4 research outputs found

    A control-theoretic approach to adapting VBR compressed video for transport over a CBR communications channel

    Full text link

    Studies and simulations of the DigiCipher system

    Get PDF
    During this period the development of simulators for the various high definition television (HDTV) systems proposed to the FCC was continued. The FCC has indicated that it wants the various proposers to collaborate on a single system. Based on all available information this system will look very much like the advanced digital television (ADTV) system with major contributions only from the DigiCipher system. The results of our simulations of the DigiCipher system are described. This simulator was tested using test sequences from the MPEG committee. The results are extrapolated to HDTV video sequences. Once again, some caveats are in order. The sequences used for testing the simulator and generating the results are those used for testing the MPEG algorithm. The sequences are of much lower resolution than the HDTV sequences would be, and therefore the extrapolations are not totally accurate. One would expect to get significantly higher compression in terms of bits per pixel with sequences that are of higher resolution. However, the simulator itself is a valid one, and should HDTV sequences become available, they could be used directly with the simulator. A brief overview of the DigiCipher system is given. Some coding results obtained using the simulator are looked at. These results are compared to those obtained using the ADTV system. These results are evaluated in the context of the CCSDS specifications and make some suggestions as to how the DigiCipher system could be implemented in the NASA network. Simulations such as the ones reported can be biased depending on the particular source sequence used. In order to get more complete information about the system one needs to obtain a reasonable set of models which mirror the various kinds of sources encountered during video coding. A set of models which can be used to effectively model the various possible scenarios is provided. As this is somewhat tangential to the other work reported, the results are included as an appendix

    Analysis of CIM performance using different LAN structures a simulation approach

    Get PDF
    This research illustrates a systematic procedure for modeling and performance analysis of the integration effect of communication network to the physical system. The concept is to model different layouts of Computer Integration Manufacturing (CIM) using different Local Area Network(LAN) structures. The steps to accomplish this concepts are, a) To determine the performance measures for physical layouts and the communication network, in order to obtain a performance analysis. b) Modeling the physical layout using Promodel simulation package. c) Extracting results from the outcome of the simulation of the physical layout and using this as input to the communication network simulation. d) Modeling the communication network using LNET simulation package. e) Comparing the output of each simulation run and determine which is most acceptable. Having different performance measures for both physical layout and networks, the proposed research objective is to illustrate the effectiveness of network structures on physical systems performance. Throughput, utilization, and delay are used as measures for both the physical layouts and network structures. Using these measures the optimum layout and network is selected

    Adaptation of variable-bit-rate compressed video for transport over a constant-bit-rate communication channel in broadband networks.

    Get PDF
    by Chi-yin Tse.Thesis (M.Phil.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 118-[121]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Video Compression and Transport --- p.2Chapter 1.2 --- VBR-CBR Adaptation of Video Traffic --- p.5Chapter 1.3 --- Research Contributions --- p.7Chapter 1.3.1 --- Spatial Smoothing: Video Aggregation --- p.8Chapter 1.3.2 --- Temporal Smoothing: A Control-Theoretic Study。 --- p.8Chapter 1.4 --- Organization of Thesis --- p.9Chapter 2 --- Preliminaries --- p.13Chapