ATP-dependent RNA helicase	TR01565	122 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
815	ATP-dependent RNA helicase	TR02748	90 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
816	ATP-dependent RNA helicase	TR04334	71 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
817	ATP-dependent RNA helicase	TR04833	116 kDa	1DE	0, 2, 4, 6, 8	Extracelular
818	axoneme central apparatus protein	TR00075	40 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Peroxisomo
819	basic transcription factor 3a	TR01559	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
820	beta prime COP protein	TR03685	101 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
821	branched-chain amino acid aminotransferase	TR04313	41 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
822	C-8 sterol isomerase	TR00884	24 kDa	1DE / gel free	2, 4, 6, 8	Extracelular
823	calcium motive p-type ATPase	TR02255	115 kDa	1DE / gel free	2, 4, 6, 8	Membrana Plasmática
824	calmodulin	TR00122	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
825	calmodulin	TR01519	18 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
826	calmodulin	TR06725	72 kDa	2DE / 1DE	0, 2, 4, 6, 8	Citosol
827	calmodulin	TR06868	12 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
828	calpain cysteine peptidase	TR06356	179 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
829	calpain-like cysteine peptidase	TR01302	77 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
830	calpain-like cysteine peptidase	TR03454	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
831	calpain-like cysteine peptidase	TR07069	63 kDa	1DE	0, 2, 4, 6, 8	Citosol
832	calreticulin	TR05116	45 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
833	cAMP specific phosphodiesterase	TR00117	78 kDa	1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
834	carboxypeptidase	TR04126	39 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
835	carboxypeptidase Taq	TR06606	49 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
836	carnitine/choline acetyltransferase	TR01783	67 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
837	CAS/CSE/importin domain protein	TR00019	107 kDa	1DE	2, 4, 6, 8	Membrana Plasmática
838	casein kinase 1	TR06459	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
838	casein kinase II	TR03553	40 kDa	1DE	0, 2, 4, 6, 8	Citosol
840	cation-transporting ATPase	TR02105	139 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
841	cell differentiation protein	TR01757	35 kDa	1DE	0, 2, 4, 6, 8	Citosol
842	centrin	TR01031	23 kDa	1-D	2, 4, 6, 8	Núcleo
843	centrin	TR03164	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
844	centromere/microtubule binding protein cbf5	TR00863	48 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
845	chaperonin	TR01153	58 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
846	chaperonin alpha subunit	TR00631	59 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
847	chaperonin containing T-complex protein	TR03738	59 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
848	chaperonin HSP60, mitochondrial precursor	TR06127	60 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
849	chaperonin TCP20	TR01581	59 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
850	chaperonin/T-complex protein 1 gamma subunit	TR01870	61 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
851	citrate synthase	TR04944	52 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
852	clathrin heavy chain	TR06944	192 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
853	coatomer alpha subunit	TR01122	102 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
854	coatomer beta subunit	TR03181	82 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
855	coatomer epsilon subunit	TR00737	35 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
856	coatomer gamma subunit	TR04523	97 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
857	co-chaperone GrpE	TR03350	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
858	cofilin/actin depolymerizing factor	TR03724	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
859	COP-coated vesicle membrane protein erv25 precursor	TR02358	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
860	COP-coated vesicle membrane protein gp25L precursor	TR03592	25 kDa	1DE	0, 2, 4, 6, 8	Extracelular
861	cyclophilin	TR01079	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
862	cyclophilin	TR01924	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
863	cystathione gamma lyase	TR03680	44 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
864	cystathionine beta-synthase	TR03074	29 kDa	2DE / 1DE	0, 2, 4, 6, 8	Citosol
865	cystathionine beta-synthase	TR05439	33 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
866	cysteine peptidase	TR07030	49 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
867	cysteinyl-tRNA synthetase	TR04704	89 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
868	cytidine triphosphate synthase	TR06784	58 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
869	cytochrome b5	TR01714	18 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
870	cytochrome c	TR02906	12 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
871	cytochrome c oxidase assembly factor	TR00032	31 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
872	cytochrome c oxidase subunit 10	TR04506	14 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
873	cytochrome C oxidase subunit IV	TR03337	39 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
874	cytochrome c oxidase subunit V	TR01917	22 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
875	cytochrome C oxidase subunit VI	TR00341	19 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
876	cytochrome c1, heme protein, mitochondrial precursor	TR03127	30 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
877	cytochrome-B5 reductase	TR00139	34 kDa	1DE	0, 2, 4, 6, 8	Extracelular
878	cytoskeleton-associated protein CAP5.5	TR06262	88 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
879	cytosol alanyl aminopeptidase	TR07106	98 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
880	cytosolic leucyl aminopeptidase	TR01405	65 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
881	cytosolic malate dehydrogenase	TR06888	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
882	delta-1-pyrroline-5-carboxylate dehydrogenase	TR05489	62 kDa	1DE / gel free	0, 2, 4, 6, 8	Peroxisomo
883	delta-adaptin	TR02263	86 kDa	1DE	0, 2, 4, 6, 8	Núcleo
884	deoxyribose-phosphate aldolase	TR00152	29 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
885	dihydrolipoamide branched chain transacylase	TR03489	47 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
886	dihydrolipoyl dehydrogenase	TR04445	51 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
887	dihydroorotate dehydrogenase	TR00525	34 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
888	dipeptidyl-peptidase	TR06153	77 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
889	dipeptidyl-peptidase 8-like serine peptidase	TR02707	92 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
890	D-isomer specific 2-hydroxyacid dehydrogenase-protein	TR02516	38 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
891	D-isomer specific 2-hydroxyacid dehydrogenase-protein	TR06787	35 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
892	DNA-directed RNA polymerase II subunit 2	TR05044	134 kDa	1DE	0, 2, 4, 6, 8	Citosol
893	DNA-directed RNA polymerase II subunit RPB1	TR05447	154 kDa	1DE	0, 2, 4, 6, 8	Citosol
894	DnaJ chaperone protein	TR03359	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
895	DNAK protein	TR05389	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
896	dolichyl-diphosphooligosaccharideprotein glycosyltransferase	TR07119	92 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
897	dolichyl-phosphate beta-D- mannosyltransferase precursor	TR04590	29 kDa	1DE	0, 2, 4, 6, 8	Retículo Endoplasmático Mitocôndria
898	dynamin	TR01376	73 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
899	dynein	TR04194	69 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
900	dynein arm light chain	TR00959	28 kDa	1DE	0, 2, 4, 6, 8	Citosol
901	dynein heavy chain	TR00143	170 kDa	1DE	0, 2, 4, 6, 8	Citosol
902	dynein heavy chain	TR00519	179 kDa	1DE	0, 2, 4, 6, 8	Citosol
903	dynein heavy chain	TR02252	76 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
904	dynein heavy chain	TR06443	509 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
905	dynein heavy chain	TR06585	479 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
906	dynein heavy chain	TR06684	461 kDa	1DE	0, 2, 4, 6, 8	Citosol
907	dynein heavy chain, axonemal	TR01914	307 kDa	1DE	0, 2, 4, 6, 8	Citosol
908	dynein light chain	TR02656	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
909	dynein light chain	TR04794	10 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
910	dynein-associated protein	TR02479	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
911	elongation factor 1-alpha	TR05580	58 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
912	elongation factor 1-beta	TR06591	26 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
913	elongation factor 1-gamma (EF-1-gamma)	TR00977	47 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
914	elongation factor 2	TR06347	94 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
915	elongation factor TU	TR02940	52 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
916	elongation initiation factor 2 alpha subunit	TR03735	47 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
917	enolase	TR07150	46 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
918	enoyl-CoA hydratase/isomerase family protein	TR03729	29 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
919	eukaryotic initiation factor 4a	TR04008	46 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
920	eukaryotic initiation factor 5a	TR00655	18 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
921	eukaryotic peptide chain release factor subunit 1	TR02162	35 kDa	1DE	2, 4, 6, 8	Citosol
922	eukaryotic translation initiation factor	TR00168	46 kDa	1DE / gel free	2, 4, 6, 8	Citosol
923	eukaryotic translation initiation factor 3 subunit	TR02669	38 kDa	1DE	0, 2, 4, 6, 8	Citosol
924	eukaryotic translation initiation factor 3 subunit 7-like protein	TR01728	57 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
925	eukaryotic translation initiation factor 5	TR03642	42 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
926	eukaryotic translation initiation factor 6 (eIF- 6)	TR01137	27 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
927	fatty acyl CoA syntetase 1	TR01059	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
928	fatty acyl CoA synthetase	TR03581	79 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
929	fatty acyl CoA synthetase 2	TR05627	76 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
930	fibrillarin	TR02920	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
931	flagellar calcium-binding protein	TR01599	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
932	flagellar protofilament ribbon protein	TR05813	46 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
933	flagellar radial spoke component	TR01767	49 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
934	flagellar radial spoke component	TR06886	49 kDa	1DE	0, 2, 4, 6, 8	Núcleo
935	flagellar radial spoke protein	TR04947	61 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
936	flagellum-adhesion glycoprotein	TR05073	49 kDa	1DE	0, 2, 4, 6, 8	Citosol
937	fructose-1,6-bisphosphatase, cytosolic	TR05296	38 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
938	fructose-bisphosphate aldolase, glycosomal	TR00236	41 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
938	F-type H+-transporting ATPase subunit alpha	TR06719	63 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
940	fumarate hydratase	TR04533	61 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
941	fumarate hydratase	TR06047	62 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
942	galactokinase-like protein	TR02527	52 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
943	Gim5A protein	TR00090	27 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
944	glucokinase 1	TR00392	42 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
945	glucosamine-6-phosphate isomerase	TR01674	32 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
946	glucosamine-phosphate N-acetyltransferase	TR01372	17 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
947	glucose-6-phosphate isomerase, glycosomal	TR01227	68 kDa	1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
948	glucose-regulated protein 78	TR03733	71 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
949	glutamate dehydrogenase	TR05631	109 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
950	glutamyl-tRNA synthetase	TR04403	73 kDa	1DE	0, 2, 4, 6, 8	Retículo Endoplasmático
951	glutaredoxin	TR06228	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
952	glutathione peroxidase-type tryparedoxin peroxidase	TR06976	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
953	glyceraldehyde 3-phosphate dehydrogenase	TR04827	39 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
954	glyceraldehyde 3-phosphate dehydrogenase, cytosolic	TR06452	36 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
955	glycerol dehydrogenase	TR07237	34 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
956	glycine cleavage system H protein	TR02053	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
957	glycosomal malate dehydrogenase	TR03342	34 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
958	glycosomal membrane protein	TR01852	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
959	golgi family/lysosome glycoprotein	TR02368	68 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
960	GTP-binding protein	TR06878	41 kDa	1DE / gel free	2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
961	guanine nucleotide-binding protein beta subunit-like protein	TR06279	61 kDa	1DE	0, 2, 4, 6, 8	Núcleo
962	haloacid dehalogenase-like hydrolase	TR00831	31 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
963	heat shock 70 kDa protein, mitochondrial precursor	TR03493	55 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
964	heat shock 70kDa protein 1/8	TR03366	66 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
965	heat shock 70kDa protein 1/8	TR07016	72 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
966	heat shock 70kDa protein 4	TR03283	79 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
967	heat shock protein	TR01604	48 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
968	heat shock protein DnaJ	TR02132	43 kDa	1DE	2, 4, 6, 8	Extracelular
969	heat shock protein DnaJ	TR04415	44 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
970	heat shock protein-like protein	TR03608	36 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
971	heterogeneous nuclear ribonucleoprotein H/F	TR03124	49 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
972	hexokinase	TR01864	52 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
973	high mobility group protein	TR07147	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
974	histidine ammonia-lyase	TR01548	59 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
975	histone H2A	TR00976	14 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
976	histone H2A	TR03102	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
977	histone H2B	TR06963	20 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
978	histone H2B variant	TR00571	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
979	histone H3	TR03964	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
980	histone H3 variant	TR05499	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
981	histone H4	TR00684	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
982	homoserine kinase	TR03870	36 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
983	hslvu complex proteolytic subunit	TR00039	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
984	hypothetical protein	TR00041	103 kDa	1DE	0, 2, 4, 6, 8	Núcleo
985	hypothetical protein	TR00060	14 kDa	1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
986	hypothetical protein	TR00092	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
987	hypothetical protein	TR00126	32 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
988	hypothetical protein	TR00162	47 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
989	hypothetical protein	TR00231	22 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
990	hypothetical protein	TR00245	30 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
991	hypothetical protein	TR00257	113 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
992	hypothetical protein	TR00292	14 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
993	hypothetical protein	TR00293	66 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
994	hypothetical protein	TR00380	43 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
995	hypothetical protein	TR00396	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
996	hypothetical protein	TR00433	162 kDa	1DE	0, 2, 4, 6, 8	Núcleo
997	hypothetical protein	TR00439	42 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
998	hypothetical protein	TR00461	88 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
999	hypothetical protein	TR00508	60 kDa	1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
1000	hypothetical protein	TR00545	102 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1001	hypothetical protein	TR00580	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1002	hypothetical protein	TR00585	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1002	hypothetical protein	TR00587	69 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1003	hypothetical protein	TR00591	31 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1004	hypothetical protein	TR00619	88 kDa	2DE / 1DE	0, 2, 4, 6, 8	Citosol Núcleo
1005	hypothetical protein	TR00665	141 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1006	hypothetical protein	TR00693	37 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1007	hypothetical protein	TR00701	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1008	hypothetical protein	TR00709	47 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1009	hypothetical protein	TR00734	150 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1010	hypothetical protein	TR00762	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1011	hypothetical protein	TR00765	14 kDa	1DE	0, 2, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1012	hypothetical protein	TR00798	87 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1013	hypothetical protein	TR00811	39 kDa	1DE	0, 2, 4, 6, 8	Citosol
1014	hypothetical protein	TR00812	41 kDa	1DE	0, 2, 4, 6, 8	Citosol
1015	hypothetical protein	TR00814	66 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1016	hypothetical protein	TR00905	32 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1017	hypothetical protein	TR00932	42 kDa	1DE / gel free	2, 4, 6, 8	Extracelular
1018	hypothetical protein	TR00990	27 kDa	1DE	2, 4, 6, 8	Membrana Plasmática
1019	hypothetical protein	TR01000	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1020	hypothetical protein	TR01002	103 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1021	hypothetical protein	TR01035	23 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
1022	hypothetical protein	TR01045	17 kDa	1DE	2, 4, 6, 8	Mitocôndria
1023	hypothetical protein	TR01082	160 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1024	hypothetical protein	TR01086	98 kDa	1DE	2, 4, 6, 8	Núcleo
1025	hypothetical protein	TR01117	52 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1026	hypothetical protein	TR01130	19 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1027	hypothetical protein	TR01170	24 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
1028	hypothetical protein	TR01182	58 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1029	hypothetical protein	TR01191	101 kDa	1DE	0, 2, 4, 6, 8	Citosol
1030	hypothetical protein	TR01211	60 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1031	hypothetical protein	TR01259	72 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1032	hypothetical protein	TR01275	140 kDa	1DE	0, 2, 4, 6, 8	Citosol
1033	hypothetical protein	TR01312	52 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1034	hypothetical protein	TR01400	83 kDa	1DE	2, 4, 6, 8	Núcleo
1035	hypothetical protein	TR01427	16 kDa	1DE / gel free	2, 4, 6, 8	Citosol
1036	hypothetical protein	TR01471	209 kDa	1DE	0, 2, 4, 6, 8	Citosol
1037	hypothetical protein	TR01499	32 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1038	hypothetical protein	TR01557	119 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1038	hypothetical protein	TR01558	75 kDa	1DE	0, 2, 4, 6, 8	Citosol
1040	hypothetical protein	TR01616	63 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1041	hypothetical protein	TR01677	22 kDa	1DE	2, 4, 6, 8	Extracelular
1042	hypothetical protein	TR01699	68 kDa	1DE	0, 2, 4, 6, 8	Citosol
1043	hypothetical protein	TR01709	180 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1044	hypothetical protein	TR01722	24 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1045	hypothetical protein	TR01854	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1046	hypothetical protein	TR01906	94 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1047	hypothetical protein	TR01958	48 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1048	hypothetical protein	TR01959	39 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1049	hypothetical protein	TR01969	21 kDa	1DE	2, 4, 6, 8	Citosol
1050	hypothetical protein	TR02073	24 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1051	hypothetical protein	TR02078	22 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1052	hypothetical protein	TR02111	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1053	hypothetical protein	TR02181	21 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1054	hypothetical protein	TR02227	42 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1055	hypothetical protein	TR02251	58 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1056	hypothetical protein	TR02261	70 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1057	hypothetical protein	TR02277	110 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1058	hypothetical protein	TR02284	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1059	hypothetical protein	TR02293	30 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1060	hypothetical protein	TR02296	137 kDa	1DE	0, 2, 4, 6, 8	Citosol
1061	hypothetical protein	TR02354	87 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1062	hypothetical protein	TR02402	37 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1063	hypothetical protein	TR02410	32 kDa	1DE	0, 2, 4, 6, 8	Membrana

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
						Plasmática
1064	hypothetical protein	TR02441	35 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1065	hypothetical protein	TR02503	41 kDa	1DE	2, 4, 6, 8	Citosol
1066	hypothetical protein	TR02518	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1067	hypothetical protein	TR02560	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1068	hypothetical protein	TR02594	87 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1069	hypothetical protein	TR02610	27 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1070	hypothetical protein	TR02683	54 kDa	1DE	0, 2, 4, 6, 8	Citosol
1071	hypothetical protein	TR02734	23 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1072	hypothetical protein	TR02802	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1073	hypothetical protein	TR02814	185 kDa	1DE	2, 4, 6, 8	Núcleo
1074	hypothetical protein	TR02835	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1075	hypothetical protein	TR02868	56 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1076	hypothetical protein	TR02883	42 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1077	hypothetical protein	TR02884	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1078	hypothetical protein	TR02893	38 kDa	1DE	0, 2, 4, 6, 8	Retículo Endoplasmático
1079	hypothetical protein	TR02902	120 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1080	hypothetical protein	TR02996	160 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1081	hypothetical protein	TR03006	23 kDa	1DE	0, 2, 4, 6, 8	Citosol Mitocôndria
1082	hypothetical protein	TR03166	28 kDa	1DE	0, 2, 4, 6, 8	Citosol
1083	hypothetical protein	TR03200	42 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1084	hypothetical protein	TR03232	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1085	hypothetical protein	TR03263	171 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1086	hypothetical protein	TR03313	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1087	hypothetical protein	TR03327	17 kDa	1DE / gel free	2, 4, 6, 8	Membrana Plasmática
1088	hypothetical protein	TR03438	150 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1089	hypothetical protein	TR03461	31 kDa	1DE / gel free	2, 4, 6, 8	Citoesqueleto
1090	hypothetical protein	TR03476	69 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1091	hypothetical protein	TR03506	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1092	hypothetical protein	TR03530	144 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
1093	hypothetical protein	TR03579	102 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1094	hypothetical protein	TR03665	28 kDa	1DE / gel free	2, 4, 6, 8	Núcleo
1095	hypothetical protein	TR03748	46 kDa	1DE	2, 4, 6, 8	Extracelular
1096	hypothetical protein	TR03770	33 kDa	1DE	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1097	hypothetical protein	TR03802	49 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1098	hypothetical protein	TR03807	28 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1099	hypothetical protein	TR03809	27 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1100	hypothetical protein	TR03818	224 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1101	hypothetical protein	TR03837	43 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1102	hypothetical protein	TR03863	83 kDa	1DE	0, 2, 4, 6, 8	Citosol
1103	hypothetical protein	TR03906	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1104	hypothetical protein	TR03920	198 kDa	1DE	0, 2, 4, 6, 8	Citosol
1105	hypothetical protein	TR03948	35 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1106	hypothetical protein	TR03966	33 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1107	hypothetical protein	TR03975	133 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1108	hypothetical protein	TR03979	77 kDa	1DE	0, 2, 4, 6, 8	Citosol
1109	hypothetical protein	TR04007	176 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1110	hypothetical protein	TR04105	118 kDa	1DE	0, 2, 4, 6, 8	Citosol
1111	hypothetical protein	TR04130	90 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1112	hypothetical protein	TR04138	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1113	hypothetical protein	TR04190	50 kDa	1DE	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1114	hypothetical protein	TR04248	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1115	hypothetical protein	TR04315	61 kDa	1DE	2, 4, 6, 8	Mitocôndria
1116	hypothetical protein	TR04332	24 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1117	hypothetical protein	TR04343	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1118	hypothetical protein	TR04371	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1119	hypothetical protein	TR04416	93 kDa	1DE	0, 2, 4, 6, 8	Citosol
1120	hypothetical protein	TR04484	14 kDa	1DE / gel free	2, 4, 6, 8	Mitocôndria
1121	hypothetical protein	TR04510	137 kDa	1DE	0, 2, 4, 6, 8	Citosol
1122	hypothetical protein	TR04620	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1123	hypothetical protein	TR04621	91 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1124	hypothetical protein	TR04633	51 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1125	hypothetical protein	TR04655	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1126	hypothetical protein	TR04671	204 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1127	hypothetical protein	TR04742	30 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1128	hypothetical protein	TR04787	98 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1129	hypothetical protein	TR04814	74 kDa	1DE	2, 4, 6, 8	Citosol
1130	hypothetical protein	TR04816	38 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1131	hypothetical protein	TR04837	34 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1132	hypothetical protein	TR04843	131 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1133	hypothetical protein	TR04865	52 kDa	1DE	0, 2, 4, 6, 8	Peroxisomo
1134	hypothetical protein	TR04882	10 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1135	hypothetical protein	TR04884	64 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1136	hypothetical protein	TR04928	10 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1137	hypothetical protein	TR04968	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1138	hypothetical protein	TR05068	73 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1138	hypothetical protein	TR05088	38 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1140	hypothetical protein	TR05100	48 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1141	hypothetical protein	TR05154	23 kDa	2DE/ 1DE / gel free	2, 4, 6, 8	Citosol
1142	hypothetical protein	TR05175	89 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1143	hypothetical protein	TR05212	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1144	hypothetical protein	TR05258	27 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1145	hypothetical protein	TR05286	49 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1146	hypothetical protein	TR05341	58 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1147	hypothetical protein	TR05347	60 kDa	1DE	0, 2, 4, 6, 8	Citosol
1148	hypothetical protein	TR05395	132 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
------	----------------------	----------------------	---------	---------------------	---------------	----------------------------
1149	hypothetical protein	TR05408	117 kDa	1DE	0, 2, 4, 6, 8	Citosol
1150	hypothetical protein	TR05452	15 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1151	hypothetical protein	TR05501	112 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1152	hypothetical protein	TR05509	80 kDa	1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
1153	hypothetical protein	TR05535	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1154	hypothetical protein	TR05559	244 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1155	hypothetical protein	TR05604	37 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1156	hypothetical protein	TR05611	61 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1157	hypothetical protein	TR05693	152 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1158	hypothetical protein	TR05728	83 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1159	hypothetical protein	TR05784	99 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1160	hypothetical protein	TR05872	30 kDa	1DE	2, 4, 6, 8	Citosol
1161	hypothetical protein	TR05886	28 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1162	hypothetical protein	TR05940	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1163	hypothetical protein	TR05941	67 kDa	1DE	0, 2, 4, 6, 8	Citosol
1164	hypothetical protein	TR05950	43 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1165	hypothetical protein	TR05966	32 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1166	hypothetical protein	TR05980	38 kDa	1DE	0, 2, 4, 6, 8	Citosol
1167	hypothetical protein	TR06014	30 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1168	hypothetical protein	TR06029	76 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1169	hypothetical protein	TR06072	79 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1170	hypothetical protein	TR06079	32 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
1171	hypothetical protein	TR06083	32 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1172	hypothetical protein	TR06105	96 kDa	1DE	0, 2, 4, 6, 8	Citosol
1173	hypothetical protein	TR06111	35 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1174	hypothetical protein	TR06118	27 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1175	hypothetical protein	TR06156	115 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1176	hypothetical protein	TR06235	36 kDa	1DE	0, 2, 4, 6, 8	Citosol
1177	hypothetical protein	TR06244	49 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1178	hypothetical protein	TR06388	199 kDa	1DE	0, 2, 4, 6, 8	Citosol
1179	hypothetical protein	TR06445	333 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
1180	hypothetical protein	TR06507	45 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1181	hypothetical protein	TR06516	23 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1182	hypothetical protein	TR06526	15 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1183	hypothetical protein	TR06569	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1184	hypothetical protein	TR06574	296 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1185	hypothetical protein	TR06609	34 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1186	hypothetical protein	TR06616	89 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1187	hypothetical protein	TR06625	275 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1188	hypothetical protein	TR06641	59 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1189	hypothetical protein	TR06649	308 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1190	hypothetical protein	TR06669	75 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1191	hypothetical protein	TR06682	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1192	hypothetical protein	TR06825	282 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1193	hypothetical protein	TR06889	109 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1194	hypothetical protein	TR06934	189 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1195	hypothetical protein	TR06981	25 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1196	hypothetical protein	TR06984	149 kDa	1DE	0, 2, 4, 6, 8	Citosol
1197	hypothetical protein	TR07070	68 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1198	hypothetical protein	TR07123	259 kDa	1DE	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1199	hypothetical protein	TR07193	54 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1200	hypothetical protein	TR07197	123 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1201	hypothetical protein	TR07335	43 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1202	hypoxanthine-guanine phosphoribosyltransferase	TR03534	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1203	hypoxanthine-guanine phosphoribosyltransferase	TR04659	26 kDa	1DE	0, 2, 4, 6, 8	Citosol
1204	I/6 autoantigen	TR00726	22 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1205	IgE-dependent histamine-releasing factor	TR06709	20 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1206	importin alpha	TR05138	58 kDa	1DE	0, 2, 4, 6, 8	Citosol
1207	importin beta-1 subunit	TR05349	95 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1208	inosine-adenosine-guanosine-nucleoside hydrolase	TR05781	36 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1209	intraflagellar transport (IFT) protein	TR06199	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1210	intraflagellar transport protein component	TR02139	72 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1211	iron superoxide dismutase	TR05576	22 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1212	isocitrate dehydrogenase	TR06174	49 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1213	isoleucyl-tRNA synthetase	TR03654	132 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1214	isovaleryl-coA dehydrogenase	TR04369	45 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1215	kinesin	TR06034	79 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1216	kinesin	TR06936	89 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1217	kinesin-like protein	TR02382	71 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1218	kinetoplast DNA-associated protein	TR06152	14 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1219	kinetoplastid membrane protein KMP-11	TR02226	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1220	LA RNA binding protein	TR01620	39 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1221	large subunit ribosomal protein L10Ae	TR01417	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1222	large subunit ribosomal protein L11e	TR01100	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1223	large subunit ribosomal protein L13Ae	TR04360	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1224	large subunit ribosomal protein L15e	TR02622	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1225	large subunit ribosomal protein L17e	TR07165	19 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1226	large subunit ribosomal protein L18Ae	TR02789	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1227	large subunit ribosomal protein L18e	TR01184	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1228	large subunit ribosomal protein L28e	TR02588	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1229	large subunit ribosomal protein L31e	TR00448	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1230	large subunit ribosomal protein L32e	TR02361	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1231	large subunit ribosomal protein L44e	TR05400	12 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1232	large subunit ribosomal protein L5e	TR01381	35 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1233	large subunit ribosomal protein L6e	TR02818	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1234	large subunit ribosomal protein L7e	TR02064	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1235	large subunit ribosomal protein L9e	TR06681	22 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1236	leucine-rich repeat protein	TR01146	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1237	leucine-rich repeat protein	TR05468	100 kDa	1DE	2, 4, 6, 8	Núcleo
1238	leucyl-tRNA synthetase	TR00909	95 kDa	1DE	0, 2, 4, 6, 8	Citosol
1238	leucyl-tRNA synthetase	TR04454	48 kDa	1DE	2, 4, 6, 8	Núcleo
1240	leucyl-tRNA synthetase	TR07732	86 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1241	lipophosphoglycan biosynthetic protein	TR05935	82 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1242	L-threonine 3-dehydrogenase	TR02250	37 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1243	lysophospholipase	TR02858	30 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1244	lysosomal/endosomal membrane protein p67	TR04677	71 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
1245	lysyl-tRNA synthetase	TR04898	66 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1246	macrophage infectivity potentiator, precursor	TR02976	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1247	malate dehydrogenase	TR02438	33 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Peroxisomo
1248	malic enzyme	TR00259	63 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria

TR00375

TR00915

TR04493

42 kDa

61 kDa

114 kDa

1DE / gel free

1DE

1DE

0, 2, 4, 6, 8

0, 2, 4, 6, 8

0, 2, 4, 6, 8

Citosol

Núcleo

Núcleo

1249

1250

1251

mannose-1-phosphate guanyltransferase

MCAK-like kinesin

methyltransferase

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1252	mitochondrial DNA polymerase beta	TR00477	45 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1253	mitochondrial processing peptidase	TR05732	36 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1254	mitochondrial processing peptidase alpha subunit	TR01940	58 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1255	mitochondrial processing peptidase alpha subunit	TR02211	51 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1256	mitochondrial processing peptidase, beta subunit	TR04446	36 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1257	mitochondrial RNA binding protein	TR03101	39 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1258	mitochondrial RNA binding protein 1	TR01711	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1259	mitochondrial RNA-binding protein 2	TR00100	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1260	mitochondrial tryparedoxin peroxidase, trypanosomatid typical 2-Cys peroxiredoxin	TR04568	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1261	mitogen-activated protein kinase	TR00949	47 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1262	molecular chaperone HtpG	TR00837	81 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1263	myo-inositol-1 phosphatase	TR01107	40 kDa	1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
1264	NADH-dependent fumarate reductase	TR04930	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1265	nascent polypeptide associated complex subunit	TR02578	19 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1266	nuclear pore complex protein	TR02436	154 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1267	nucleolar protein	TR01560	23 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1268	nucleolar protein	TR06999	36 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1269	nucleoporin	TR06586	110 kDa	1DE	0, 2, 4, 6, 8	Núcleo
1270	nucleoside diphosphate kinase	TR01180	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1271	nucleosome assembly protein	TR02937	39 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1272	nucleosome assembly protein-like protein	TR04852	49 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1273	Oligopeptidase B	TR04010	80 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1274	orotidine-5-phosphate decarboxylase/orotate phosphoribosyltransferase	TR06678	50 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1275	p21 antigen protein	TR01483	21 kDa	2DE / 1DE	0, 2, 4, 6, 8	Mitocôndria
1276	p22 protein precursor	TR05297	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1277	paraflagellar rod component	TR01610	68 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1278	paraflagellar rod protein 3	TR06792	69 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1279	peptidase	TR00141	119 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1280	peptidase M20/M25/M40	TR02201	52 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1281	peptidylprolyl isomerase	TR05256	48 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1282	phosphatase 2C	TR03017	41 kDa	1DE / gel free	2, 4, 6, 8	Citosol
1283	phosphatidylinositol kinase related TOR2	TR06676	274 kDa	1DE	0, 2, 4, 6, 8	Citosol
1284	phosphatidylinositol-kinase protein	TR02444	180 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1285	phosphoenolpyruvate carboxykinase (ATP)	TR05925	59 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1286	phosphoenolpyruvate mutase	TR00362	33 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1287	phosphoglycerate kinase	TR02767	45 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1288	phosphoinositide-binding protein	TR00327	48 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1289	phosphomannomutase-like protein	TR03666	65 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1290	poly(A)-binding protein	TR00554	61 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1291	pretranslocation protein, alpha subunit	TR03233	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1292	prohibitin	TR03199	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1293	prohibitin	TR04846	33 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1294	proline oxidase	TR05652	65 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1295	prolyl-tRNA synthetase	TR02774	91 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1296	prostaglandin F synthase	TR04734	33 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1297	prostaglandin F2alpha synthase	TR06121	43 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1298	proteasome alpha 1 subunit	TR00710	19 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1299	proteasome alpha 1 subunit	TR00776	27 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1300	proteasome alpha 3 subunit	TR00880	32 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1301	proteasome alpha 5 subunit	TR03212	27 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1302	proteasome alpha 7 subunit	TR01523	26 kDa	1DE	0, 2, 4, 6, 8	Citosol
1303	proteasome alpha 7 subunit	TR03369	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1304	proteasome beta 5 subunit	TR04306	35 kDa	1DE	0, 2, 4, 6, 8	Citosol
1305	proteasome beta 6 subunit	TR04348	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1306	proteasome beta 7 subunit	TR03825	24 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1307	proteasome regulatory ATPase subunit 3	TR00459	44 kDa	2DE/ 1DE / gel free	2, 4, 6, 8	Citosol
1308	proteasome regulatory non-ATPase subunit 2	TR00350	105 kDa	1DE	0, 2, 4, 6, 8	Citosol
1309	proteasome regulatory non-ATPase subunit 3	TR01856	38 kDa	1DE	2, 4, 6, 8	Citosol Núcleo
1310	proteasome regulatory non-ATPase subunit 5	TR03376	55 kDa	1DE	0, 2, 4, 6, 8	Citosol
1311	proteasome regulatory non-ATPase subunit 6	TR00348	59 kDa	1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
1312	proteasome regulatory non-ATPase subunit 8	TR04807	41 kDa	1DE	0, 2, 4, 6, 8	Citosol
1313	proteasome subunit beta 3	TR00024	22 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1314	protein disulfide isomerase	TR06376	44 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1315	protein kinase	TR01385	31 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1316	protein kinase A catalytic subunit isoform 1	TR00165	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1317	protein kinase A regulatory subunit	TR03633	57 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1318	protein phosphatase	TR03123	46 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1319	protein phosphatase 2A catalytic subunit	TR05383	35 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1320	protein translation factor SUI1	TR04287	12 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1321	protein transport protein sec13	TR02433	40 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1322	protein tyrosine phosphatase	TR00208	27 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1323	protein tyrosine phosphatase-like protein	TR00496	19 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1324	Protein with unknown function	TR00953	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
1325	Protein with unknown function	TR01041	34 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1326	Protein with unknown function	TR01387	32 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1327	Protein with unknown function	TR03165	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1328	Protein with unknown function	TR03721	22 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1329	Protein with unknown function	TR03777	37 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1330	Protein with unknown function	TR03949	10 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1331	Protein with unknown function	TR04040	29 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1332	Protein with unknown function	TR04205	87 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1333	Protein with unknown function	TR05442	34 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1334	Protein with unknown function	TR05797	11 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1335	Protein with unknown function	TR05844 (+1)	30 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1336	Protein with unknown function	TR06271	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1337	Protein with unknown function	TR06329	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1338	Protein with unknown function	TR06627	41 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1338	Protein with unknown function	TR06907	166 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1340	P-type H+-ATPase	TR04120	102 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1341	pyridoxal kinase	TR03675	33 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1342	pyrroline-5-carboxylate reductase	TR01544	29 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1343	pyrroline-5-carboxylate synthetase-like protein	TR00457	47 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1344	pyruvate dehydrogenase E1 component alpha subunit	TR05071	29 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1345	pyruvate kinase 2	TR02469	54 kDa	2DE / 1DE	0, 2, 4, 6, 8	Mitocôndria
1346	pyruvate phosphate dikinase	TR06266	101 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1347	quinone oxidoreductase	TR00615	23 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
1348	Rab family, other	TR02185	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1349	RAB GDP dissociation inhibitor alpha	TR03103	50 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1350	rab1 small GTP-binding protein	TR00454	24 kDa	1DE	0, 2, 4, 6, 8	Citosol
1351	rab11B GTPase	TR02815	25 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1352	rab7 GTP binding protein	TR04957	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1353	ran-binding protein 1	TR04578	23 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1354	reiske iron-sulfur protein precursor	TR03577	34 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1355	reticulon domain protein	TR05002	21 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1356	ribonuclease L inhibitor	TR00662	73 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1357	ribonucleoprotein p18, mitochondrial precursor	TR05418	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1358	ribonucleoside-diphosphate reductase large chain	TR03619	91 kDa	1DE	0, 2, 4, 6, 8	Citosol
1359	ribonucleoside-diphosphate reductase small chain	TR04880	39 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1360	ribosomal protein L21E (60S)	TR05435	18 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1361	ribosomal protein L27	TR03269	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1362	ribosomal protein L3	TR02056	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Retículo Endoplasmático
1363	ribosomal protein L35A	TR02961	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1364	ribosomal protein L36	TR03270	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1365	ribosomal protein S20	TR04046	13 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1366	ribosomal protein S25	TR02657	12 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1367	ribosomal protein S6	TR05110	14 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1368	RNA helicase	TR05708	49 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1369	RNA-binding protein	TR01118	31 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1370	RNA-binding protein	TR02427	49 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1371	RNA-binding protein	TR02534	32 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
1372	RNA-binding protein	TR03208	27 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1373	RNA-binding protein	TR04652	29 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1374	RNA-binding protein	TR05035	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1375	RuvB-like DNA helicase	TR03603	53 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1376	S-adenosylhomocysteine hydrolase	TR04758	48 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1377	S-adenosylmethionine synthetase	TR04280	41 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1378	serine carboxypeptidase CBP1	TR06814	23 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1379	serine/threonine protein kinase	TR04773	55 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1380	serine/threonine protein phosphatase catalytic subunit	TR05363	34 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1381	seryl-tRNA synthetase	TR06624	54 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1382	signal recognition particle protein	TR02964	83 kDa	1DE	2, 4, 6, 8	Retículo Endoplasmático
1383	small GTP-binding protein	TR00926	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1384	small GTP-binding protein Rab1	TR00576	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1385	small GTP-binding protein Rab11	TR03745	24 kDa	1DE / gel free	0, 2, 4, 6, 8	Citoesqueleto
1386	small Rab GTP binding protein	TR05498	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1387	small subunit ribosomal protein S11e	TR06998	20 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1388	small subunit ribosomal protein S17e	TR02634	28 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1389	small subunit ribosomal protein S19e	TR05990	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1390	small subunit ribosomal protein S7e	TR03116	34 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1391	small subunit ribosomal protein S9e	TR03045	22 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1392	solute carrier family 25 (mitochondrial phosphate transporter), member 3	TR05696	34 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1393	spermidine synthase	TR01873	33 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Extracelular
1394	S-phase kinase-associated protein	TR05815	21 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1395	splicing factor 3B subunit 1	TR02477	130 kDa	1DE	0, 2, 4, 6, 8	Membrana Plasmática
1396	sterol 24-c-methyltransferase	TR06821	41 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1397	stress-induced protein sti1	TR02091	63 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1398	succinate dehydrogenase flavoprotein	TR04856	67 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1399	succinyl-CoA ligase [GDP-forming] beta- chain	TR02001	45 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1400	succinyl-coA:3-ketoacid-coenzyme A transferase, mitochondrial precursor	TR01479	53 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1401	surface protease GP63	TR05051	61 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1402	surface protease GP63	TR06383	35 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1403	surface protease GP63	TR06760	48 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1404	surface protease GP63	TR07133	73 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1305	t-complex protein 1, delta subunit	TR00649	59 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1406	t-complex protein 1, eta subunit	TR04762	61 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1407	thimet oligopeptidase	TR04069	77 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria
1408	thiol-dependent reductase 1	TR00510	50 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1409	thioredoxin	TR02030	48 kDa	1DE / gel free	2, 4, 6, 8	Extracelular
1410	thioredoxin-like protein	TR06316	25 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1411	threonine synthase	TR02778	73 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1412	threonyl-tRNA synthetase	TR03503	91 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Núcleo
1413	transaldolase	TR04548	36 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1414	transcriptional regulatory protein NOT1	TR07157	123 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1415	transitional endoplasmic reticulum ATPase	TR04770	89 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1416	transketolase	TR02117	73 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1417	translation initiation factor	TR03905	62 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol Núcleo
1418	translation initiation factor 1A	TR01319	19 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1419	translation initiation factor IF-2	TR00778	94 kDa	1DE	0, 2, 4, 6, 8	Citosol
1420	trans-sialidase	TR06179	50 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1421	trans-sialidase	TR06506	44 kDa	1DE / gel free	0, 2, 4, 6, 8	Extracelular
1422	trans-sialidase	TR07083	70 kDa	1DE / gel free	2, 4, 6, 8	Núcleo
1423	tricarboxylate carrier	TR02126	23 kDa	2DE / 1DE	0, 2, 4, 6, 8	Núcleo
1424	triosephosphate isomerase	TR03469	27 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1425	trypanothione reductase	TR02517	54 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1426	trypanothione synthetase	TR01995	73 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1427	tryparedoxin	TR04735	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Mitocôndria
1428	tryparedoxin peroxidase	TR02563	21 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1429	tryptophanyl-tRNA synthetase	TR05241	44 kDa	1DE	0, 2, 4, 6, 8	Citosol
1430	tubulin beta	TR05117	50 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1431	tubulin-specific chaperone	TR03448	26 kDa	1DE / gel free	2, 4, 6, 8	Mitocôndria
1432	tyrosine aminotransferase	TR02148	46 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1433	U2 splicing auxiliary factor	TR07275	27 kDa	1DE	0, 2, 4, 6, 8	Extracelular
1434	ubiquitin carboxyl-terminal hydrolase	TR04725	35 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
1435	ubiquitin-activating enzyme E1	TR00202	115 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1436	ubiquitin-conjugating enzyme	TR02646	16 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1437	ubiquitin-conjugating enzyme E2	TR01096	17 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1438	ubiquitin-conjugating enzyme E2	TR05683	17 kDa	1DE	0, 2, 4, 6, 8	Citosol
1438	ubiquitin-fusion protein	TR02208	15 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1440	UDP-glucose:glycoprotein glucosyltransferase	TR03078	185 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1441	Unc104-like kinesin	TR05233	163 kDa	1DE	0, 2, 4, 6, 8	Citosol Núcleo
1442	uracil phosphoribosyltransferase	TR01159	26 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1443	U-rich RNA-binding protein UBP-2	TR07088	20 kDa	1DE / gel free	0, 2, 4, 6, 8	Núcleo
1445	vacolar ATP synthase	TR04129	41 kDa	1DE / gel free	2, 4, 6, 8	Citosol
1446	vacuolar ATP synthase subunit B	TR00246	56 kDa	2DE/ 1DE / gel free	0, 2, 4, 6, 8	Citosol
1447	vacuolar ATP synthase subunit c	TR01358	46 kDa	1DE / gel free	2, 4, 6, 8	Núcleo
1448	vacuolar proton translocating ATPase subunit A	TR04003	88 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1449	vacuolar-type Ca2+-ATPase	TR03215	99 kDa	1DE	2, 4, 6, 8	Membrana Plasmática
1450	vacuolar-type proton translocating pyrophosphatase 1	TR01468	78 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1451	vesicle-associated membrane protein	TR03000	33 kDa	1DE / gel free	0, 2, 4, 6, 8	Membrana Plasmática
1452	vesicle-associated membrane protein	TR04595	23 kDa	1DE	0, 2, 4, 6, 8	Retículo Endoplasmático Mitocôndria
1453	vesicle-fusing ATPase	TR00809	80 kDa	1DE	2, 4, 6, 8	Citosol

	Proteínas	Códigos de Acesso	MW	Abordagem	Dia	Localização Celular
1454	V-type ATPase, A subunit	TR06069	68 kDa	1DE / gel free	0, 2, 4, 6, 8	Citosol
1455	ysine decarboxylase-like protein	TR02950	36 kDa	1DE	0, 2, 4, 6, 8	Mitocôndria

APÊNDICE B

Sequências nucleotídicas e aminoacídicas deduzidas das proteínas selecionadas. O sombreado cinza corresponde a ORF das proteínas e a sequência sublinhada corresponde a localização dos iniciadores utilizados para PCR.

B.1: Espermidina sintase (ES)

1	TA	CAG	CGT	TTZ	CAT	'CA'	IGCC	TGG	ccco	CGGG	CCTZ	ACTO	CCT	GAC	GGC	TGG	TTC	CGC	GAG	GAA	AAT	GACO	AG	rggc	CCG	GGG	CAGO	GCCI	ATG	FCC	TTC	AAG	GTA	GAG	AAG	GTC	CTGI	TACO	GAC	GCCC	CGP	CGP	AAGT	TTC	CAGO	ACC	TGA	CGG	TCTTT
						1	1 P	G	P	G	L	L	P	D	G	W	F	R	Е	Е	Ν	D	Q	W	P	G	Q	A	М	S	F	Κ	V	Е	K	V	L	Y	D	A	Ρ	Т	K	F	Q	Н	L	Т	VF
151	GA	GAG	CGA	CCC	CAAZ	GGG	TCC	GTG	GGG	CACO	CAT	CATG	GCG	CTC	GAC	GGC	TGC	GTC	CAG	GTG	ACG	GACO	AC	GACG	AG	TTC	STCI	FAC	CAC	GAG	GTG	CTT	GGC	CAC	ACC	TCC	CTCI	GCI	rcco	CACC	CAA	ACC	CCGC	GAAC	CGCG	TGC	TCA	TCA	TCGGA
	E	S	E) E	P	()	5 P	W	G	Т	I	М	А	L	D	G	С	V	Q	V	Т	D	Н	D	Е	F	V	Y	Н	Е	V	L	G	Н	Т	S	L	С	S	Н	Ρ	Ν	Ρ	E	R	V	L	I	ΙG
301	GG	CGG	CGA	CGG	TGG	TG	GAT	GCG	GGA	GGT	GCT	GCGC	CAC	AGC	ACC	GTG.	AAG	CAC	IGC	GAG	CTC	GTCO	AC	ATTG	ACC	GGG	SATO	GTC/	ATG	GAG	CAG	AGC	AAG	CAA	CAC	TTT	CCG	CAG	ATCO	GCCT	GCT	CGC	CTAF	ACGO	GATC	ccc	GGG	GCGA	CGGTT
	G	G	E) (; (1	7 M	R	Е	V	L	R	Н	S	Т	V	K	Н	С	Е	L	V	D	I	D	G	D	V	М	Е	Q	S	Κ	Q	Н	F	P	Q	I	A	С	S	L	Т	D	P	R	А	T V
451	CG	CGT	GGG	GCGZ	TGG	CC	rGGC	GTT	TGC	AAA	GCAG	GGCC	GCG	GAC	AAC	ACG	TAC	GAC	GTG	GTT	ATC	ATTO	AC	ACCA	CCG	GACO	ccc	GCT	GGG	CCC	GCC	TCC	AAG	CTA	TTT	GGG	gAG	GAG	TC	FAC	GGC	ACC	STGC	CTAC	CGCA	TCC	TGA	AGC	CGGAC
	R	V	' G	; E) (; 1	A	F	A	K	Q	A	A	D	Ν	Т	Y	D	V	V	Ι	I	D	Т	Т	D	Ρ	A	G	Ρ	А	S	K	L	F	G	Е	Е	F	Y	R	Н	V	L	R	I	L	K	P D
601	GG	CTT	ATG	CTC	CAZ	TCI	AGGG	AGA	ATG	CATO	CTG	GCTG	GAC	CTT	CCG	CTT.	ATT	GAA	GAT	ATG	TCT	CGCI	TC	ATCC	GGG	GGG	TTC	GA	TTT	GCG	TCA	GTG	AAG	TAT	GCG	CTA	ATGO	CACA	ACA	CCCF	CGT	ATC	CCCT	rgco	GGCI	CCA	TTG	GAA	CGCTT
	G	L	, C	: 0	C N	ΙÇ	2 G	Е	С	I	W	L	D	L	Ρ	L	I	Е	D	М	S	R	F	I	R	G	V	G	F	А	S	V	K	Y	A	L	М	Н	Т	Ρ	Т	Y	Ρ	С	G	S	I	G	T L
751	GT	CTG	CAC	GAZ	GAZ	GGG	TGG	CGT	CGA	IGTO	GACI	AAAA	CCG	CTG	CGT	CCT	GTT	GAG	GAG	ATG	CCG	TTTC	GCG	AGG	AGC	CTG	AG	TAC	FAC	CAC	TCT	GAA	ATG	CAC	AAA	GCC	TCCI	TTC	STG	CTTC	CGC	GCT	TTTC	SCCC	CAGC	ACA	TCA	ACA	AGCTG
	V	С	: т	P	C P	()	A G	V	D	V	Т	K	Ρ	L	R	Ρ	V	Е	Е	М	Ρ	F	А	K	E	L	K	Y	Y	Н	S	Е	М	Н	Κ	А	S	F	V	L	P	R	F	А	Q	Н	Ι	Ν	K L
901	GA	ATA	A																																														
	E	*																																															

B.2: Histidina amônio liase (HAL)

1	CAACG	AATO	CAG	AGT	AGG	TGA	GGG	TTZ	ACC	CTT	'GA'	TGG	CTO	GCT	CTC	TT.	ACA	CCC	GA	GCZ	ATT	ATA	CGC	TTT	GGG	GTA	TGA	AAA	AGG	CGC	CAC	AAT	TGA	ACT	TTC	AGA	CGA	GGC	AGT	rgc/	AAAZ	ATT	TAAC	GCI	GGC	CCGI	rgco	CGTG	ATCG	AT
		М	Q	S	Q	V	R	V	Т	L	D	G	- 0	2	S	L	Т	Ρ	D	A	L	Y	A	L	G	Y	E	K	G	A	Т	I	Ε	L	S	D	Ε	A	V	A	Κ	Ι	Ν	Α	G	R	А	V	I	D
151	AAGAT	TGTT	GAG	GAA	ATC	AAA	CGG	TTT	CAT	GGT	AT	CAA	CA	CAG	GCI	TT	GGT	AAA	TTT	GAZ	ATC	AAC	GAT	TAT	TGC	ACC	GGA	TCA	ACT	GGA	GCT	TCT	GCA	GTT	GAA'	ICT	TGT	rcgi	ATCO	CCA	CAG	GCI	ATGO	GTO	GGA	AGAC	GCCC	CCTG	ACAC	CC
	K I	V	Е	Е	Ν	Q	Т	V	Y	G	I	N	1	Γ	G	F	G	Κ	F	E	S	Т	I	I	A	P	D	Q	L	E	L	L	Q	L	Ν	L	V	R	S	Η	S	А	С	V	G	E	Ρ	L	Т	P
301	CAAcG	GGCI	CGI	ATG	TGA	TGG	CCC	TTC	CGT	GTC	'AA	TAT	TC	ICT	GCA	AA	GGT	CAC	AG	CGGC	CAT	TCG	TTT	GGA	AAC	GGT	TCA	AAA	GTA	TGT	CAA	GGC	ATT	CAA	CGC	rgg	TGT	GGT	rcco	CTA	CATT	CCI	AGA/	CAZ	GGA	ACC	CGTT	IGGT	GCCA	GC
	Q R	A	R	М	М	М	A	L	R	V	Ν	I	1	5	С	Κ	G	Н	S	G	I	R	L	E	Т	V	Q	K	Y	V	K	A	F	N	A	G	V	V	Ρ	Y	Ι	Ρ	Е	Q	G	Т	V	G	А	s
451	GGGGA	TCTC	CGGI	CCAC	TCT	CCC	ACC	TGG	GCC	TTA	GG	AAT	GC	ГTG	GTG	AA	GGA	CGC	CTT	GCZ	AAC	GCT	ГАА	CAA	ССТ	GAA	GTT	CCG	TGA	GGC	CCG	ACT	TGT	TTT	ACA	AGA	GCT	GGG	CGT	[GA]	ACCO	CATO	CACO	TTC	SAAG	GGC	GAAC	GAA	GGGT	ΤG
	G D	L	G	P	L	S	Н	L	А	L	G	M	1 1	5	G	Е	G	R	L	Α	Τ	L	N	N	L	K	F	R	E	A	R	L	V	L	Q	E	L	G	V	Е	P	I	Т	L	K	Α	K	E	G	L
601	GCGCT	GATT	TAAC	GGA	CAC	AGI	TTA	TTT	ГСТ	GCC	CT	CGG	TA	CAG	AAG	GCC	GTT	GTG	CGI	AGCI	rcg	AAG	AAC	TGC	TCT	CCT	TGC.	AGA	CGT	TGT	TCT	TGC	CAT	GTC	TCA	FGA	AGC	GCT	ACTO	STC	ATCI	GTO	CAG	GCC	CTT	TAAC	ccco	GAG.	ATTC	AC
	A L	I	Ν	G	Т	Q	F	Ι	S	А	L	G		Г	E	А	V	V	R	Α	R	R	Т	A	L	L	A	D	V	V	L	A	М	S	Н	Ε	A	L	L	S	S	V	S	А	L	Ν	Ρ	E	I	Н
751	CGTGT	GCGI	ICCI	CACI	AAG	GTC	AGC	AGZ	ATT	GTG	GC	TCA	GC	GTC	TGC	GG	TCA	CTT	TTZ	CAC	CAA	CGA	AAA	GCA	TCG	GTC	TTC	GAT	TCT.	ACT	CAG	CCA	TAA	GGG	TTG	CGG	TCG	CGT	TCA	GGA	CGCC	TAC	CTCT	TATO	CGI	TGC	CTCT	rccc	CAGG	TG
	R V	R	Ρ	Н	K	G	0	0	Ι	V	A	¢	1	R	L	R	S	L	L	Н	N	E	K	Н	R	S	S	I	L	L	S	Н	K	G	С	G	R	V	0	D	А	Y	S	Ι	R	С	S	P	0	v
901	CATGG	GATO	CTCC	AAT	ACG	TCA	TCG	AAT	rgg	GTA	TA	CGG	TA	rcc	TCA	CC.	ACG	GAG	CTC	CAAT	TG	CGC	CAC	TGA	TAA	CCC	GTT	GGT	ATT	ccc	GCA	TGG	ATC.	AGT	GAA	GGT	GGT	TTC	GTG	CGGG	CAAT	TTC	CAT	GGI	GAG	GTAC	CCCZ	AGCG	AAGG	CC
	H G	I	S	N	D	V	I	E	W	V	Y	G		I	L	Т	Т	Е	L	N	С	A	Т	D	N	P	L	V	F	P	Н	G	S	V	K	V	V	S	С	G	N	F	Н	G	Е	Y	Ρ	A	K	A
1051	CTTGA	TATO	GCTT	GCCI	TTG	GTG	TCC	ATC	GAA	CTT	GG	GAG	TA	FCA	GCG	GAG	CGT	CGI	ATC	GAG	GCG	TCT	ГАА	CAA	TCC	GTC	TCT	CAG	CCG	CCT	TCC	CGC	CTT	TTT	GGT	GGA	AAA	CGG	AGGZ	ACT	TAAC	TCI	AGGC	CTTT	ATC	GATO	CGCI	TCAT	TGCA	CT
	LD	M	L	А	I	G	V	Н	Е	L	G	S		E	S	Е	R	R	Ι	Е	R	L	N	N	P	S	L	S	R	L	P	A	F	L	V	Е	N	G	G	L	N	S	G	F	М	Ι	А	Н	С	Т
1201	GCTGC	CGCC	CCTI	GTC	CGG	AGA	ACA	AGO	STC	TAC	TG	TCA	CC	CCG	CAT	CC	GTT	GAC	AG	CATC	CTC	CAC	CTC	TGC	TGC	CCA	AGA	AGA	TCA	CGT	CAG	CAT	GGG	GGG	GTT	rgc	CGCI	ACG	CAA	GC	TAT	AA	GTC	GTC	GAA	AAT	IGTO	CGAA	TACA	TT
	A A	A	L	V	S	E	N	K	V	Y	С	H		2	A	S	V	D	S	I	S	Т	S	A	A	0	E	D	Н	V	S	М	G	G	F	A	А	R	K	A	Ι	K	V	V	Е	N	V	E	Y	I
1351	CTTTC	CATI	GAG	CTT	TGT	GCG	CCT	GCC	CAG	GGC	GT	CGA	TC	TTC	TGC	GG	CCG	CTC	ACO	TCO	GAC	GGT	GCC	GCT	GGA	AAA	TGT	CTG	GAG	TCT	CGT	CCG	CAA	CGT	CAG	rcc	CAG	TTG	GGA!	TAA	GGAT	CGC	CGAZ	ATC	CAC	CACI	rgac	CaTA	АААА	AT
	LS	I	Е	L	L	С	A	С	0	G	V	D		5	L	R	Ρ	L	Т	S	Т	V	P	L	E	N	V	W	S	L	V	R	N	V	S	P	S	W	D	K	D	R	Е	М	Н	Т	D	I	K	N
1501	CIECCO	CCAC		000	000	000		0.000		-		~~~					~ ~	2 000	000	2020	202	CCC	202	~	~~m	CCA		-	-	~~~		~ ~ ~		~																
TOOT	GICGC	GGAG	SCIG	CIG	GCI	CCG	GTG	CTC	5T T	TGG	;AA	CGC	GG	II.U	AGA	AG	CAC	AIC		CAG	-DOA	GGC	JCA		LLI	GGA	TGT	CIL	TAC	CGC	CAA	GAA	GUU	GTT	TGA	PCL.	GAA	ALCO	AA	AL	L 1 G/		-GG/	AGAC	ACA	A .				

B.3: Proteína glicossomal 5A (Gim5A)

1	AA	AT	GTC	CGC	CTT	TGC	CCA	CGCI	TAC	CTT	TCCG	ACA	CGI	GGA	ACC	GTO	GAC	AAG	GTT	ATG	GCA	ATT	GTG	CAG	TCC	TTC	CGA	TGG	CGC	TGC	GAG	GGC	ССТ	GTT	CGA	AAT	GCT	GGT	IGTO	GATT	rccc	CTTC	GCC	STA	TCT	CTG	GGCI	AATC	TGTC	т
		Μ	S	A	F	A	Η	Α	Y	L	S	D	Т	W	Ν	R	D	Κ	V	М	А	I	V	Q	F	L	P	М.	A	L	Е	G	Ρ	V	R	Ν	А	G	С	D	S	L	А	V	S	L	G	Ν	L S	
151	AA	GAT	GGC	GGA	CGC	GTA'	rcg:	rgco	GTC	ACC	CGTI	TGI	CTC	TGG	TTC	TAZ	AAC	GCG	CTT	CG.	TCC.	AAG	ACG	TTG	GGGG	CTT	TGG	CGA	AAC	CAC	GGG	GAA	GAT	GCC	TTC	GTT	TCT	CGT	CTTC	SATC	CAGO	STT?	FCA	CAC	GCG	TTT	CAC	ATCG	GCTT	С
	K	М	A	D	A	Y	R	А	V	Т	R	L	S	L	V	L	Ν	А	L	S	S	Κ	Т	L	G	A	L	A	K	Ρ	G	Е	D	А	F	V	S	R	L	D	Q	V	S	Н	А	F	Н	I	G F	
301	TG	CTTC	CAA	CGA	GCA	CAC	GGC	GGT	CTC	GCA	GGGC	GGG	GAG	TGI	TTA	ATT	CCO	GGG	CTG	GCA	CGC	CTG	GGT	GGT	STTG	CTG	TGC	TTT	GCI	GG	TTT	TAC	ACG	CTT	GTC	GTG	GGC	TTG	STCO	CGGC	CAGO	STG	TAC	CTG	CTG	GCG	AAG	CACA	GCCC	С
	С	F	N	E	Η	Τ	A	V	L	А	G	R	G	V	F	N	S	G	L	А	R	L	G	G	V	A	V	L	С	W	F	Y	Т	L	V	V	G	L	V	R	Q	V	Y	L	L	А	K	Н	S P	
451	AA'	rgg'	TCC	CTG	CAA	GGT	TCTO	GATO	CCG	GGG	AATG	CAA	ATG	ACA	CGA	AGG	STT	GTT	CCA	TAC	ACG	CAC	GAG	GAG	GCA	AGC	GTG	CCG	TGG	STG	ACC	CTG	GTG.	AAG	CTG	GGC	CTT	TTT?	ACCO	STGT	TTT	CA	ATG	ACG	TGC	CTG	CCTO	GAGG	GCAA	G
	Ν	G	P	С	K	V	L	М	Ρ	G	Ν	A	Ν	D	Т	K	V	V	Ρ	Y	Т	Н	Е	Е	С	K	R	A	V	V	Т	L	V	K	L	G	L	F	Т	V	F	S	М	Т	С	L	Ρ	Е	G K	
601	CC	ACA	GCT	GCT	GCA	GGA	GCCZ	ATGO	AGC	TTC	TTGA	TGC	ccc	TGC	ACC	AG	TG	GTC.	AGA	GCG	CTT	GCA	CCA	AAC	AGC	tGC	AAC	TGA	GTG	SACA	ACT	GTG	CGT	GGT	CTG	TTT	GCC	CTC	rcco	GCAT	CGC	TAT	rgco	AT	TTC	TAT	TAA	GGT		
	P	Q	L	L	Q	Е	P	С	S	F	L	М	P	L	Н	Q	L	V	R	А	L	А	Ρ	N	K	L	Q	L	S	D	Т	V	R	G	L	F	A	L	S	A	S	L	С	D	F	Y	*	G		

B.4: Aspartato aminotransferase mitocondrial (mASAT)

N V A Y V A K A F H D V S K

B.5: Antígeno de membrana apical (AMA-1)

1	AT	GCA	GGT	GCCO	AAT	'CCA	GGA	GGG	GATG	TAC	GAT	ACCO	CCGI	AGG	CCG	ACA	TCG	CA	AAG	GTTC	GGT	ACTO	GGC	CCA	GAA	GTC	AGG	GGTG	TG	CCCI	ATG	ACG.	AAT	CAA	TTT	TAT	TAT	GCG	CCG	CCG	CCG	CCT	CTG	GTA	ACT	CCG	ACCO	CCCI	ATGG	AG
	Μ	Q	V	Ρ	Ν	Ρ	G	G	D	V	R Y	(1	Ρŀ	Ξ	A	D	I	A	Κ	V	G	Т	G	Ρ	Е	V	R	G	V	Ρ	М	Т	Ν	Q	F	Y	Y	A	Ρ	Ρ	Ρ	Ρ	L	V	Τ	Ρ	Т	Ρ	M I	Е
151	GT	CCA	ACG	CCC	CAA	CGG	GAC	TGG	AAGT	ACC	ATA	CTO	GTC	ACT	GCT	GTC	AGG	AC	rgc:	CAO	CCG	TGC	GTG	GAG	GCC	IGGI	GC:	FGTT	AT	TAC	IGC	CAG	CTT	TCC	CGA	CAG	TAC	ATA	ATG	GTG:	IGC	CAG	CGC	GGT	GGA	CCC	ACC/	ATA	GACG	GG
	V	Q	R	Ρ	Q	R	D	W	K	Y	D 1	E (C I	ł	С	С	Q	D	С	S	Ρ	С	V	E	А	W	С	С	Y	Y	С	Q	L	S	R	Q	Y	Ν	М	V	С	Q	R	G	G	Ρ	Т	Ι	D (G
301	AT	GAT	CTG	TTT	GCC	GCA	TAC	TGT	GGGG	ATT	ACT	TTT	GCG	GTG	GTA	TTG	TTT	CCC	CCA	ATT:	ГTA	CAG	IGT	GGG	ATG	CGCI	ACCZ	AAAC	TTC	CGG	GAA	AAC	CTC.	AAC	ATT	CGG	GGCI	ACGI	AGT	TTT	GAT	GAC	TTC	TGT	TGC	TCC	TTA	IGC:	rgcg	GG
	М	I	С	L	А	А	Y	С	G	D	ΥE	F (C (3	G	I	V	S	Ρ	I	L	Q	С	G	М	R	Т	K	L	R	Е	Ν	L	Ν	I	R	G	Т	S	F	D	D	F	С	С	S	L	С	C (G
451	CCC	CTG	CAC	CCTC	CAA	CAG	TCC	TTG	ATGG	AGA	TGAC	CAG	CGG.	rgg	GCA	TGT	TCC	ccc	GGC	GCC	IGC	TGC	FAC	GAA	GCG	CCTC	CT	GGTT	TTC	GTG	GCG	ATG	CAG	ГАА																
	P	C	т	T.	0	0	S	T.	м	E	м 1	r ;	Α	1	G I	м	F	P	G	А	C	C	Y	E	А	P	P	G	F	V	Α	М	0	*																

B.6: Proteína mitocondrial ligante de RNA 2 (MRP2)

1	ATC	GCT	TCG	TCA	TCT	TGC	ACC	GTG	GCC	CGT	GAT	GGC	CCAC	CCGC	GTT	GCT	GCG	GTG	GGC	TAC	TTC	ACG	CTG	TCCO	CCC	GCA	CGC	TTA	CAA	ACT	GCC	GACO	CTC	AGC	GGI	AGT	GAG	CTC	CGC	GTG	GAG	AGC	GGC.	ACC	AGC	CAT	GAC.	ACCI	ATA	СТ
	М	L	R	H	L	A	P	W	P	V	М	A	Н	R	V	А	А	V	G	Y	F	Т	L	S	Ρ	A	R	L	Q	Т	A	Т	S	S	G	S	Е	S	R	V	Е	S	G	Т	S	Н	D	Т	N 2	г
151	AGO	CGG	TCC	TGC	GGC	GAA	GTG	GCG	CCG	TCC	ATC.	ACTO	GGCI	CAC	CAG	CGC	GCT	CGC	CGC	TCG	CAG	CTT	CCG	CCTO	GCG	TTT	GAT	GTT	GTG	CAC	CTGO	GAAC	CGAC	GAG	GAC	ATG	AGC	CGC	GGG	CAC	CTC	TTG	CGG	GTG	CTG	CAC	CGC	GAC	AGCT	ГC
	S	G	P	A	. A	. K	W	R	R	P	S	L	А	Q	Q	R	А	R	R	S	Q	L	Ρ	Ρ	А	F	D	V	V	Η	W	Ν	D	Ε	D	Μ	S	R	G	Н	L	L	R	V	L	Н	R	D	S I	F
301	GTT	[GT	CCT	CGA	TTA	CCA	CCG	CCA	GGT	GAA	GAA	ACTO	GGGG	GAG	GAG	GGA	AAC	AAG	GCA	GAA	CGC	GTC	GTG	TCA	GTG	ATG	CTG	CCG	GCG	GTC	CTAC	CACO	GGC1	CGC	TTT	CTC	GGT	STG	CTG	GAG	GGC	CGT	ATG	GAG	CAG	GTG	GAG	GTG	CAGT	CG
	V	V	L	D	Y	H	R	Q	V	K	K	L	G	E	Е	G	Ν	Κ	А	Ε	R	V	V	S	V	М	L	Ρ	Α	V	Y	Т	А	R	F	L	G	V	L	Е	G	R	М	Е	Q	V	Е	V	Q S	S
451	CGC	CTT	CAC	CAA	CGC	CGT	CTT	TGC	CCC	CGT	CCC	GGA	GGTO	SCCO	CAC	ACC	TTC	ATC	CTC	AAG	TGC	ACC	TCG.	ACG	CGG	CCT	CCG	CAG	CAG	CAC	GAA	TAGO	CAGO	CAGC	GGA	GAC	GGG	GAA	ACG	TTT	GAC!	rgg	ACG	GTG	ATG	TTT	GAC	GTC	GCGG	AG
	R	F	Т	N	A	. V	F	A	P	V	P	Ε	V	Ρ	Н	Т	F	I	L	K	С	Т	S	Т	R	Ρ	Ρ	Q	Q	Q	Ν	S	S	S	G	D	G	Е	Т	F	D	W	Т	V	М	F	D	V	A I	E
601	TCF	ACT	CAT	GCT	TCA	CCG	CTT	CCT	CTC	GCA	GGC	GCT	GCAC	CTAC	AAC	ACC	GGA	TTT	GCC	CGC	ACG	TTT	GTG																											
	S	L	М	L	H	R	F	L	S	0	A	L	Н	Y	Ν	Т	G	F	А	R	Т	F	V																											

B.7: Proteína flagelar ligante de cálcio (FCaBP)

1 M G A C G S K S S A G N K D G K S A T D R K V A W E R I R O V I P R E K T A E A K O R R I D Τ. F K K F D K N D T G K L S Y D E V Y N G C I E V L K L D E F T P R V R D I T K R A F N K A K D K G S Κ L 301 GAGAACAAGGGCAGCGAGGACTTTGTTGAATTTCTTGAGTTCCGTCTGATGCTTTGCTACCTCTACGACTACTTCGAGCTGGACGCGGAGGACGCCGCGAAGACATGCTGCCGCGAAGGAGTTCGAGAAGGCC ENKGSEDFVEFLEFRLMLCYLYDYFELTVMFDEIDTSGNMLLDAKEFEKA I E D P A E V F K E L D R N G S G S V T F D E F A A W A S A R K L D V D G VPKLEQWGAK D P 601 AACGCGCCGGAGAGTGCGTGAAACTGA NAPESA*N

B.8: Proteína de membrana de cinetoplastídeos (KMP-11)

1	ATG	GCC	ACC	ACC	CTT	GAG	GAG	TTT	TCC	GCC	AAA	CTT	GAC	CGG	CTG	GAT	GcC	GAG	TTT	GCA	AGA	AAG	ATG	GAG	GAG	CAG	AAC	AAG	AAG	TTC	TTT	GCG	GAC	AAG	CCG	GAC	GAA	AGCI	ACCO	CTG	rcc	CCT	GAA	ATG	AAG	GAG	CAC	TAC	GAG	AAG
	М	А	Т	Τ	L	Е	Е	F	S	А	K	L	D	R	L	D	А	Е	F	А	K	K	М	Е	Ε	Q	Ν	K	K	F	F	А	D	K	Ρ	D	Е	S	Т	L	S	Ρ	Ε	М	K	Ε	Н	Y	Ε	Κ
151	TTC	GAG	AGG	ATG	ATTO	CAG	GAG	CAC	ACC	GAci	AAG	TTC	AAC.	AAG	AAG	ATG	CAC	GAG	CAC	TCTO	GAG	CAC	TTT	AAG	FCG	AAG	TTT	GCT	GAG	CTG	CtT	GAG	CAA	CaA	AAG	AAC	GCT	CAG	TTC	CCG	GGC	AAG								
	F	Е	R	М	I	Q	Е	Н	Т	D	K	F	Ν	K	Κ	М	Н	Е	Н	S	Е	Н	F	Κ	S	K	F	А	Ε	L	L	Е	Q	Q	Κ	Ν	А	Q	F	Ρ	G	K								

B.9: Calpaína cisteíno peptidase (CCP)

1	ATG	ACAA	CGC	TCG	ACGA	CCI	CTA	CGC	STCI	TAC	TGC	CGC	AGAZ	GAG	GAI	GCI	AA	CA	ACA	AGC	FCCA	TCT	ICCA	GGT	ACT	rgc <i>i</i>	AGGA	GGA	GTT	CAC	ACGI	CAC	GAT	CAG	CGTC	GGGG	TAC	TGG	AAA	GCG	TGG	ACC	TGT	CGAA	AAA	CTAT	GTG
	М	Т	Т	L	D D	I	, Y	А	S	Y	С	R	R	R	G	С	Κ	Ρ	Ν	S	S	I	S	R	ΥI	ς) E	E	F	Τ	R	Η	D	Q	R	R	V	L	E	S	V	D	L	S K	N	Y	V
151	GGC	GCGA	AGG	GCA	ICAT	TCC	TAT	TCT	GAC	CTT	GTC	AAG	AATO	TGA	AGA	CCC	TG	AGGI	AGAC	CTG	GACO	CCZ	GAA	ACA	GCA	GTT	GGA	GCA	CGA	GCA	GTTO	GAG	CAT	CTT	GTTI	ACI	GTC	TTG	CCC	TGC	ATC	CGT	CGA	TGGA	GGA	GTG	GAT
	G	А	K	G	I I	E	, I	L	D	L	V	K	Ν	V	K	Т	V	R	R	L	D	А	R	N	S N	4 I	L E	Н	E	Q	L	Е	Н	L	V	Y	С	L	A	L	Н	P	S	M E	D	V	D
301	GTGI	CGG	ACA	ACG	CGCT	TGI	CAA	CTC	CAGI	GTT	GAC	CTC	ATT	TGC	AGC	TTC	CTTO	GAG	GCAZ	ATC	GAAA	ACA	ATCA	CCA	CCTT	TTC	CGT	TGA	CGG	GAA'	TCAT	TTC	TCA	CCC	GCCI	CCC	TGI	CGG	TGA	TTG	GCG	AGT	ATC	TGGA	GCG	GAAC	AGG
	V	S	D	Ν.	A L	E) N	S	S	V	D	L	I	L	Q	L	L	Е	А	Ν	Е	Ν	Ι	Т	ΤĒ	F F	ι V	D	G	Ν	Н	F	S	Ρ	А	S	L	S	V	I	G	E	Y	L E	R	Ν	R
451	GAAC	GAA	AAG	CGG	CGCG	GC7	GCG	GGA	GTO	GCTG	CCG	GCA	ATT	CAA	AAA	AG	TTT:	TTC	GTO	GCGC	CAGO	TGC	GAG	GAT	CGC	rggz	AGGG	GGA	CAC	CTC	GGG	GGC	CAT	GTA	CATI	ACT	CTA	CCT	GGI	GGA	AGA	ACC	AAC	AGTA	CAT	TATG	CGA
	Ε	R	K.	Α.	A R	ç) R	Е	V	L	Ρ	A	I	Т	K	K	F	F	R	A	Q	V	R	G	S I	Ŀ	E G	D	Τ	S	G	G	Н	V	Н	Y	S	Т	W	W	K	N	Q	QΥ	I	М	R
601	ACCI	CAC	GAC	GAA	CCCA	AGI	CCG	CAT	CGTC	CATG	GAT	ATC	GATO	CTC	CCA	AGA	ACTO	GCAG	CGAC	CAG	GCAG	GGI	TCT	TTG	TCTT	TCF	ACTC	CGA	CGG	AAC	ACAC	CAAA	GTG	ATT	GAG	GCGG	ATC	CGG	AAC	ACA	TTG	CTG	CAG	AAAG	CAA	GTA	GAT
	Т	S	R	R '	ГÇ	7	/ R	I	V	М	D	I	D	A	Ρ	K	Т	A	R	Q	A	G	F	F	VE	F F	ł S	D	G	Т	Н	K	V	I	E	A	D	A	E	Н	I	A	A	E S	N	V	D
751	CAC	AGTC	ATT	GTT	TTGT	GAC	CAT	GTG	GCI	GAG	GAA	CAC	GCTO	GCGI	ACI	CCZ	ATCI	ATGO	CCCI	TTT	ACAT	TTT	TATC	CTG	AACO	SAAG	CAT	ATC	ATT	CAC	GCT	ACI	GCC	GAG	ATCI	GCC	AGG	AGT	GTI	CAA	CCA	GGG	CCG	AGGC	TTG	GTA	ACG
	Н	S	H	с :	FV	1	. M	W	A	Е	Е	Н	A	A	Y	S	Ι	М	Ρ	F	Т	F	Y	P	ΕĒ	2 5	S I	S	F	Τ	L	Т	A	Е	I	С	Q	Е	С	S	Т	R .	A	E P	W	V	Т
901	TTGO	GAGC	CTG	TGG.	ATCC	TGC	GCT	GGA!	TGG	CAT	GTG	TAC	GTC	TGG	ACG	GCC	GAG:	rggo	GAT	TAC	GACI	CCC	SCCG	GTG	GCT	CTCC	CAGT	ACA	GCA	TTT	ATG	TGC	CGC	AAT	CCTF	TGA	TAC	GTG	TGC	AAT	ATG	ACG	ACT	CTAT	TCA	GCC	CAC
	L	E	P	V	D P	P	L	D	W	Н	V	Y	V	М	D	G	Е	W	G	Y	D	S	A	G	G S	S E	> V	0	Н	L	W	С	R	Ν	P	М	I	R	V	0	Y	D	D	S I	0	A	Н

240

1051	CGI	ATG	CATC	CACCI	GCC	ACGCI	GTT	TGTA	CAGC	TAAG	CAAG	AGCG	TTGA	TGCA	GACGT	AAA	CGACO	ATAG	GCGT	ATTGG	ATTT	GATGI	TGTT	ACTC	TGGAT	GCTA	CAGG	AACA	ACAAZ	ACCCC	CCAT	CTACT	GTAGT	GACG	AGGTGCGG
	R	М	A 5	S P	Α	ΤI	. F	V	Q	L S	K	S	V D	A	D V	N	D	D R	R	I G	F	DV	7 V	T I	L D	A 1	ΓG	N I	N K	P	ΡI	Y	C S	DF	EVR
1201	AAG	TGT	CGT	SCCCI	CAC	GCGCZ	ACCG	CACA	ACAG	TTGC	AGCG	TCAT	TAGA	GATA	ACGTG	TGC	CGTCC	TTGA	CCTG	TTTAT	CGTT	CCGAG	CACG	GAGG	CACCI	GGAC	AGTTO	GGCC	CCCA	CACGG	TGTG	CGTCT	TTTCC	TCTG	TTCCTCTC
	K	С	Τ (C P	Н	A F	H R	Т	Т	V A	A	S	L E	I	T C	A	V	L D	L	F I	V	P S	ЗΤ	Eź	A P	G (2 L	G I	РH	Т	V C	V	F S	S T	VPL
1351	CGF	ACTG	CCAC	CATCO	GTG	TTTC	CCCA	CGGC	TGGA	ACTA	TCGT	GCAG	TCAG	GGGT	STGTG	GGA	CGAAA	GCAG	CTGC	GGAGG	GAGC	CGGGZ	AAAC	AGCA	TGTCF	TGGA	AGTGI	AACC	CCTCC	CGTTG	CACT	TCACT	TTGAT	GCAG	ACAAACCC
	R	L	T 1	C S	V	FE	P H	G	W	ΝΥ	R	А	VR	G	VW	D	E	S S	С	G G	S	RE	E N	SI	M S	W 1	к с	NI	P S	V	A L	Н	FD	AI	р к р
1501	CCI	CAG	GACT	GGTO	CTC	TTCCT	GGA	GGGA	TCTT	TGCC	CGAA	GCAA	GGAG	CCTC	GTCTG	CAG	CGGTC	GCGA	CGTG	GACGC	CTGC	AGCCZ	TTTC	CTAG	GCTC	CCCG	CAACO	GAAG	AGGA	GAAGC	AGCA	GAAG		AAGA	GGGAGTTG
	P	0	GI	. V	L	FI	. E	G	S	L P	E	A	R S	L	V C	S	G	G D	V	DA	C	S F	ΗF	L C	G S	P J	A T	E	E E	К	0 0	К	0 E	KI	REL
1651	CGZ	GACT	TCTT	GCG	CGC		GGT	GGGT	TACC	TGGA	AGGG	TGTG	TCTC	CCTT	GTCGA	GGC	CTGTC	CACC	GATG	TACCG	CACG	CTTTZ	CTCC	TCTG	AGTAC	TCCG	GGGGG	TCGG	TGGT	GCGCC	TTGT	CGTG	CTGCT	GTCA	GCGAGGAC
	R	D	FI	R	R	HF	< V	G	Y	LE	G	С	V S	L	VE	A	С	P P	M	YR	Т	LY	S	S I	ΕΥ	S (G G	S '	V V	R	L V	V	PA	V	SED
1801	TTT	TTTT	TGC	GGCC	ACA	ACACO	CCA	CGCA	GGAC	AGCT	GGGG	AACT	TCAC	CCTT	CACAT	CTTO	CTCGT	CACG	ATCG	TTTGT	GGTG	GACGA	GGTG	CGGG	CGTTO	GCGT	TGCGG	GAAC	GGGA	TACC	AGCT	GCTG	AGGAC	ACCC	AGACACGT
	F	F	L I	. A	т	ТЕ	2 Н	A	G	0 L	G	N	FT	T.	н т	F	S	S R	S	F V	V V	DF	V S	R	Α I.	A	L R	E	R E	Y	0 1	L.	0 D	T) T B
1951	CAG	ACA	CTAT	GTTO	GGGG	TGG	GAA	GGGC	CGAG	CTGG	TCCA	CAAG	ATCC	CGAA	GACAC	GGT	TCTTO	CACG	CAAC	GAGAT	TCTT	GAC	TTGT	ATGG	TGACO	GGAG	AAAA	TATG	TGGA	CGTG	ACTT	TCCA	GTGGT	GGAT	CTCGCTG
	0	Т	AN	4 L	G	I. \	7 К	G	R	A G	P	0	D P	E	DΤ	v	L.	AR	N	ET	Т.	RF	2 C	M	VТ	G	с к	Y Y	V D	R	DF	P	R G	G	S S L
2101	TGO	TATA	ATCO	CGA	SCC	AAGAO	TACC	AGCG	TGGT	GTGG	GAGG	GAGA	TCTA	CTGG	AAGCG	GCC	SACGO	AGCT	GGTC	GAGCA	CGTC	ACTTT	TOTT	CAGG	ACTGO	AGAT	STGA	TGTC	CCTTC	CCCT	ידידר	GAGA	GAGAG	TGGT	TTGCCTCC
	W	Т	DF) E	Α	K 1	r p	Α	W	C G	R	E	τy	W	KR	P	т	E L	V	EH	V	TF	- L.	0 1	D W	R (γ D	C	P F	P	FS	R	RE	WI	FAS
2251	GTC	GCA	ACGO	GATT	IGCG	CAAZ	GCC	GAGG	TGGT	TGCA	GGCT	CTGA	GTGT	CAGC	TACGA	TGTO		AAGG	GTTG	GTTCA	GTTC	GCTT	CTTT	AAGA	GTGGC	CAGTO	GACO	GTTG	TGAG	ATCO	ATGA	TTAC	TTTCCF	TGCG	ACAACGTC
	V	A	HZ	λ T	Α	TF	(P	R	W	L O	A	L.	S V	S	ΥD	V	A	E G	. T.	V C) F	RF	F	к	S G	0 1	N T	V	V S	Т	DP	Y	L P	CI	D N V
2401	ATC	GAAC	TATO	CATO	GGA	1000	ATC	AAGA	GACA	AAGC	AGAT	ጥጥጥጥ	· ጥ ጥጥ	2222	277777	GGA	AAAGO	CCTA	CGCG	AAGCT	CCAT	GCTG	CTAC	GAGG	CACTO	GAAC	TAAAC	GTTA	CTCC	GAAC	TGCG	CATCI	ATTGAC	GTGA	TGTGTCAT
	M	E	L (' M	G	RF	2 5	R	D	КА	D	F	FF	P	L L	E	K	A Y	A	K L	. н	RÓ	· v	E i	Α.Τ.	EI	з к	V	тр	E	L R	Т	TD	VI	и с н
2551	CCC	CTTT2	TCCZ	TCTC	TCA	CCTC	TCC	CCCA	GTGC	2 ጥጥጥ	TCCT	CTICC		TTCC	TCCA	CTT	20000	TCCA	ACAG	CAACO		ידריינ	CATC		TCAAC	AACC	C 2 TT	NA ACC	3 TC 30	ייייייי	• • • • • • • • • • • • • • • • • • • •	22262		CTAC	CACCEAC
2001	G	L	MI	L L	S	G	- D	D	V	HF	D	L	P G	S	VF	T	т	VF		0 6		L	J M	K I	LK	N		K	H D	F	LE	т	FL	L	P S D
2701	ACC		ACCO		CAC	CACI	PC A C	ТТТС	GGCA	77777	CACT	CACC	ACCT	GTAC			26276	cace		GTCCA	ACCC	73600	CCTC	CTCA	ACCTT	recci	ACTIC	CCCC		TCCC	ACAT	~~~~	receer	GGCA	AGTECCEC
2701	т	20000	FZ		F	D I	7 5	L	G	T L	S	D	HL	v	D V	L L	D	A P	F	VF	G			L	K L	P	H W	Guu	0 F	S	F T	N	WG	G	K W P
2851	GCG	CACI		מממי	TCC		CCT	CCTT		ACCT	CCTT	CCCT	TTTC3	TCAC	ACGGA	TAC		CCTT	TTCC	TTCCC		20762	Gece		TCTA	ישיירים	78686	ימסידסי	~ •••••	ance	- CCCC	CCCN	102020	ACCT	CTCCCCTC
2001	2	0	S I	> K	INT	т	> 1/	L	P	FL	L	P	F D	F	ТГ	т	F	TE	W	L G	. T.	DE	2 2	FI	F V	F	гр	T.	тм	т	A C	200000	DH	т	S W V
3001	TCO	ວັລະ	ידדב	CTCC	GAT	rGCCC	CAA	CAGC	AGCG	GCAG	CCAG	CTGT	ידיקקר	AGGG	SCCCA	GTT		TTCG	GCTT	GGAAA	TTTC	rcecz	GGAT	GTGA	AGCAG	GTCC	AGATT	ACGT	TGGG		ATCA	ACCCC (ACGCA	CGGG	CCGGGTC
5001	s	Δ	DE		D	C I	> N	S	S	G S	0	L	T. A	G	A (F	<u>م</u>	L P	T.	G N	I F	D (VI	K O	V	о т	т	L G	T.	нс	D	D A	P	ARV
3151	СТТ	ACCCC1	ACAZ	ACAC		ייישמכוי	חממי	GTAC	CGCA	CCCC	ידאדיי	CCCT		CGTT		TACI		2022	2242	GTGTG		ACCZ	CATA	ACAC		CATC	rcatz	AACT	CTTT			יממרות	reccer	GATC	TTATCTCT
5151	L	P	KK	none n	2	L Z	T T	v	P	т а	T	G	I. A	V	V A	Т	a a		т	V N	I K	KE		TI		D I	7 T	K	C L	F	DS	0	CP	DI	P M C
3301	CCT	1 م م م م	CACI	ייינאי	משמי	28882	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 	CCAA	AACA	ACTA	TTCA	CCCT	CATT	COTT	TAC		20700	ACTC	CCTCC	0.022	277600		CTICC	TGTCO	CCCT	20700	CATA	ם יישראים מידידים	2220	TCCC	GTTG	207000	CTTC	ACCCCCAT
5501	D	T.	TI	7 0	M	E N	JV	K	G	KF	L	L	TI	T	D F	P	F	n p	V	D D	N	V	> F	L. I		A I	N S	D	M C	F	VA	L	A D	VI	FRD
3451	CTC	22202	LCGA(מסרב	ACT		CTC		GTCC	מדממ	CCCT	CTTC	CCTC	2004	20370	CTC	27707		CCAC	TGTCC	CCAC		יידכיירי	TTTC	CAACT	יכאמיינ		CACC	TCTT	27766	STT CT	CCCTC	TADGAZ	GTAC	CGTCCCA
5451	L	K	T	V	s s	G	ICI C	D	V	F V	D	V	G S	D	D S	S	F	W D	D	C D		VE	V	FI	D C	F	S T	D	V L	L	VI	P	0 F	V	A V G
3601	GAZ	GCA	CCAZ	ACCI	TATT	GATT	CAC	CGTT	CACC	GTGC	GACG	ACAT	GTCG	CAGC	TATCT	GGA	TATO	ACCC	CGCA	ACAGT		TTGGZ	GGTG	CAGG	CAGCZ	CCGT	TRCC	TCTG	TGGA		CACT	ISC CCC	TACTC	GGAA	TGAAGGAG
5001	F	2	DP	(D	т	GF	с т	W	н	P A	т	т	C P	S	V I	F	v	D D	D	TU	7 М	L F	V	0	a a	D	3 A	s i	VF	G	тт	P	L L	G	M K F
3751	CGC	78660	20227	CCCC	ישבייב	יערעי	TCT		 'TTCT	GCAC	GGAN	CCTTA	CACC	TCCA	CCAA	CTT	TTCCT	TCCA	TGCC	ATCCC	יראאייי			<u>.</u> AGGC	TTTCC	TCCC N	TACAC	20033	GACTO	CACT	iccca	TCCCC	200000	ACCC	TRCCACA
5751	P	P	GN	1 D	V	T	T V	D	F	C T	F	DCIA	T D	G	G K	F	W	L D		T A	N	P		P I		P	TE	DI	P L	D	WH	P	D P	PI	DAT
3901	ΨΨΨ	TACCT	ידכמנ	ידכמר	CCT	CTTT	TCC	CCCT	- 	CCCC		TCCT	CGTG	erer	AGTAG	TCCC	CACT	ישייבר	TOTA	ACCTT		277760		CACC	GCCGZ	CTCT		יכייררי	TACCO	סדבבי	ACCA	TCTC	CCCAT	AAAC	TGACGGAG
5501		T	TOR		0011	C 1		0001	c	D D	F	°.	C W	D	c c	D		F 3	T	TT		V		0		T	г т	W.	I D	NI	DF	W	CD	V 1	TE
4051	CTC	- 		CCTT		201	TCC N		0		CAAC	0000	2000	CCCC	AACCT	CCTC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L D		CACAT		20000		CATC	3 R			NCCC		IN CACT	CTCA	C 3 TTC	"ACCTC	CACCI	
4051	W	GGI	M	4 T	T	D	TUCOA	M	CAGI	WE	NI	GGGC	AGCG	D	V I	U	T	c D	1 GCC	DT	IGIG(2 (D		W (210CC	T	U T	D	GIGA	GAIIC	DV	CAGCO	DEC
4201	200					R (CATC	CCCTT		CCAC	CCAC	CTCT	CACC			⊥ Խ Ծուղ Ծաղ		A	CCCCT				CTCA		TRCCC	3 A			2000	'ACCC	CACCT	D V	CTCC	CTACACC
4201	T	T	V I	U	V	V 7		M	D	V D	COAG	J	2.01	T	V A	T	V	c a	cicc	accer	V W	V 7	D	V	V F	W SGGG		U		30000	F	CAGCI	WE	LICG	V T
1251	CCC				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				TCCA	TTAN	CA A CI	CCCT		CCCC	V A	C 2 C 0	1 700000			CAAAT				CTTCC		CCCC		recee		M	E G	0	CCCCZ	CCCA	
4001	000				- C	E I	- C	- GGC	L GGA	TN	M	D	E U	0000	T OAA	T	F	DDD	T		TOTOL	2 1	J	- I GCI		D		D	r v	D	TU	SANGU	D A	C	V V V
45.01	CC				ישתר:		0	TCCA	7707	1 IN	N N	CACA	TCCC	COTTO			י <u>י</u> אשריי	ICCC2	C A C C									2202				л ССТС(CAACT		
4001	GCI	F	TUCC		AIC	TCA	CAA	TCCA	MUA	MUD	MAIG	GAGA	T	CCIG	DUM	GAG	MIGU	AUUU	CACG	GAACT	CACA	TCAT	- GCC	T A		TACA	LGCAR	MCA	GIGA	U	TACT	CGIGG	CAAGT	GIIC	CIGIGGCA
4651	A	ר השרטשר		- F				CC2C	IN DO	N K		CAAC	1 A	TCCC		5		K D	CTT 3 TT	CCCCA		- -		CTTCTT:		I CTTC A	1 Q			V			A S	V	e v A
4001	GAC		M		TCIC:	TAL			T		B	GAAG		- GGC	E E	IAA	10101	TIGI	GIAI	- GCGGA	CICC		TGAG	CICII				GAGC		D D	ACGI				

LTKERLPYV D S М Т E T. Y Т

B.10: PFD1

1	ATC	ATT	TTTC	CCA	CTAC	TGT	ACC	CTC	ATT	TCA	CAT	GTT	TTT	ACA	TTC	CGA	CAT	TTC	TTT	TTT	TTT	TGT	ССТ	TTTC	ccc	CGGC	GAT	TTC	CTC	GAA	GCG	AGA	GGAZ	GGA	ACC	ATT	TACA	GAC	TCA	ATGO	CGT	CGAT	TTTO	GCTT	1000	CTTT	rggg	CGGC
	М	Ι	F	Η	Y	С	Т	L	I	S	Н	V	F	Т	F	R	Н	F	F	F	F	С	Ρ	F	Ρ	R	R	F	P	R	S	E	R F	E	P P	F	Т	D	S	М	R	R	F	А	S I	ΡI	L G	G
151	GGC	ATC	CAC	CTG	TCTO	CTT	CGC	CGC	GTT	GCG	TCT	GCT	GCT	GTG	GTG	CGC.	AAC	ATC	CCG	CAG	GCC	AAG	TCA	TCGG	GCGC	CAGT	TGG	GCA	ccc	CCG	TCA	CGA	AGGZ	GGA	GGT	AGCO	GCAG	GCG	TTT	AACC	STC	CCTC	GCC	GCCZ	TCC	TCGO	CGCA	GGTG
	G	I	Η	С	L	L	R	R	V	А	S	А	А	V	V	R	Ν	I	Ρ	Q	А	K	S	S	A	Q	L	G	T	P	V	Т	K E	E	C V	Α	Q	А	F	Ν	V	Ρ	А	A	I	L P	A Ç	V
301	CGI	AGO	GCCG	GCC	GGAG	GTO	CTC	TTT	GCG	GAG	CTC	GAC	CTT	GCA	CGC	GTG	CGC	TTT	GCC	CCG	CTG	ATC	GCC	ACGO	CTGO	GGCG	CGG	AGG	AAG.	ACG	TCA	CGA	AGAI	TGC	GAC	AGA	AGTG	AAG	GAG	GCGI	AG	ACCO	GGCI	AAGO	ACG	GTAC	GTGC	GGCG
	R	R	Ρ	A	E	V	L	F	A	Ε	L	D	L	A	R	V	R	F	А	Ρ	L	I	А	Т	L	G	A	Е	E	D	V	Т	К 1	P	Υ	E	V	K	Ε	A	K	Т	G	Κ	D (G S	5 A	A
451	GCG	GCC	GCZ	ACG	TAAC	CCJ	GTG	GCI	GGC	GCA	AAG	GAA	AAG	TTT	AAG	AAC.	ACT	GAG	TGG	AAA	AGC	ATT	AAG	GAAC	TCC	GTGA	CAT	TTT	ACG.	AGG	AGG	TTA	TGCI	GCC	TGC	TCG	CTG	GTG	CAC	CTGC	GAC	TAC/	AGC	STCI	ATG	AAC	FGAA	TAGC
	Α	Α	А	R	K	Ρ	V	Α	G	Α	K	Е	K	F	Κ	Ν	Т	Ε	W	K	S	I	K	Ε	L	V	Т	F	Y I	E	E	V	M I	, F	P A	R	L	V	Н	L	D	Y	S	V	Y I	ΕI	L N	S
601	TTT	CAT	TATC	CAA	GGAC	GAC	CTC	AAG	CGT	GGC	CTC	FCC	GCC!	TTC	AAG	CAG	GAC	TAC	CTC	GAC	AAG	CAG	AAG	GTGG	GAG	CTTG	TAA	AGG	TGC.	AGA	AGC	AGA	TGC	GGA	CTG	CCAC	GAA	TTT	ATT	AAG	AGT	GTTC	GGCI	ACGI	CGG	CCTT	FCGA	CACC
	F	Η	I	K	D	D	L	K	R	G	L	S	А	F	Κ	Q	D	Y	L	D	K	Q	K	V	Е	L	V	K	V	Q	K	Q	ΜÇ) [) C	Q	Е	F	Ι	K	S	V	G	Т	Т	A E	F D	Т
751	ATC	CATT	TTT	'AA'	IGAT	TAT	GCA	AAC	ATT	CTT	CGC	GTG	TGT	GGC	GAG	CGC.	AAC	CCG	TAT	GCC	CAC	CGC	TTG	GCCA	ATGO	CAGG	TCT	TGG	AGG.	ACA	TGA	ACC	TCCI	CCC	GGT	TCCO	CTTC	AAC	GAG	GTGF	ACA/	ACGI	AAG	ATGO	TGC	ACGO	CTAT	CGTG
	I	I	F	Ν	D	I	A	Ν	I	L	R	V	С	G	Е	R	Ν	Ρ	Y	А	Н	R	L	A	М	Q	V	L	E	D	М	N	L I	F	εV	P	F	Ν	Ε	V	Т	Т	K	М	LI	H A	A I	V
901	TTI	AAC	GAI	rgg	CGCI	TTT	GAT	GAC	TCG	GCG	CTC	ATG	TTC	ACG	TTG	GTG	GAG	TAC	CCT	GAG	CGT	GGG	GAG	GTGA	AGTO	GTGA	GCC	GGG	AGC	CGG	TGG	ATA	GGAI	AGC	AGA	TGA	CACG	CTA	AAA	ATC	ATC	AGTO	GCG	CGGC	CATC	AGAC	CGCC	GCTG
	F	Ν	D	G	A	F	D	D	S	A	L	М	F	Т	L	V	Е	Y	Ρ	Ε	R	G	Е	V	S	V	S	R	E	P	V	D	R I	P	D	D	Т	L	K	I	I	S	А	R	H (2 I	ΓP	L
1051	GAC	GAC	CGGZ	AGT	GAAG	CTO	CAC	CAG	AAC	GAC	ACTO	CAG	CCA!	TGT	CTG	CAG	CGC	TCG	CTA	GAG																												
	D	D	G	V	K	L	Η	0	Ν	D	Т	0	Ρ	С	L	0	R	S	L	E																												

B.11: PFD2

1	ATGA	TTTTC	CCAC	CTAC	TGT	ACC	CTC	ATT	TCA	CAT	STT?	TTTA	CAI	TCC	GAC	ATT	TCI	TTT	TTT	TTT	TGT	CCT	TTTC	CCC	CGGC	GAI	TTTC	CTC	GA	AGCO	GAG	AGGA	AG	GAAC	CAD	TTA	CAC	ACT	CAA	TGC	GTC	GAT	TTG	CTT	CCCC	TTT	GGG	CGGC
	М	I F	Н	Y	С	Т	L	I	S	Н	V	F	Т	F I	۲.	H	F	F	F	F	С	Ρ	F	Ρ	R	R	F	Ρ	R	S	Е	R	K	Ε	Ρ	F	Т	D	S	М	R	R	F	А	S I	> L	G	G
151	GGCA	TCCAC	CTG	TCTG	CTT	CGC	CGC	GTT	GCG	TCTO	SCT	GCTG	TGG	TGC	GCA	ACA	TCC	CGC	AGG	GCCI	AAG	CA'	TCG	GCG	CAG	TGG	GCA	CCC	ccc	GTC	ACGI	AAGG	AG	GAGO	TAC	GCGC	AGG	GCGT	TTA	ACG	TCC	CTC	CCG	CCA	TCCT	CGC	GCA	GGTG
	G	I H	С	L	L	R	R	V	А	S	А	А	V	V I	۲.	N	I	P	Q	А	Κ	S	S	А	Q	L	G	Т	Ρ	V	Т	K	Е	Е	V	А	Q	А	F	N	V	P	A	A	ΙI	A	. Q	V
301	CGTA	GCCC	GGC	GAG	GTG	CTC	TTT	GCG	GAG	CTC	SAC	CTTG	CAC	GCG	rgc	GCT	TTC	CCC	CGC	TGA	ATCO	GCC	ACGO	CTG	GGCG	GCGG	GAGG	AAG	SACO	GTC	ACGZ	AGA	TTC	GCGZ	ACAG	GAAG	TGA	AGG	AGG	CGA	AGA	CCC	GCA	AGG	ACG	TAG	TGC	GGCG
	R	R P	А	Е	V	L	F	А	Е	L	D	L	A	R 1	1	R	F	A	P	L	I	А	Т	L	G	А	Е	Е	D	V	Т	K	Ι	A	Т	Е	V	K	Е	A	K	Т	G	K	DO	; s	A	A
451	GCGG	CGGCZ	ACGI	TAAG	ССТ	GTG	GCT	GGC	GCA	AAG	GAA	AAGT	TTA	AGA	ACA	CTG	AGI	GGA	AAA	GC7	ATT	AG	GAAC	CTC	GTG	CAT	TTT	ACG	GAG	GAG	GT TZ	ATGC	TG	CCTO	GCTC	CGTC	TGG	TGC	ACC	TGC	JACT	ACA	GCG	TCT	ATG	ACT	GAA	TAGC
	A	A A	R	K	Ρ	V	А	G	А	K	Е	K	F	ΚI	J	Т	Е	W	K	S	I	Κ	Е	L	V	Т	F	Y	Е	Е	V	М	L	Р	А	R	L	V	Н	L	D	Y	S	V	ΥĒ	C L	N	S
601	TTTC	ATATO	CAAC	GAC	GAC	CTC	AAG	CGT	GGC	CTCI	rcco	GCCT	TCA	AGC	AGG	ACT	ACC	TCG	ACA	AG	CAG	AG	GTG	GAG	CTTC	TAF	AGG	TGC	CAG	AAGO	CAG	ATGC	AG	GACT	rgco	CAGG	AAT	TTA	TTA	AGA	GTC	TTC	GCA	CGA	CGGG	CTT	CGA	CACC
	F	ΗI	K	D	D	L	K	R	G	L	S	А	F	K ()	D	Y	L	D	K	0	K	V	Е	L	V	К	V	0	K	0	М	0	D	С	0	E	F	I	K	S	v	G	Т	T Z	\ F	D	Т
751	ATCA	TTTTT	[AA]	IGAT	ATT	GCA	AAC	ATT	CTT	CGCC	STG	TGTG	GCG	AGC	GCA	ACC	CGI	ATG	CCC	CACO	CGC	TG	GCCI	ATG	CAGO	TCT	TGG	AGG	GAC	ATG	ACO	CTCC	TCO	CGGG	TTT	CCCT	TCA	ACG	AGG	TGA	CAP	CGP	AGA	TGC	TGCI	CGC	TAT	CGTG
	I	I F	N	D	Ι	А	Ν	I	L	R	V	С	G	E I	2	N	P	Y	А	Н	R	L	А	М	0	V	L	Е	D	М	Ν	L	L	R	V	Р	F	Ν	Е	V	Т	Т	K	М	LH	ΗA	I	V
901	TTTA	ACGAT	rggo	CGCA	TTT	GAT	GAC	TCG	GCG	CTC	ATG	TTCA	CGI	TGG	rgg	AGT	ACC	CTG	AGO	GTO	GGG	GAG	GTG	AGT	GTG	GCC	CGGG	AGC	CCG	GTG	AT	AGGA	TAC	GCAG	ATC	ACA	CGC	TAA	AAA	TCP	TCP	GTO	CGC	GGC	ATC	GAC	GCC	GCTG
	F	N D	G	A	F	D	D	S	A	L	М	F	Т	L	7	E	Y	P	E	R	G	E	V	S	V	S	R	Е	Р	V	D	R	I	А	D	D	Т	L	K	I	I	S	A	R	H () T	P	L
1051	GACG	ACGGZ	AGTO	AAG	CTG	CAC	CAG	AAC	GAC	ACTO	AG	CCAT	GTC	TGC	AGC	GCT	CGC	TAG	AG																										,			
	D	D G	V	K	L	н	0	N	D	т	0	D	C	T. (2	P	S	T.	F																													

B.12: PFD3

1	AT	GGA	TCT	rcg/	TAC	CTT	CCT	<u>GC</u> A	GCT	TGT	AGA	GTG	CCG	TTC	ACC	TTT	CTC	TTT	CAT	TCT	CTI	TCG	TGC	GTG	CAA	GTG	ACA	AAC	TTA	CAC	ATT	CAC	AAG	CAA	GGA	AGG	CGG	CAG	CAA	AGC.	AGA	CTC	CAA	TTC	ACA	ACA	GTC	AGCO	GAA	ACC
	М	D	L	R	Y	L	Ρ	A	A	С	R	V	Ρ	F	Т	F	L	F	Η	S	L	S	С	V	Q	V	Т	Ν	L	Н	I	Н	K	Q	G	R	R	Q	Q	S	R	L	Q	F	Т	Т	V	S	Е	Т
151	AA	AAA	AAA	AGAC	GAA	AAA	CGA	GTT	TAT.	ATA	CCA	CAA	CAC	TTT.	ACA	AGA	AGA	AGA	GGC	AAA	ATA	AAT	AAT	ATG	CAG	CGC	AGT	CTC	ATT	GCC	GGG	CAC	AAC	AAC	AAC	CGT	CAC	CTC	ACA	ATT	GAG	GAG	CTG	GAG	AAC	AAC	ATC	GGC	GGC	CTG
	K	K	K	D	E	Κ	R	V	Y	I	P	Q	Н	F	Т	R	R	R	G	K	Ι	Ν	Ν	М	Q	R	S	L	I	А	G	Н	Ν	Ν	Ν	R	Н	L	Т	I	Е	Е	L	E	Ν	Ν	I	G	G	L
301	CC	CAT	CAC	CGAC	CAG	AAG	CTG	CAG	GAG	CTT	TTT	GAC	TCA	CTC	GAC	ACG	GAG	CAC	AAC	GGC	TAC	CTC	CCC	ATT	GAA	GAG	GTG.	AAG	GCC	TTC	TAC	CGG	TCC	CTT	GAG	CAC	TAC	GGG	CTG	GAC	CCA	ACC	GAT	GCC	GAG	GTA	GAG	GCC	GAG	GTG
	P	I	Т	D	0	Κ	L	0	Е	L	F	D	S	L	D	Т	E	Н	Ν	G	Y	L	Ρ	I	Е	Е	V	K	А	F	Y	R	S	L	Е	Н	Y	G	L	D	Ρ	Т	D	А	Е	V	Е	A	Е	V
451	CG	CAA	GTA	CTCC	CAAG	AGC	GAC	GAC	AAC	TAT	ATG	ACC	TTC	GAC	GAG	TTT	TGC	TGC	CTT	ATG	CTC	AAC	TTC	GCC	CAG	CGG																								
	R	K	Y	S	K	S	D	D	Ν	Y	М	Т	F	D	Е	F	С	С	L	М	L	Ν	F	А	0	R																								

B.13: PFD4

1	ATGT	GGGC	AATO	TAC	GCCZ	CGC	<u>AC</u> G	GAGI	rgga	GGG	TAA	TTTC	GTTA	CAA	GGC	GCCI	ACAC	GGGG	AAA	GAAG	AGG	GTG	GGGA	ACGO	CAGC	AGCI	TGT	GGTC	AAA	GGGI	TGA	GGGI	AGGA	ATCO	TCC	GAC	GCCC	CAC	CGTT	CGGT	CCC.	AAGO	SCTGTG
	M V	W A	М	Y	А	Т	H (GΙ	/ E	G	N	L	L	Q	G	А	Т	G	ΕI	R F	G	W	G	Т	Q	Q I	V	V	Κ	G	L	R I	ΕE	S	S	D	A	P J	ΡF	G	P	K	A V
151	GTGA	AGGG	AGAC	AAA	ACAT	TTC	TTC	LUCI	GCC	AGG	CAT	CAG	CGTG	AGA	AAG	CAG	GATO	SACI	CGT	CGAC	TGA	AGA	GAA	CGGG	ATC	TTGC	GTT	GGTT	GTT	GGTZ	ACG	TTG	GAA	GTCC	ACG	GAA	GCGC	AGA	ATGT	GAAT	FCCA	GTCA	ACTTGG
	VI	K G	D	K	Т	F	LI	L I	, P	, G	I	S	V	R	K	Q	D	D	S S	SТ	Έ	D	Е	R	D 1	L P	L	V	V	G	N	V 2	A K	S	Т	E	A	Q 1	N V	N	P	V	T W
301	GAAG	CCCC	AACO	TCG	CTGF	AAT	CGA	AGCI	TGG	AGA	TGA	GAT	GACG	AAG	CAT	TCA	rggo	GAGG	AGC	rgga	ACT	GACT	CGC	GGGG	CTA	GAGG	CAT	TGTT	GCT	GGC	GCG	ATA	CGAT	TGTO	TTC	CCTC	CTTG	TGG	GAGA	CGTT	GAA	GTGG	GACGAC
	Eź	A P	Т	S	L	K	S I	κı	G	; D) E	М	Т	K	Н	S	W	Е	E I	LE	L	Т	R	G	A I	R G	; I	V	А	G	G	D 1	ΓI	V	F	P	L	V (G D	V	E	V	D D
451	GAAG	ATGT	ACAT	GCC	rgc <i>i</i>	CCG	TCA	ICTA	ACTO	TAC	GGA	CGA	CGGT	GCC	ACT	TGGI	AAA	TTC	CTG	CGAC	GCC	CGT	GATT	GCCF	AGG	ACTO	TGA	CAGC	GCC	ACGO	CTTC	TCG	AGTG	GGAG	GGG	AAA	CTCC	TCA	IGGC	CACT	TCA	AAAT	TATTCT
	ΕI	d V	Н	A	С	Т	V :	ΙY	ć s	Т	D	D	G	A	Т	W	K	F	P A	ΑI	P	V	I	А	K I	D C	: D	S	A	Т	L	LH	E W	Е	G	K	L	Lľ	мА	Т	S	K	Y S
601	TCGT	GGCA	GCGC	CAGGO	GTGT	ACG	AAT	CCGG	TGA	CAA	GGG	GAA	GACG	TGG	GCG	GAG	GCTO	CCG	GGC	CACT	CCC	ACGO	CTG	TTGA	GCC	AATC	AGA	TGCA	TTG	CCTZ	AGGC	TCT	ACGG	TTCC	GTC	GAC	CTCA	TGG	CCGC	AACO	GATT	GAAA	AGGAGG
	SI	W Q	R	R	V	Y	E :	5 G	ΞĒ) K	G	K	Т	W	A	Е	А	А	G I	? I	P	R	L	L	S (o s	D	А	L	Ρ	R	LY	ζG	S	V	D	L	M Z	A A	Т	I	Е	R R
751	AGTG	TGTT	GCTO	TAC	ACGO	AGC	TGT	TATO	CAG	TCG	TAT	TAC	ACAG	GAA	AAA	GCCZ	AACZ	GAG	AAA	GCAG	CAG	ACG	CAGA	GTAC	TTC	ACCI	CTG	GTTT	TCC	GATO	GGGG	CTC	GAT	CTTT	GAC	GTT	GGGC	CAA	TATC	TAC	GAT	GGGG	TGGGT
	S 1	V L	L	Y	Т	0	LI	L S	s s	R	I I	Т	0	Е	K	А	Ν	R	E S	5 S	R	R	R	V	LI	ΗI	W	F	S	D	G	A F	₹I	F	D	V	G	P i	I S	Т	D	G	VG
901	CTTA	ACAC	GTTC	CAGC	rcgo	TGC	TGC	ACAC	CAAA	AGA	TGG	GCT	GTTT	GCC	CTC	TAC	GCAZ	GGA	AAG	GTGC	GGG	IGA	GAA	GCAG	ACA	GTCI	TGT	TTTT	AAG	cccc	CTCA	CGGI	AGCA	GCTO	CAG	CGCI	ATCA	AGG	CCGT	GCTC	GAAG	AAAT	GGAAA
	LI	N T	F	S	S	L	LI	н 1	L K	C D	G	L	F	А	L	Y	А	R	K (G P	G	Е	Е	А	D :	S I	, v	F	K	Ρ	L	ΤĒ	E Q	L	0	R	I	K Z	A V	L	K	K	WK
1051	GAAG	TGGA	TGAC	CAGG	GTCI	CAA	AGC	TTTO	GCGA	CTC	CGC	CGC	CACC	ACT	GCA	ACG	AAGO	GAGG	GCG	CAAA	AGC	AGCO	CGGC	TGCO	TCG	GCCC	TAT	GCCA	ACG	GCCC	GGGC	TGGI	TGG	ATTT	TTG	TCTO	GACA	ATG	CCAG	CACT	IGCT	CACI	GGAAT
	E	V D	D	R	V	S	K I	L C	С С) S	A	A	Т	Т	А	Т	K	Е	G A	A K	C A	A	G	С	V (G F	, M	P	Т	А	G	LV	7 G	F	L	S	D	N 2	A S	Т	A	Н	W N
1201	GACG	AGTG	CCTT	GGGG	GTGG	GTG	CCA	CGGI	TGTC	TAC	GGG	AAC	GACG	ACG	AAG	GTG	GAGZ	ATG	GCG	rcco	GCT	GGCI	AGGG	CGCC	GCG	CACG	GAT	TGCG	TGG	ccco	STGG	GCA	TAA	AACT	GCG	AAT	GACG	GGT	ATCC	GTT	GCA	TATO	GAGGAG
	DI	E C	L	G	V	G	A í	ΓV	7 S	Т	G	Т	Т	Т	K	V	Е	Ν	G V	/ F	L	A	G	R	G	A F	ιI	А	W	Ρ	V	G S	SК	Т	A	N	D	G '	Y P	F	A	Y	ΕE
1351	CTGA	CGCT	TGTO	GCGZ	ACGO	TGA	CCA!	FCG	ACAA	GGT	TCC	AGCO	GGGC	GCC	ACT	CCG	CTGC	TGG	GCG	FGAG	CAC	GATO	GTC	TCTO	GGA	GACA	TCT	GAGG	CTG	IGGI	TACG	ACA	AGCA	TCAC	CAC	TGGI	AGGA	CGG	AGTT	CGGC	GGA	GGAG	GGACT
	L (ΓL	V	A	Т	V	T :	ΙĽ) K	c v	' P	A	G	А	Т	Ρ	L	L	G V	/ S	Т	М	V	S	G I	R H	I L	R	L	W	Y	DH	ΚН	0	Н	W	R	T	E F	G	G	G	G T
1501	GCGC	CAAC	AATT	AAG	rggo	AGG	TGG	GGAC	CGGC	GTA	CCG	AGT	GCG	CTT	ACG	GTG	CAGA	ACG	GCA	GCGG	CTT	GGC	STAC	GTCG	ATG	GGCG	ACT	TGTG	GGA	AGTT	TGG	GGA	ATAA	AGCO	GCA	TCTO	CCTT	TGG	GAGG	CCA	ACCT	CCGI	CTGTC
	A I	ΡT	Ι	K	W	Е	V (G 1	r A	Y Y	R	V	A	L	Т	V	0	Ν	G S	5 G	; L	A	Y	V	D (G F	L	V	G	S	L	G 1	J K	A	А	S	Ρ	L (G G	j Q	P	Ρ	S V
1651	TCGC	CGCG	TGGG	GAA	CTAC	CCGC	TGG	AAGT	GCA	ACC	TGA	AAG	GGTC	TCA	CAC	GTT:	TCF	TTG	GGGG	GCTA	CGA	GGGG	CACA	GAAG	GAG	ATGI	GGA	GAGC	CAC	GTG	ACGG	TGA	CGAA	CGTC	TTG	CTG	FACA	ACC	ACCG	CTTC	CAAC	GACA	GTGAG
	S I	P R	G	Е	L	Р	LI	εv	/ С) P	Ε	R	V	S	Н	V	F	I	G	ЗY	E	G	Т	Е	G I	D V	Έ	S	Н	V	Т	V 3	C N	V	L	L	Y	N I	H P	F	N	D	SE
1801	ATGG	CGGC	ACTO	AAG	AGGZ	TGG	AAA	CGAA	GCA	GCC	GAG	TGG	GCC	ACT	GCA	TCC	TCTO	CCG	AGG	ACCA	AGA	CCG	GCT	CCGZ	AGC	ACGG	TGC	GACT	GAA	GCA	GTG	GCG	GCAG	GGGG	AGT	TCG	CGAG	GAG	CGGC	CAG	TAC	TCAC	CACGC
	M	A A	L	K	R	М	E 1	Γŀ	< C) P	S	G	A	Т	A	S	S	A	ΕI	0 0) D	R	A	P	KI	H G	A	Т	E	A	S	G	G R	G	S	S	R	G J	A A	R	Y	S	PR
1951	GAAG	ACCA	AAGO	GAC	FGA															×	-																						
			0	- D																																							

E D Q S D *

APÊNDICE C

<u>م</u>		10 2	20 30	40 50	60 70	80 90 100
A E E	S_T.rangeli S_T.cruzi S_T.brucei S_L. braziliensis	MPGPGLLPDG WFREENDQWI MPGSELISDG WFREENDQWI MPGPGLLADG WFREENGQWI MPGPGLLSDG WFREENSGWI *** ** * ****	GQAMSFKVEK VLYDAPT GQAMSFKVEK VLYDAPT GQAQGLKVEK VLYDQPT **** *** *** ***	KFQ HLTVFESDPK GPWGT KFQ HLTIFESDPK GPWGT KFQ HLTIFESDPK GPWGT FFQ HLTVFESDPK GPWGT	IMALD GCVQVTDHDE FVYHEY VMALD GCIQVTDYDE FVYHEY VMTLD GCIQLTDFDE FVYHEY VMTLD GAIQLTDYDE FVYHEN * ** * * ** ** **	JIGHT SLCSHPNPER VLIEGGOGG JIGHT SLCSHPNPER VLIEGGOGG MISHT PLCAHPDPVD VLIEGGOGG MIANL SLTCHHKPER VLV IGGGDGG
E E E	S_T.rangeli S_T.cruzi S_T.brucei S_L. braziliensis	110 12 STVKHC! VMREVLRHSTVKHC! VLREVLRHGTVEHC! VMREVLRHGTVKKC! VVREVLRHKS EREGIVQSVE * ****** *	20 130 LVDIDGDVME QSKQHFF D LVDIDGEVME QSKQHFF V LVDIDGEVME QSKQHFF V LVDIDGDVIE ASKKYFF L LVDIDGAVIE QSKRHFF ******* * * **	140 150 QIA CSLTDPRATV RVEDG QIS RSLADPRATV RVEDG QIS SGFSDPRADV RVEDG QIA CGLANPCVTA MVEDG ** * * ****	160 170 LAFAK QAADNTYDVV IIDTT LAFVR QTEDNTYDVV IIDTT VAFVR EAASESFDVV IIDTT VAFVG NAPDNVYDVV IIDTT ** *** *****	180 190 200 PAGP ASKLFGEEFY RHVLRILKPD PAGP ASKLEGEAFY KDVLRILKPD PDGP AAELFGEKFY RDVLRILKPD PDGP ASELFGAFY KNVRRILRPG ****
e e e	S_T.rangeli S_T.cruzi S_T.brucei S_L. braziliensis	210 22 GLCCNQGECI WLDLPLIEDD GICCNQGESI WLDLELIEKK GICCNQGESI WLHRPLIEKK GICCNQGESI WLHRPLIEKK	220 230 M SRFIR-CVGF ASVKYAI M SRFIR-ETGF ASVQYAI M ADFIKNKVGF ASVKYAM MNFLKKDIGF TTVKYAM * * * * *	240 250 	260 270 KAGVD VTKPLRPVEE MPFAKI KAGVD VTKPLRPVES MPFAKI VJGVD VTQPVRPVES MPFAGI SVDTD LTVPRRPVES LGFADI * * * ****	280 290 300 LLKYY HSEMHKASFV LPRFARHINN DLKYY DSEMHKASFV LPRFARHINN DLKYY DSUHKAAFV LPRFARHINN ELKYY SSDMHRAAFV LPRFARYLNE ***** * * * * * *****
e e e	S_T.rangeli S_T.cruzi S_T.brucei S_L. braziliensis	LE- SE- NYS				
В	Query seq.	50	100	150 200	250	296
	Specific hits	s-aachosysmethionine binding	AdoMet_	MTases		
	Superfamilies		Spermine_sy	nth		
			AdoMet_MTases	superfamily		

Apêndice C.1: Alinhamento das sequências aminoacídicas deduzida da espermidina sintase (ES) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Letras marcadas em vermelho representam os sítios catalíticos de ligação de S-adenosilmetionina. Linha preta representam a região do motivo específico (AdoMet_MTases) e os asteriscos

correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da ES. Imagem gerada pela ferramenta *blastp* do programa *Blastp* do *GenBank*. *Query seq*= sequência de interesse, *Specific hits*= motivos específicos, *Superfamilies* = superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

A HAL_T.rangeli HAL_T.cruzi	10 20 30 40 50 60 70 80 90 100
HAL_T.rangeli HAL_T.cruzi	110 120 130 140 150 160 170 180 190 200 ARMMALRVN ILCKGHSGIR LETVQKYVKA FNAGVVPYIP EQGTVGASGD LGPLSHLALG MLGEGILATI NNLKFRDAGS VLRELGVEPI TLAKKEGIAL ARMMLALRVN VLCKGHSGIR LETVQKYVKA FNAGVVPYIP EQGTVGASGD LGPLSHLALG MLGEGILATI NNKKFRDAGS VLRELGVEPI TLAKKEGIAL
HAL_T.rangeli HAL_T.cruzi	210 220 230 240 250 260 270 280 290 300 INGTOFISAL GEAVVRARE TALLADVULA MSHEALLSSV SALNPEIHRV RPHKGQQIVA QRLRALLHNE KHRSSILLSH KGCGRVQDAR SILCSPQVHG SILCSPQVHG SILCSPQVHG SILCSPQVHG INGTOFISAL GEAVVRARE TALLADVULA MSHEALLSSV SALNPEIHRV RPHKGQQIVA QRLRALLHNE EYPSMINESH VNCGRVQDAR SILCSPQVHG SILCSPQVHG SILCSPQVHG
HAL_T.rangeli HAL_T.cruzi	310 320 330 340 350 360 370 380 390 400 ISNDVIEWVY GILTTELNCA TDEPLVFPHG SVKVV CGNF HGEYPAKALD MLAIGVHELG SISERRIERL NNPSLSRLPA FLVENGGLNS GFMIAHCTAA ISNDVIEWVY GILTTELNCA TDEPLVFPHG VKVV CGNF HGEYPAKALD MLAIGVHELG NISERRIERL NNPTLSRLPA FLVENGGLNS GFMIAHCTAA ISNEVIEWVY GILTTELNCA TDEPLVFPHG VKVV CGNF HGEYPAKALD MLAIGVHELG NISERRIERL NNPTLSRLPA FLVENGGLNS GFMIAHCTAA
HAL_T.rangeli HAL_T.cruzi	410 420 430 440 450 460 470 480 490 500
HAL_T.rangeli HAL_T.cruzi	510 520 530 ELERSGAVWN AVKKHIPOEA HFLDVFTAKK PFELKSNI KLLRSGAVWK TVKPVVPEAR FLGVLTVKK PFELKSKM ********* ** ** ** * * * **

Apêndice C.2: (A) Alinhamento das sequências aminoacídicas deduzida da histidina amônia liase (HAL) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Em vermelho está destacado os 17 resíduos de aminoácidos que compõe o sítio ativo e os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da HAL. Imagem gerada pela ferramenta *Blastp* do programa *Blast* do *GenBank. Query seq.* = sequência de interesse, *Active sities* = sítios ativos, *Tetramer interface*= Interface de tetrâmeros, *Specific hits*= motivos específicos, *Superfamilies*= superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

()
		10	20	30	40	50	60	70	80	90	100
A											
	Gim5A_T.rangeli	MSAFAHAYLS	DTWNRDKVMA	IVQFLPMALE	GPVRNAGCDS	LAVSLGNLSK	MADAYRAVTR	LSLVLNALSS	KTLGALAKPG	EDAFVSRLDQ	VSHAFHIGFC
	Gim5A_T.cruzi	MSACAHTYLS	DTWNRDKVMA	IVQFLPMALE	GPVRNAGCDS	LAESLGNLSK	MADSYRAVTR	LSLLLNALSS	KTLKDLAKPK	GDALVWRLEQ	VSHAFHIGFC
	Gim5A_T.brucei	MSAQAHTYLC	DAWNRDKVMA	IVQFLPMALE	GPARTAGCES	LALSLGNLAR	MGDAYRAVTR	LSLLANALSK	PTLTSLSKPT	GDMVASRIDQ	LSHLFHIGFC
	GIM5A_L. Draziliensis	MSASVFQILA	NTGDRDKVMA	IVOF LPMTLA	GPANDAGCTS	LSKSLKSLST	MADGIRAITR	LALLENALSK	PTLEALSKPK		LSHFFHVCFC
		110	120	130	140	150	160	170	180	190	200
	Gim5A_T.rangeli	FNEHTAVLAG	RGVFNSGLAR	LGGVAVLCWF	YTLVVGLVRQ	VYLLAKHSPN	GPCKVLMPGN	ANDTKVVPYT	HEECKRAVVT	LVKLGLFTVF	SMTCLPEGKP
	Gim5A_T.cruzi	LNEHTAVLAG	RGVLNSGLTR	FGGVAVVCWL	YTLLLGIARQ	AYLLAKHSPR	GSCKALLPED	A-EKKVVPYT	HEECKRAVVN	LVKMSCFAVF	AMTCLPEGRP
	Gim5A_T.brucei	LNENTAVLAG	HGVFPKSLHR	LSGVAVLCWM	YTLVLGIVRQ	LYLFVKLRPR	QASRGAGAGD	DKKVPAYT	YLELKRAFVN	LLKLVCYFLF	ALTCLPEGKP
	Gim5A_L.braziliensis	FFENTAVLSS	HNVYPSRLGR	LGGCAVTCWF	YTLLLGLMRQ	AYVMTQKK		NT	PEEHKRQMIT	TVKLGCFLVF	SLTCFPKGGP
		* ****	* *	** ** **	*** * **	*		*	* **	* *	* *
		01.0		0.0.0	0.4.0						
		210	220	230	240						
	Gim5A T rangeli	OLIOFRCSEL		ADNET OT SDT	VPCTENTERS						
	Gim5A T cruzi	KITODACCET	VPI.HEI.TRAT	APNKI.HI.SDT	VRGLIAATAS	LCDFY					
	Gim5A T.brucei	OLLANASGPL	VPLHVMVKAL	SPNPLHASNT	VRGLLGLIAS	VCEFY					
	Gim5A L.braziliensis	OLLEDVSGPL	MPLHKTLOLI	APKCLELNDT	IRGALGFIAS	LCDFY					
		** *	*** ~	* * *	** *	* **					
P	1		50		100		150		201		245
Б	Query seq.										
	Superfamilies					PEX1	.1				

Apêndice C.3: (A) Alinhamento das sequências aminoacídicas deduzida da Gim5A de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da Gim5A. Imagem gerada pela ferramenta *Blastp* do programa *Blast* do *GenBank. Query seq.* = sequência de interesse, *Superfamilies*= superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

A mASAT_T.rangeli mASAT_T.cruzi mASAT_T.brucei mASAT_L.braziliensis	10) 2 ¹ LLFFFFICTL 	0 3 RFESVRFLQF 	0 41 QLWPTFKTEF 	0 51	0 61	0 7(LLGSSRAYSS PLELRRAASS 	B 80 FFASVPMGEP FFASVPLGAP MGKP	0 9 DSILGLSLEC DSILGLSAEF DPILGLGQDF MGIAADF *	0 100 ORDPHPEKVN QQDSHTPKVN RMDPAKRKVN AKDMSPNKVN * ***
mASAT_T.rangeli mASAT_T.cruzi mASAT_T.brucei mASAT_L.braziliensis	110 LGVGVYRDDA LAVGVYRDDA LSIGVYRDDA LCIGVYRDEQ * *****) 12 NRPYVLESVR NRPFVLESVK DQPFVLECVK NKPFVLESVR * *****	0 13 KASIG KSDTG QATLG KAMAHIVERD	0 144 DDMEYAPING SDMEYAPING TMMDYAPVTG TQMDYAPIAG * *** *	D 150 VPSFVSAAQR MRSFLKAAQK IASFVEEAQK LPSFVNSVQR ** *	0 160 LCFGEDCSAV LCFGEDSRAI LCFGPTCAAL LCFGKPMLDV ****	D 17(0 RDGRIASCQA RDGRVASCHT RDGRIASCQT QGDRIASAQA * **	VGGTGALRIG LGGTGALRIG LGGTGALRIG LGGTGALRIG LSGTGALRIG LSGTGALHLG ***** *	0 19 GELLNRFMNN GEMLRNFVND GDLLNRFVAN VQLLQCSSGG *	CTTIYGPN CSNIYSSD CNRIYGPD SGPATVHIPS
mASAT_T.rangeli mASAT_T.cruzi mASAT_T.brucei mASAT_L.braziliensis	210 PGYANHAGIF VGYANHAGIF VGYPNHESIF PSYPNHLNIL * ** * 310	22 KKAGMTLPTY KAAGITLPPY AKAGMELTPY KHLNVEVAYY * 32	23 TYYNPLTKSL TYYSPATKGI SYYDPATKGL PYYNLOMHRL ** 0 33	0 24(NLPGMLKSLE DLPGMLKSLE NLAGMLECLD NIDAMLNYLR ** 0 34(25. EIPERSVVLL AMPERSVVLL KAPEGSVILV QLPADSVVLL ** * 0 350	0 26 HACAHNPTGV HACAHNPTGV HACAHNPTGV HACAHNPTGC 	27(DPSQSEWLQV DPTQKEWLQV DPTHDDWRQV DPTPEEWQQI ** * * 37(280 SEVIKRRNLL VDVIKRRNLL CDVIKRRNHI VDVIRRGDLI ** 380	0 29 PFVDMAYQGF PFVDMAYQGF PFVDMAYQGF PFVDMAYQGF ************************************	atgoldrdaf atgoldrdaf atgoldrdaf atgoldrdaf atgoldydaf atgolierday *** **
mASAT_T.rangeli mASAT_T.cruzi mASAT_T.brucei mASAT_L.braziliensis	LPRHLVKT-V LPRYLVEN-V VPRHLVDM-V VLRVLNQQEV * * *	PNVIVAQSFS PNVIVAQSFS PNLIVAQSFS PTYLVAQSFS * ****	KNFGLYGLRC KNFGLYGLRC KNFGLYGHRC KSFGLYGHRT * *******	GALHVVVDNP GALHAVVENP GALHLSTASA GALHIRCTTQ ****	VEAERVLSQL EEVGRVLSQY EEAKRLVSQL KEKANVLSQL * **	ALIIRAMYSN ALLIRTMYSN ALLIRTMYSN QSMIRATYSN * ***	APLTGARIVS PPITGARIVN PPLYGAWVVS PPIFGARIAD * **	SILASPELTV SILNSQELTA SILKDPQLTA EILRTPQLRE ** *	QWKGELKGMS LWKEELRAMS LWKKELKQMS LWKSELKQMS ** ** **	DRLQGVRQRL GRMQDVRRL SRIAEVRKRL NRLQDVRHRL ** **
mASAT_T.rangeli mASAT_T.cruzi mASAT_T.brucei mASAT_L.braziliensis	VKELQNCGSI VKELGECGSV VSELKACGSV VAQLRACDST * * * *	 RDWSHIERQI LDWSHIERQI HDWSHIERQV RDWEYLENGV ** *	GMMSYTGLTK GMMSYTGLTK GMMSYTGLTK GMMSYTGLTR MMSLMGLTE *** ***	EQVETLKRMH EQVEMLKKKH EQVELLRSEY EQVMALRQKY	 HVYMTLNGRA HIYMTLNGRA HIYMTLNGRA SVYLTGNGRI * * ***	AISGLNSTNV AISGLNSTNV AVSGLNSTNV AFSGLSAENV * *** **	AYVAKAFHDV SYVAKAFHDV SYVAKAFHDV EYVSQAIHNV AYVAQAIYDV ** *	SK SK TK SR		

Apêndice C.4: (A) Alinhamento das sequências aminoacídicas deduzida da aspartato aminotransferase mitocondrial (mASAT) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Em vermelho está marcado o sítio ctalítico e em verde os sítios de ligação de 5'fosfato piridoxal. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da mASAT. Imagem gerada pela ferramenta *Blastp* do programa *Blast* do *GenBank. Query seq.* = sequência de interesse, *site binding*= sítio de ligação, *interface tetramer*= interface de tetrâmero, *Specific hits*= motivos específicos, *Superfamilies*= superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

(10	20	30	40	50	60	70	80	90	100
A	AMA1_T.rangeli	MQVPNPGGDV	RYPEAD	IAKVGTG	-PEVRGV	PMTNQFYYAP	P	-PPLVTPT	PMEVQRPQ	RDWKYDICHC	CODCSPCVEA
	AMA1_L.brazieliensis	M-HTQPQALG	APNAASQGKG	VPGNGAGGYK	TSAPPGAQWP	SNVQKGQYAS * **	AYGKD	GNILNYPPGG	PTGPNAVANR	GWWHFSLCVC	CKDCDSCCES
		110	120	130	140	150	160	170	180	190	200
	AMA1_T.rangeli	WCCYYCQLSR	QYNMVCQRGG	PTIDGMICLA	AYCGDYFCGG	IVSPILQCGM	 RTKLRENLNI	RGTSFDDFCC	SLCCGPCTLQ	QSLMEMTAVG	MFPGACCYEA
	AMA1_T.cruzi AMA1_L.brazieliensis	WCCYYCQLSR WCCAPCQLSR	QYNVYCDNGK QCNMLTNNRK	PEINWLVALG EIHWPYCLLM	SLLGDYCCFG TFCDCTIIIF	LVSTVLQFLV NVSCIFASET	RNKLRRDFNI RRMARERYGI	QGSDCGDGCV SGSTLEDCCY	VVCCSHCGLQ GFWCTPCSTQ	QVLMELTELG QVLLEMTLMN	RFPGACCYDA EFPGATCYEA
		210	~ ~			~ ~	· · ·	^ ^	~ ~ ~		
	AMA1 T.rangeli	 PPGFVAMO									
	AMA1_T.cruzi AMA1_L.brazieliensis	PPPVVPMQ TSHPAGRRMV									
В	1	25		50	75	100	-	125	150	17	5 183
	Query seq.	T		T 1 1				T I I]	
	Superfamilies					PLAC8	superfar	nilu			

Apêndice C.5: (A) Alinhamento das sequências aminoacídicas deduzida da proteína de membrana apical (AMA-1) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da AMA-1. Imagem gerada pela ferramenta *blastp* do programa *Blast* do *GenBank. Query seq* = sequência de interesse, *Specific hits* = motivos específicos, *Superfamilies* = superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

A	MRP2_T.rangeli MRP2_T.cruzi MRP2_T.brucei MRP2_L.braziliensis	10 MLR-HLAPWP MLR-RLSIRP MLRRIISQQT MLRRLPTGWA ***	20 VMAHRV VFAQRY TLIRKP LRNHAGVTTM	30 AAVGYFTLSP VVAGYFTLSP LGAALFATSA AVAGGLSANP	40 ARLQTATSSG VRFQGADSSG LRLEAASSSD SAFACKAPLL	50 SESRVESGTS SEAPADSNAK ADGKEVGSSG QPARWTSSDA	60 HD-TNTSGPA HD-TNTSGSA EG-NRATG AAPTPVIPQR	70 AKWRRPSLAQ SRWRRLSASQ GKWRRPSLAQ HNSRSSSVQG *	80 QRARRSQLPP LRARRPQLPP QRARRAQLPP QRGRRDDLPP * ** ***	90 AFDVVHWNDE AFDVVHWNDD AFDVVHWNDE AFDVVHWDDA ******* *	100 DMSRGHLLRV DMSSGHLLRV DISRGHLLRV NITAGHLLRV ******
1 1 1 1	MRP2_T.rangeli MRP2_T.cruzi MRP2_T.brucei MRP2_L.braziliensis	110 LHRDSFVVLD LHRDSFVVLD LHRDTFVVLD AYRDGFIVLD ** * ***	120 YHRQVKK YHRQARM YHRQRSATSA ****	130 LGEEG LGEEG LTEEG LREDGSRAVN * * *	140 	150 MLPAVYTARF MLPAVYTARF TLPPVYAARF ** ** ***	160 LGVLEGRMEQ LGVLEGRLDK LAVLEGRSEK LGVLEERMSK * ***	170 VEVQSRFTNA VEVQSRFTNA VEVHSRYTNA LEVQSRFTKA ** ** ***	180 VFAPVPEV-P VFAPDPAV-P TFTPNPAA-P SFLPNTAKGK * *	190 HTFILKCTST HTFILNCTST YTFTLKCTST HHYTLHCTSM * ***	200 RPP-QQQ RPP-QQQQQQ RPA-QQKQQV KPTTGQIQTA *
]]]]	MRP2_T.rangeli MRP2_T.cruzi MRP2_T.brucei MRP2_L.braziliensis	210 NSSSGDGETF NGGNGEEEKF AGEEGD-ETF DGADVHEETV * *	220 DWTVMFDVAE DWTVKFDVAE EWTVEFDVAE EWTVEFNAAE *** * **	230 SIMLHRFLSQ SIMLHRFLTQ SIMLQRFLTQ SIMLHRFLTQ **** *****	240 ALHYNTGFAR ALHYNTGFAR ALHYNTGFSR ******** *	TFV TLV TSV KV-					
В	Query seq.	25	50	75	5		MRP	150	175	200	223

Apêndice C.6: (A) Alinhamento das sequências aminoacídicas deduzida da proteína mitocondrial ligante de RNA 2 (MRP2) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da MRP2. Imagem gerada pela ferramenta *Blastp* do programa *Blast* do *GenBank. Query seq.=* sequência de interesse, *Superfamilies=* superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

^			10	20	30	40	50	60	70	80	90	100
A FC FC FC	aBP_T.rangeli aBP_T.cruzi aBP_T.brucei aBP_L.braziliensis	MGACGSKSS- MGACGSKDST MGCSGSKNAS MGCNTSKAAP ** **	AG SDKGLAS NPKDGAASKG KS	NKDGKSATDR DKDGKNAKDR GKDGKTTADR GED-RTAAER * *	KVAWERIRQV KEAWERIRQA KVAWERIRCA KAAWEKIRQS	IPREKTAEAK IPREKTAEAK IPRDKDAESK LPRQRTPEDK ** * * *	QRRIDLFKKF QRRIELFKKF SRRIELFKRF ERHVLLFKKF * *****	DKNDTGKLSY DKNETGKLCY DTNGTGKLGF DNSESGKLTM * ***	DEVYNGCIEV DEVHSGCLEV REVLDGCYSV EEVYQGCVDI ** **	LKLDEFTPRV LKLDEFTPRV LKLDEFTPRV LKLDEFTTHL LQLDEFTTRL * *****	RDITKRAFNE RDITKRAFNE PDIVQRAFDE RDIVQRAFSE	 K K K K
FC FC FC	aBP_T.rangeli laBP_T.cruzi laBP_T.brucei laBP_L.braziliensis	110 AKDKGSKLE- ARALGSKLE- AKDLGNKVK- AKSMGNTADD * *	120 NKGSEDFVEF NKGSEDFVEF GVGEEDLVEF GQESSDYVEL **	130 LEFRLMLCYL LEFRLMLCYI LEFRLMLCYI LEFRLMLCYI *********	140 YDYFELTVMF YDFFELTVMF YDIFELTVMF YDYFELTVMF ** *******	150 DEIDTSGNML DEIDASGNML DTIM KDGSLL DEIDTSGNML * *	160 LDAKEFEKAV VDEEFKRAV IELQEFKEAL VSAKEFKAAL *** *	170 PKLEQWGAKI PKLEAWGAKV PKLKEWGVDI PRIGEWGVAI * **	180 EDPAEVFKEL EDPALFKEL TDATTVFNEI EDPDKIFKEI * ***	190 DRIGEGSVTF DRIGEGSVTF DTIGEGVVTF TTISTGQVTF * * * ****	200 DEFAAWASAF DEFAAWASAN DEFSCWAVTH DEFAAWATGO *** **	0 R V K C
FC FC FC	aBP_T.rangeli aBP_T.cruzi aBP_T.brucei aBP_L.braziliensis	210 KLDVDGDPDN KLDADGDPDN KLQVCGDPDG KLQSDADAMK **	220 APESA VPESA EGNGANEGDG SE	230 ANAGDGVPAA	 EGSA 							
В	Query seq.	25		50	75	100	125	150	17	5	205	
	Specific hits					UQ.	2. Dinuing site	ARA A	EFh			
	Superfamilies							EFh sup	erfamily			
	Multi-domains							EF-	hand_7)

Apêndice C.7: (A) Alinhamentos das sequências aminoacídicas deduzida da proteína flagelar ligante de cálcio (FCaBP) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Letras marcadas em vermelho representam os sítios catalíticos de ligação de cálcio. Linhas vermelhas representam os domínios canônicos de ligação de cálcio e a linha preta representa a região característica *EF hand* e os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da FCaBP. Imagem gerada pela ferramenta *blastp* do programa *Blast* do *GenBank. Query seq.*= sequência de interesse, *Specific hits*= motivos específicos, *Superfamilies* = superfamílias, *Multi-domains*= multi-domínios. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

ſ.		10	20	30	40	50	60	70	80	90	
A B	KMP11_T.rangeli KMP11_T.cruzi KMP11_T.brucei KMP11_L.braziliensis	MATTLEEFSA MATTLEEFSA MATTYEEFAA MATTYEEFAA	KLDRLDAEFA KLDRLDAEFA KLDRLDAEFA KLDRLDAEFA KLDRLDEEFN	KKMEEQNKKF KKMEEQNKKF KKMEEQNKRF KKMQEQNAKF	FADKPDESTL FADKPDESTL FADKPDESTL FADKPDESTL FADKPDESTL	SPEMKEHYEK SPEMKEHYEK SPEMKEHYEK SPEMKEHYEK	FERMIQENTD FEKMIQENTD FEKMIQENTD FERMIKENTE	KFNKKMHEHS KFNKKMHEHS KFNKKMREHS KFNKKMHEHS	EHFKSKFAEL EHFKAKFAEL EHFKAKFAEL EHFKHKFAEL EHFKHKFAEL	LEQQKNAQFP LEQQKNAQFP LEQQKNAQFP LEQQKAAQYP LEQQKAAQYP	GK GK GK SK
	Query seq.	**** *** *	15	30	******	45	60	********	75	92	*
	Specific hits Superfamilies	KMP11 KMP11 superfamily									
l											

Apêndice C.8: (A) Alinhamento das sequências aminoacídicas deduzida da KMP-11 de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da KMP-11. Imagem gerada pela ferramenta *blastx* do programa *Blast* do *GenBank. RF* = orientação da janela de leitura, *Specific hits*= motivos específicos, *Superfamilies* = superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).
A Calpaina_T. rangeli Calpaina_T. cruzi Calpaina_T. brucei Calpaina_L. braziliensis	10 M-TTLDDLYA M-TTLDDLYA MATTLDDLYQ M-PSNAELYT * **	20 SYCRRGCKP SYCRRGCRP YYCRRGCKA YYCRRSACHP	30 NSSISRYLQE NSFLSRYLQE NSCFSRYLIE NSAVKRYLDD ** ***	40 EFTRHDQRRV EFTRHSQQRV EFERQGQKRV TTSSP	50 LESVDLSKNY LESVDLSNNY LETVDLSLNY LEVVDASANY ** * * **	60 VGAKGIIPIL VGAKGIIPVL VGRKGIIPVL LGSRGIIPVL * **** *	70 DLVKNVKTVR DLVKNVKTVR DLVKNVKTIK DLVKNTKTVH ***** **	80 RLDARNSMLE RLDVRKNMLE KLNLSNNMLE TLDLSNNTME * *	90 HEQLEHLVYC HEQLEHLVYC HEELEHLVYC LEQVEHLAYC * *** **	100 LALHPSMEDV LALHPSIEEV LALHPSVEEV VALHPNMRTV ****
Calpaina_T. <i>rangeli</i> Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	110 DVSDNALDNS DVSGNALDDG VLANNCFHDA RLCNNGLHDS *	120 SVDLILQLLE SVDIILKLLQ SVKVILDLLE HVDALLQLLS * * **	130 ANENITTFRV ANESITVFRV LNGGITTFDV ENASIEHVAV * * * *	140 DGNHFSPASL DGNHFAPSSL DGNEISAASV DDNNITAASV * *	150 SVIGEYLERN SLINDHLERN ATIGEQLEKN QAIVQALERN * ** *	160 RERKAARQRE KERKAERQKE RARRAERESD KAVRAQRSRE *	170 V V T EEEHSTYLKS	180 LPAITKKFFR PPVYTGKWFR SHPSLRRWSK LTPRARLSFQ	190 AQVRGSLEGD AQVRGSLTEE AQIEGSIDEL ARLCGQISTA *	200 TSGGHVHYST TSGGHVHFST NSGGHIHFGT ESGGYIHYAT *** *
Calpaina_T. <i>rangeli</i> Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	210 WWKNQQYIMR WWKNQQYIMR WWKNPQYFMR WWRNPQYVVK ** * **	220 TSRRTQVRIV VSRRAQVRVV TSAGSQVRIV LSRSSRVSFV * * *	230 MDIDAPKTAR MDVDDPKAAR MDVEDAKEAR LECTHVEVAN	240 QAGFFVFHSD QAGFFVFYSD QVGFFVFXSD QVGFFVFRSS QVGMLLMRHD	250 GTHKVIEADA GTRKVIVADA GQYRVVELSE GVHRVVEILA * *	260 EHIAAESNVD DHIAAESNVD GVIAGESACD DTIVAESTIE * **	270 HSHCFVTMWA HSHCFVTLLV HSHCYLTMSV DERCVMEAHL *	280 EEHAAYSIMP EEHAAYSIMP EENETYSVMP SVDDSYVLMP * **	290 FTFYPERSIS FTFHPERSMS YTFYPSRSVG FSFNPGRAVN * * *	300 FTLTAEICQE FTLMVELCQE FRLTAEMCSD FTLFATLRNG * *
Calpaina_T. <i>rangeli</i> Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	310 CSTRAEAWVT SLKSSEGWVT DALSSRGWIT HIAQEEGWII *	320 LEPVDPALDW LEPVDSALDW LEPVDPAVDW VEELDSRYDW * * **	330 HVYVMDGEWG LVYVMHGEWT CLSTLDGEWT CTRAVETAWT *	340 YDSAGGSPVQ SASAGGSPAQ EESAGGSHLE SDNAGGGPDC ***	350 HLWCRNPMIR HLWCRNPMIH HTWCRNHMIR PSWRRNDMYH * ** *	360 VQYDDSIQAH VQYAGSIQSY VQYAGSVLTH LTYANAAAPG *	370 RMASPATLFV RMASPATVFV RMAAPATLIV QPSFMATVHV * *	380 QLSKSVDADV QLSKSIDADE KLSKGVDPDV LLMKEADPYE * *	390 NDDRRIGFDV NDDRHIGFDV NDEKSIGFHV NDSRAIGLDV ** * * *	400 VILDATGNNK VILDTTGNNK LTPDTEEALL VGHDVHHTTA
Calpaina_T.rangeli Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	410 PPIYCSDEVR PPICCKEESR PPIFCKDECV PPLLCTSEVV ** * *	420 KCTCPHAHRT KCTCPHEHRA KCFCPHERTT RTSYSHQQKT *	430 TVAASLEITC TVTASFVIMC TISASFAVSC FISLQFSMPA	440 AVLDLFIVPS AALDLFIVPS TALQLFIAPS TELDVFIVPS ** **	450 TEAPGQLGPH TAIPGELGSY TLNPGQVGSY TAEAGQTGTY * * *	460 TVCVFSSVPL TVTVFSSVPL NVTVFSSVPV SITVFSSVSV ****	470 RLTTSVFPHG RLTTSAFPHG TLSSSAFPHG DFTRSAFPHG * ****	480 WNYRAVRGVW WNYRAVKGVW WHYRKVGGSW WRYRTVRGQW * ** * * *	490 DESSCGGSRE DEDNCGGSRE DEYNCGGSRN DADCCGGCRQ * ***	500 NSMSWKCNPS RSMSWKCNPS ASMSWKANPS LYQSWKSNPA ** *

Calpaina_ <i>T. rangeli</i> Calpaina_ <i>T. cruzi</i> Calpaina_ <i>T. brucei</i> Calpaina_ <i>L. braziliensis</i>	510 52 VALHFDADKP PQGLVLFLE LALHFDAHQS PPDLTLFLE IGLSVDSSQE PSDFTVFLE IEVCVEDA AKALVTCVE *	0 530 G SLEEARSLVC SGGDVDA E SLEPRKSPVR RG-SADS A ASPALFLVVQ EAAVGDG V HSAETATAVQ CVKEAQN	540 550 CSH FLGSPATEEE KQCP CACS NATURDSLSAVEE TQ ACS RSATPAPGES QE AEG EVAATAAERT LEAM	560 570 KQEKREL RDFLRRHKVG EKKEL KEFLHRHKLS EDPDL VEFLRRHKAH MQQKSEL EKFRQRHSSA * **	580 590 YLEGCVSLVE ACPPMYRTLY HLEGCISLVE ACPPMYRLLY IMEACVSVIE AKSPLYRELL KREVCVAVVG VNPPSYPEVA * * *	600 SSEYSGGSVV SSEYSRGSVV TSGYTNGSFA SSALSEKSAV *
Calpaina_ <i>T. rangeli</i> Calpaina_ <i>T. cruzi</i> Calpaina_ <i>T. brucei</i> Calpaina_ <i>L. braziliensis</i>	610 62 	0 630 A GQLGNFTLHI FSRSFV A GQLGNFILHI FSRSFV A GQLGFFLHI FSRFFV A AETAAYTLEI FSSSSFV * * ** **	640 650 V-D EVRALALRER EYQI T-D ELKTLALRER EYQI T-D GVESLLARER EVHI VCE AIEPLAARQR QAQI * *	660 670 ILQD TQTRQTAMLG LLQCAQE SQARQAANSV LQQYALE NEKRRTLSA LAACSTE IEQRAAQRNP *	680 690 LVKGRAGPQD PEDTVLARNE LAKKRSGPKD SEDAVLAHNE AKTQQISFDG SEDVVVVRNE EQQVCRYGAD LSPLRVARRA	700 ILRRCMVTGE ILLRCMVTGE IIRQCMITGE ILDRLYATDL *
Calpaina_T. <i>rangeli</i> Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	710 72 KYVDRDFPRG GSSLWIDPA KFVDRDFPRG GSSLWIDPA KFVDRDFPRG GSSLFLDPD PFVDRFFPRG TSSLFLDPD *** **** ***	0 730 A KTPAWCGREI YWKRPTE: K KTPAWCGKEI YWKRPTE: G VPPPPFVMT EWKRASQ: * ***	740 750 	760 770 	780 790 	800 LVQFRFFKSG LAQFRFFKSG MAQFRFFKDG FAQFAFYKQN ** * *
Calpaina_T.rangeli Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	810 82 QWTVVSIDDY LPCDNVMEL QWTLVTIDDY LFFSTMEL KWKVVTIDDY LLFDSTMEL EWVGVTVDDY LLFDSTMEL * * **** * *	0 830 C MGRPSRDKAD FFFPLLE C MGRPSRDNTD FFFPLLE C MGRPGKDSAD IFFFPLLE V YG-HSAADD MLFPLAE * * ****	840 850 KAY AKLHRCYEAL ERKV KAY AKHRCYETL ELKV KAY AKHRCYETL EKKY KAY AKHRCYEAL EKKY KAY AKHRCYEAL EKKY	860 870 VTPELRI IDVMCHGLMD VTPELSI VDVMCHGLMD VTPELGF LELVCQGLMD VCPQQSL LELLHQGLMD * * * ****	880 890 LSGCAPVH FPLRGSVELT LSGCAPVH FPLRGSVENS LSGCATIN IPLIGSVRMP MSGGRCFTTR VRPADGSELP ** *	900 VEQQGILWMK AEQQNILWMK QEQQDVIWME ADEREALWRQ
Calpaina_T. <i>rangeli</i> Calpaina_T. <i>cruzi</i> Calpaina_T. <i>brucei</i> Calpaina_L. <i>braziliensis</i>	910 920 LKNAIKHDFL FTFLLRSDT LKNAIQQDVL FTFLLRGDS MKNAVKPNVL CSLLVRGDS LKAGVSHSVL CTLMLDSRS * *	930 9 A EAAERVSLGI LSDHLVP A EAAERISLGI LSDHLVP N GASERRGRGI LVDHIVP N RAGERSRVGI LEDHLVG ** * * * *	40 950 	960 970 WWQESEINWGGKWR WWQVGEVRWGGKWR WWGQPEEINLCSKWR FDSQNN TDATWRGKWA	980 990 AQSFKWTPVL RELLAFDETD AMSTRWTTIL ROLLKFDEDD SSSDKWTDI RQTLEFREDD DKSSLWTETL LEVLQYRPEE *	1000 TETFWLGLDE RETFWLSLDE RETFWLSFDE -DAIWMQFDE * **

Calpaina_T.rangeli Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	1010 AFFYFTDLIM VFFYFTDLIM VLYYFTNLLI VLYYFTHLLV *** *	1020 TAGAPHTSWV TAGTKHTSWV NEETSSVSWA TEVCAHTTTV	1030 SADFSDCPNS SADFADCPKE SGYFCDCPPG TGSFAESTAS	1040 SGSQLLA CGTPVME CNDRLLG DPDDADLSLL	1050 GAQFALRLGN GAQFTLRLGD SSQFSLQLGE NPQYALTVTQ *	1060 FPQDVKQ FPPDLNK FPPGLKK TSATDTDTTP	1070 VQITLGLHQP TQISLGLHQP VNILLGLHQL IEVHVGVHRR * *	1080 DARARVLRKK DARARVIRQR DPRTTVLRDK DSRLDITRAK * *	1090 DALATYRTAI NALATYRTAI EAVASYRTGV NATAVFKTAI * * *	1100 GLAVVATADN GLAVVATEDN GLEVVGTADN GFAVLTTEDN * * ****
Calpaina_T. <i>rangeli</i> Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	1110 TVWKKEITDA TVWLKEVREA TVWLTDFSKA RRRVCRITDK	1120 DVIKCLEPSQ DVVKCLEPCK EVLSRLEPCM QLLRLVTPNR	1130 CRDRMCPLTV CRDVMCSLNI KRDALCPLTV LRDAYCTLQL ** * *	1140 DMENVKGKEL DMENVKGSKR SLDSVGGNKL TAEALR-SQH	1150 LTLIAFREDP LTLIAFREDQ LTLVVFKEEM ITLMPFREHI ** * *	1160 VAANVPFLLS KAANVPFLLS RAPHVPFLLS RDPDTLYCIS	1170 A-WSDNCEVA A-WSDNCEVA A-WSETCKVN ASCSGAATVR * *	1180 LAPVERDLKT LTPITRDIKT VVAVERNAAV ITHVTPNTTT	1190 TVSGEWPVEY TVSGEWPIGY TVCDEWPREF TVAGQWDT ** *	1200 PVGSPASSFW PVGSPSSSFW AIGGPSSPFW KAGTPDSPLW * * * * *
Calpaina_T. <i>rangeli</i> Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	1210 RDCPQYFVFP RDCPQYFVFP RDCPQYFVFP RDCPQYF1YP RDNPQFFLSP ** ** * *	1220 SESTDVLLVL SESTEFLFVL SDTTDINFSL SEAMEVTITL * *	1230 RQEVAVGEAP RQDLPVGELP KQELASGEIP RTARPTS	1240 KPIGFTVHRA KPIGFTVHSE KPIGFTVHDA GVLGFTIHNT ***	1250 TTCRSYLEYD MTCRSYLEYN RACRSYLEYN QRCSSLLTFE * * *	1260 PATVMLEVQA PDTVVLYVQA PDTVLLSVAA PATVAASAAA * **	1270 APS-ASVEGT VAS-ACVEGT NAS-HKVEGT DAVGATPTCV	1280 LRLLGMKERR VRLLGMKERR VRLLGMKARR VRLLGMKARR ** ** **	1290 GMPYIIVFFC GMPYIIVFFC GMPYVVVPYS **** **	1300 TEATPGGKFW TEATPGGKFW TEAAPGGSFT SCSAEDFS
Calpaina_T. <i>rangeli</i> Calpaina_T. <i>cruzi</i> Calpaina_T.brucei Calpaina_L.braziliensis	1310 LDAIANRSLR IDAIANRSSR LEAVANRFVK VEVTANRPVQ *** 1410	1320 LCRIEPRLDW FCCIDPRLDW LCRINPQLDW LRPIDPRLDW * * *** 1420	1330 HRDRRPATFT YRDRKSVSFT CRVTKHASFM HRMRQNVSIS 1430	1340 LTDGSFGGSP LADGSFGGSP LSDGSVGGSL AEKGNTGGSL * *** 1440	I350 RFSSWRSSPQ RFSSWRSSPQ AFPSWRFNTQ * *** * 1450	I360 FALTFPVGQQ LALNFPVGQQ FAFTFPVGGK MALTFPVERE * *** 1460	I370 GRLFIVLRND GRLFVVRND GRLLVSLSND GRLFISARRI *** 1470	1380 DVGDKVTEVG DLSDRRTELG DAVDTRTEVG RTADPRVKVG * * 1480	1390 MMLLRGDNQW MMLLRGDNQW MTLLLGDRQW MVLMRSGCAV * * 1490	1400 ENGQRRKLVI ENGQRRKLFI DEGKRRKLVV RGGYRRLLTY 1500
Calpaina_T.rangeli Calpaina_T.cruzi Calpaina_T.brucei Calpaina_L.braziliensis	SPADIVACSD SSGDIVARSE SQGDIIACSE AEEDVVARSS * * *	EKVGATVIDC EKIGETVIDC ENIGRSTLDC EKTGEAIVDT * * * *	EIDVQPEC-T NVDVQPEC-T EIDVEPEQ-T EVSLSTEQGA	LILVVYASMP LILVVYASMP LILVVYASLP LVLLVYADQP * * *** *	YREAAVTVAL YREAAVTVAL YRGADVTFTA YKEAEVELSV	VSASAVVVAP YSASAVEVEP YSALPVEVEP YAAATVDVQP * * * * *	VKEWAHVAVA VKEWAQVAVA VKEWEYVVMA VVEWAKVLWK * ** *	EGSWELGYTA EGSWELGYTA QGSWELGYTA EGSWELGTTA ********	GGGSEEFSGW GGGSDQFGSW GGGAEEFGSW GGSRTHFANW	INNPFVALNT INNPFVALNT VNNPFVALNT INNPFYGLSV ****

Calpa Calpa Calpa Calpa Calpa Calpa Calpa Calpa	aina_T.rangeli aina_T.cruzi aina_T.brucei aina_L.braziliensis aina_T.rangeli aina_T.cruzi aina_T.brucei aina_L.braziliensis	1510 FRRTQIVALL FRRTQIVALL IRSTKVVVLL IRSTKVVVLL ISTKVVVLL LFVXADSPIE LFVXADSPIE LFVXADSPIE LFVXADSPIE LFVXADSPIE LFVXADSPIE	1520 LQYPRGPEKP LQYPRGPEKP VQYPRDREHP *** * 1620 LYTLEKKRLP LYTLEKKRLP FFEAEKKRLP FFEAEKKRLP * *	1530 IVKRAGNKKA LVKRAGNKKA KVRRHGQKKA * * **** YV YV YV YV YV YV YV	1540 FlppIIINPN FlppIVINPN FlppPIEFQE ****	1550 NRMEIALDLS NRMMIALDLN NRMEIAIDLN RCTTIELSIV	1560 MRDTELTLIA VQNSELTPIA CQDENMTRIA KYDKDLSEVA *	1570 TTPYTQNSEV STPYTYNSEV TTPYTRNSEV SVSAGTAVEA	1580 TLVASVEVAD TLVAHVPAAD ALVANVPAAD YLVAELLPDH	1590 SMPLFIPHT SLPPLFIPHT SLPPVFVPHT SYFLVPCT * *	1600 KLPEGNGEFK KLPEGNGEYK SEPQHNGDFK *
В	Query seq. substrate binding site Leucine-rich repeats Superfamilies	P_RI	250 Calpain			750 catalytic sit ysPc superfa	e 1000 e 11		1250 , , ,	1500	1593

Apêndice C.9: (A) Alinhamento das sequências aminoacídicas deduzida da calpaína cisteíno peptidase de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da calpaína cisteina peptidase. Imagem gerada pela ferramenta *Blastp* do programa *Blast* do *GenBank*. *RF* = orientação da janela de leitura, catalitic sities= sítios catalíticos, Superfamilies = superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

A	10 	20 	30 	40 	50 	60 	70 	80 	90 	100
PFD1_T. rangeli	MMHRTVAALA	GISGMAVYTP	PCRIALKDWC	AWTGNDWKKV	SNVVGDSFRI	PGCNENAYTM	AATATLRLIL	NYGVDPTRVS	FLGLGTESST	DNSAGSIIVR
PFD1_T.cruzi	M-RRTVRALA	GISGMAVYTP	PCRVALKDWC	DWTGNDWKKV	SNVVGESFRI	PGHNENAYTM	AATATLRLIL	NYDVDPARIG	FLGLGTESST	DNSAGSIIVR
PFD1_T.brucei	M-RRTVRSLA	GISGMSVYTP	PCRVALKEWC	NWTGNDWKKV	SNVVGDSFRV	PSNNENAYTM	AASAVLRLIL	NYEVDPSRVG	FLGFGTESSS	DNSAGAVIVR
PFD1_L.brazilie	ensis MMRSTPLSLA	GVSGMAVYAP	HCRVDLEQWC	KWTGNNWDKV	SSVVGQSFRI	TNHNENTYTM	AANAVLRLIV	NNKIDPTKIG	FLGLGTESSS	DNSAGAIIVK
	* * **	* ***** *	** * **	**** * **	* *** ***	*** ***	** * ****	* *	*** *****	**** ***
	110	120	130	140	150	160	170	180	190	200
PFD1 T. rangeli	GMVDKALKEL	GMPRISRHCE	VPEFKHACLG	GVYALKSAAR	YAEVDGGDDS	LAIVVASDIA	EYALGSTGEQ	TQGAGAVAML	VEKTPKLAEL	DTKCAGSASD
PFD1 T. cruzi	GMVDKALKEL	GLPRISRHCE	VPEFKHACLG	GVYALKSATR	YSEVDGGNDK	VAIVVASDIA	EYALGSTGEO	TOGAGSVAML	VEKVPOLVEL	DTKCSGSASD
PFD1 T.brucei	GMVDKALKEL	GMPALSRHCE	VPEFKHACLG	GVYALKGAAR	YAEVDGGDDK	LAIVVASDIA	EYALGSTGEO	TOGAGSVAML	VOKTPRLLEL	NTKAAGSASD
PFD1 L.brazilie	ensis GMVDKGLRAM	NMPAISRHCE	VPEFKHACLA	GVYAMESATR	FANADGG-DR	IAIAVASDIA	EYALGSTGEO	TOGAGATAMM	LERDPKLFEV	OLOYSGSASD
	**** *	* ****	*******	**** * *	* *** *	** *****	********	**** **	* *	****
	210	220	230	240	250	260	270	280	290	300
PFD1_T. rangeli	YRGPDFRKPF	RRHFIEEY	GSNTEHGKIP	DFPVFSGPYS	TMVYLDEVTV	AVEQMLSKLK	QSPGDYYNFV	SALFFHRPYN	MMPIQAMSFL	YSRGLARAHS
PFD1_T.cruzi	YRGPDFRKPF	RRHFIKEY	GSNTEHGKIP	DFPVFSGPYS	TMVYLEEVTM	AVENMLGKLK	QNPGDYYNSV	SALFFHRPYN	MMPIQAMSFL	YVRGLARATS
PFD1 T.brucei	YRGPDFRKPY	RRHFIKEY	GSTAENGKIP	DFPVFSGPYS	TLVYLDEVTA	AVENMLSRLN	QEPADYYDSV	SALFFHRPYH	MMPVQAMSFL	YTRGLARSTA
PFD1 L.brazilie	ensis YRGPDFRKPH	RRHFMNLEEY	TKSSANGKMA	DFPVFSGPYS	TLVYOEEVTV	AVEHMLARLO	OSPGKYYDDV	TALFFHRPYN	MMPIOAMSFL	YARGLARATS
	*******	**** **	**	*******	* ** ***	*** **	* **	******	*** *****	* ****
	310	320	330	340	350	360	370	380	390	400
PFD1 T. rangeli	EKHRKYFAD	CAKANVDPAA	VRKELDVVPD	YFGMIEAGQE	PKDVFSCTNK	VAKALRADKE	FSALLSAKMS	LGSPAMSNFG	NLYTASLPCW	IAAGFEEAYT
PFD1 T. cruzi	AEHKKYFEE	CSKAKVEPAA	VOTELDIIPD	YFGMIESGOE	PKDVFGATNK	VAKAVRADKD	FSSLLSRKMS	LGSSAMANFG	NLYTASLPCW	IAAGLEEAYN
PFD1 T.brucei	ETHKTFFEE	CGKAKVDSSA	VRAELDKVPN	YFEVIDEGKE	PKDAFTMTNK	VAKVLRSEKV	FADFLGSKMS	LGSTTMANFG	NLYTASLPCW	LAAGCEDAYS
PFD1 L brazilie	ensis EEHKVHFAE <mark>T</mark>	CKOGKADPAA	VVKELDVDPH	YFOOTESGTD	PKDAFPDTCK	VAKVI.RKDKK	FIDLLEKKMS	MGSPAMONEG	NLYTASLOCW	LAAGFEEAYT
1101_2/2/2/401114	* * *	* *	* ***	** * *	*** * *	***	* * ***	** * ***	******	** * *
	410	420	430	440	450	460	470	480	490	500
PFD1 T. rangeli	RKLDITNHPM	VIVGYGSGDA	SESIPMIPVK	GWEAAASKIN	VSAALENPVN	LTREQYEGLH	TGSMKEDLAA	GKRKKEFVVG	HVGSRNEAAF	QDIGIEYYQFVR
PFD1 T.cruzi	KKODITNHPM	VMVGYGSGDA	SEAIPIVPVK	GWEEAASKIN	VAAALEKPVN	LTREQYEGMH	NGSLKSDLAA	ENROKEFVVA	HIGSRNDMAF	ODIGIEYYOFVH
PFD1 T.brucei	RKIDITGKPM	VMIGYGSGDA	SEAIPITPVK	GWEEAAAKIN	LSEALGNSIN	LTEEOYKGLH	TGSLKDDFAA	DKROKEFVVD	RIGTRNEAAF	ODIGIEYYRFVK
PFD1 L brazilie	ensis BKLDIAGKPM	VMVGYGSGDA	SMSTPTVPVP	GWEKAAANTN	VSKALESPVC	LDRAOYEALH	TGAEKNDLAK	DSRKMEEVID	RIGNENEATE	ODVGVEYYBYTO
<u>-</u> D.DI021110	* ** **	* ******	* ** ***	***** **	**	* ** *	* *	***	* ** *	** * ***

В	Queru seg	1 75 150 225 300 375 4 <u>50</u> 500
	anei à sed*	active site A A A A A A A A A A A A A A A A A A A
	Specific hits	init_cond_enzymes
	Superfamilies	cond_enzymes superfamily
	Multi-domains	PksG

Apêndice C10: (A) Alinhamento das sequências aminoacídicas deduzida PFD1 (TR01161) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da PFD1 (TR01161). Imagem gerada pela ferramenta *blastx* do programa *Blast* do *GenBank. Query seq.* = sequência de interesse, *active sities*= sítios ativos, *interface dimer*= interface de dímeros, *Specific hits*= motivos específicos, *Superfamilies* = superfamílias, *multi-domains*= multi-domínios. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

25	0
20	1

<i></i>											-
-	10	20	30	40	50	60	70	80	90	100	
PFD2_T.rangeli	MIFHYCTLIS	HVFTFRHFFF	FCPFPRRFPR	SERKEPFTDS	MRRFASPL	GGGIHCLLRR	VASAAVVRNI	PQAKSSAQLG	TPVTKEEVAQ	AFNVPAAILA	
PFD2_T.cruzi					MRRFVPIV	SGGSSLLLRF	VASAAVMRKV	PLAKSSAKLG	TPVTKEEVSQ	VFNVPAAILE	
PFD2_T.brucei					MRRFPPAV	G-VSLRQLRL	VASPAVVRNV	PPVKSFAPFG	AAATNEDVAR	AFNVPPALLE	
PFD2_L.Draziliensis				M	LRRLAWRTAA	CMAASPATRA	VHSVAVLQNS	TPATTVERLG	SAVSKEAVAA	ANKVPVAILE	
					* *			*	* *	** * *	
	110	120	130	140	150	160	170	180	190	200	
PFD2_T.rangeli	QVRRPAEVLF	AELDLARVRF	APLIATLGAE	EDVTKIATEV	KEAKTGKDGS	AAAAAR	-KPVAGAKEK	FKNTEWKSIK	ELVTFYEEVM	LPARLVHLDY	
PFD2_T.cruzi	QLHRPAEILF	TEVDLARVRF	APLIATLGAE	EDVTKIEAEV	КТАКАА	AAAAAR	-TPVAGAKEK	FKNTAWKSVT	ELVTFYEEVM	LPARLAHQEY	
PFD2_T.brucei	NSCRPAECLF	AKMDLARSRF	APLIATIGSE	-DVTKIAAEV	RVAKMGKSVS	TSAVAPPSRT	IPPVAGAKEK	FKTNVWKSVR	ELVTFYEEVM	LPVRVKNEEF	
PFD2_L.braziliensis	KACNPRLVAF	TEMDLARTRF	ASLIATITDE	VDYGSIEQLV	ANKFSG	DPCKLQ	PIPGALKK	FRETNWKDVK	SLVSFYEETM	YPIRMMHREY	
	*	**** **	* **** *	* *			* ** *	* **	** **** *	* *	
	21.0	220	220	240	250	260	270	200	200	200	
	210	220	230	240	2.50	200	270	200	2.90	1 1	
PFD2 T rangeli	SVYELNSEHT	KDDLKRGLSA	FKODYLDKOK	VELVKVOKOM	ODCOEFTKSV	GTTAFDTTF	NDTANTLRVC	GERNPYAHRI.	AMOVI.EDMNI.	I.RVPFNEVTT	
PFD2 T.cruzi	TVYELKSFHI	KDDLKRGLSA	FKODHLDKOK	AELAKVOKOM	OECOEFIKGI	GKTAFDTAIF	NDLANILRVC	GECNPYAHRL	SMRVLEDMNL	LGVPFNDVTT	
PFD2 T.brucei	KFHELNNFHI	KDDLKRGLSA	FKODYLDNOK	VKLVEVOKOM	EACOKFIRDI	GASSFDTNIF	NDIANILRIC	GERNPYALRL	SLQVLEDMSL	VGVPFDDITT	
PFD2 L.braziliensis	KHHELTSFHI	KDVLKRGLSA	FKODYLDOOK	EEQAKVOARM	KKCKDALSAA	VADAFSTAVC	NDLANIFRIG	GEQHAHSHRM	ALKVLADMNM	MGVPYNAATT	
	** ***	** ******	**** ** **	** *	*	*	***** *	**	** **	*** **	
	310	320	330	340	350	360	370				
PFD2_T.rangeli	KMLHAIVFND	GAFDDSALMF	TLVEYPERGE	VSVSREPVDR	IADDTLKIIS	ARHQTPLDDG	VKLHQNDTQP	CLORSLE			
PFD2_T.cruzi	KLLHAIVFND	GALDDSALMF	TLVEYPERGE	VSVSREPVDR	IADSALKIIS	VRHQTPLDDG	VKLRQGDTQP	CLORSAE			
PFD2_T.Druce1	KILNAAVEND	GPLDDSALLF	TLLEIPERGE	VSVATKPVEK	TADETLEVIS	KKHKTPLDNG	KLLKQSDTHP	CLOKSPE			
Pruz_L.Draziliensis	TIMQATTEHD	GPEDINSPLLE	FUIFCRERGE	VHVGTDSLDN	ISUNVLKLIS	NKHQTPLDDG	VLIKSPDTHP	NLQKSPE			
	~ ~ ~						~ ~				

Apêndice C.11: Alinhamento das sequências aminoacídicas deduzida da PFD2 (TR00439) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências.

A PF PF	FD3_T.rangeli FD3_T.cruzi FD3_T.brucei	10 MDLRYLPAAC	20 RVPFTFLFHS	30 LSCVQVTNLH	40 IHKQGRRQQS	50 RLQFTTVSET	60 KKKDEKRVYI 	70 PQHFTRRRGK	80 INNMQRSLIA MQRSLIA MQQSLIP	90 GHNNNRHLTI GHNNNRHLNY GHNNNRHLTY	100 EELENNIGGL EELENNIGGL EELENNIGGL
PE	L.Drazillensis	110	120	130	140	150	160	170	mQRSLIP ** ***	GHNNNKHLAY	EEVENN1GGL
PH PH PH PH	FD3_T.rangeli FD3_T.cruzi FD3_T.brucei FD3_L.braziliensis	PITDQKLQEL PITENKLQEL AITDNKLQEL PVTDNRIQEL * ***	FDSLDTEHNG FDSLDTEHNG FDSLDVERTG FDSLDVNHSG	YLPIEEVKAF YLAIEDVKAF YLPIGEVKKF AVPVEVVKKF ** * *	YRSLEHYGLD YKGLEHYGLD YKGLEHYGLE YVGLEHYGLN	PTDAEVEAEV PTDAEVANEI PTDAEIESEM LSEKEIDETV *	RKYSKSDDNY RKYAKSDDNF KKFAKSDENF RKHAATHDDT	MTFDEFCCLM MTFDEFCCLM MSYDEFCCLM LTYEEFACFV * * *	LNFAQR LNFAQR LSFAQR LSLAQW		
В	Query seq.		5 	50	75		100	125		150	176
	Specific hits					L. L.	a2+ binding sit	• <u>AAA A</u>	EFh		
	Superfamilies							EFh	superfam	ily	

Apêndice C.12: (A) Alinhamento das sequências aminoacídicas deduzida da PFD3 (TR02802) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da PFD3 (TR02802). Imagem gerada pela ferramenta *Blastp* do programa *Blast* do *GenBank. Query seq.=* sequência de interesse, *Specific hits=* motivos específicos, *Superfamilies =* superfamílias. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

Α	10 	20	30	40 	50 	60 	70 	80 	90 	100
PFD4_T.rangeli PFD4_T.cruzi	MSRRLLNSAA	LLLLFVLFCR	GVDASGGAGE	QMESKEVELF	KPGEVTVPAA	EEGRETFDGY	SLVLSIHGHS	LVDVNGAMLA	LAIGEYDESY	MWAM DGMYYNILAK
	110	120	130	140	150	160	170	180	190	200
PFD4_T.rangeli PFD4_T.cruzi	YATHGVEGNL YNSYGDVSNL * * **	LQGATGERRG EKDVTWAAKQ	WGTQQLVVKG W-TPKTVFEQ * * *	LREESSDAPP FKKGGYRTFL	FGPKAVVKGD FGPKAVAKAN ****** *	KTFLLLPGIS KIFLLLSNFT *****	VRKQDDSSTE EQSSVPLQTS	DERDLALVVG YSWDLELFVG * * **	NVAKSTEAQN DVTASTAVPG * **	VNPVTWEAPT GKTVSWEGPR * ** *
PFD4_T.rangeli PFD4_T.cruzi	210 slksklgdem slkstlltim **** * *	220 TKHSWEELEL GKHSWNVLEA **** **	230 TRGARGIVAG ARGARGIAVG ****** *	240 GDTIVFPLVG GTTVVFPLVA * * *****	250 DVEVDDEDVH VSEKAEKRER *	260 ACTVIYSTDD TCTVIYSEDD ****** **	270 GATWKFPATP GDTWTFPDAA * ** **	280 VIAKDCDSAT AIANDCMDFT ** ** *	290 LLEWEGKLLM **** *****	300 ATS-KYSSWQ VTSGSVIPQQ ** *
PFD4_T.rangeli PFD4_T.cruzi	310 RRVYESGDKG LRVYESVDMG ***** *	320 KTWAEAAGPL KTWAKMVGPF **** **	330 PRLLSQSDAL PRLLSQLRLF ******	340 PRLYGSVDLM PMHPRGTDII * *	350 AATIERRSVL TATIGSKSVL *** ***	360 LYTQLLSSRI LYTQMLFEYV **** *	370 TQEKANRESS PGDTQG	380 RRRVLHLWFS ARRVMHLFLS *** ** *	390 DGARIFDVGP DFVRAHDVGP * * ****	400 ISTDGVGLNT IFAGSFDQSF *
PFD4_ <i>T.rangeli</i> PFD4_ <i>T.cruzi</i>	410 FSSLLHTKDG FITLLHKKGE * *** *	420 LFALYARKGA LFALYARYGE ******	430 GEEADSLVFK DGASGGLFFT *	440 PLTEQLQRIK RLTEQMRQIN ***** *	450 AVLKKWKEVD FLLQTWEAVD * * **	460 DRVSKLCDSA DRVSTLCSSS **** ** *	470 ATTATKEGAK AGKSASK * * *	480 AAGCVGPMPT DAACVGRLPT * **** **	490 AGLVGFLSDN DGLVAFFSDN *** * ***	500 ASTAHWNDEC GNSTHWNDEY *****
PFD4_T.rangeli PFD4_T.cruzi	510 LGVGATVSTG GGVGATVSEK *******	520 TTTKVENGVR GVKKVYNGFE ** **	530 LAGRGARIAW LTGVDARIFW * * ***	540 PVGSKTANDG PAGSNYNNAL * *** *	550 YPFAYEELTL YSPRYEELTV * *****	560 VATVTIDKVP VATVTINEAP ****** *	570 AGATPLLGVS ENITPLLGVS *******	580 TMVS-GRHLR VVGSTWRELN	590 LWYDKHQHWR LWYDEHKHWR **** * ***	600 TEFGGGGTAP TEAGEGKGAG ** * * *
PFD4_T.rangeli PFD4_T.cruzi	610 TIKWEVGTAY TIAWEAGKAY * ** * **	620 RVALTVQNGS RVVLTVRNGE ** ***	630 GLAYVDGRLV CTAYVDGQLL ***** *	640 GSLGNKAASP GSLVEKHPFT ***	650 LGGQPPSVSP LGAPPRAGVP ** * * *	660 RGELPLEVQP AQEKIP *	670 ERVSHVFIGG EMVSQIFFGS * ** *	680 YEGTEGDVES DGINLEGTVR	690 HVTVTNVLLY CFTVRNVLLY ** *****	700 NHRFNDSEMA SRCFNDSEVA ***** *

PFD4_T.rangeli PFD4_T.cruzi PFD4_T.rangeli PFD4_T.cruzi	710 	720 SG WGAAGTDSAK 820 SGDSTVRGHL	730 ATASSAED GKATGSSAEE * **** 830 CGVLSLLLL	740 QDR DSESWGAAGT 840 LGLWGVAAFC	750 -APKHGATEA DLAKGKATGS * **	760 SGGR SAGEDSESSG *	770	780 GSSR ATGSSAGEEV ***	790 GAARYSP GRGGAAAADP ***	800 REDQSD KNTSVPITKG
B Query seq. Specific hits Superfamilies		100 catalyti Asp-box moti	c site A A	formi lui	300	400		soo minin_G_3	600	655

Apêndice C.13: (A) Alinhamento das sequências aminoacídicas deduzida da PFD4 (TR07083) de *Trypanosoma rangeli* e seus ortólogos utilizando o programa *BioEdit Sequence Alignment Editor*. Os asteriscos correspondem aos aminoácidos conservados entre todas as sequências. (B) Domínios conservados para o gene da PFD4 (TR07083). Imagem gerada pela ferramenta *blastx* do programa *Blast* do *GenBank. RF* = orientação da janela de leitura, *specific hits*= motivos específicos, *Superfamilies* = superfamílias, *multi-comains*= multi domínios. Fonte: GenBank (www.ncbi.nlm.nih.gov/Genbank).

APENDICE D

Apêndice D.1: Resultado da purificação dos fragmentos proteicos recombinantes das proteínas ES, HAL, MRP2, FCaBP, KMP-11, CCP, PFD1 e PFD3. PM – padrão de tamanho molecular; 1 – extrato bacteriano após lise celular; 2 – proteínas que não aderiram a resina; 3 – lavagem 1; 4 – lavagem 2; 5 – lavagem 3; 6 – eluição 1; 7 – eluição 2; 8 – eluição 3; 9 – eluição 4; 10 – eluição 5.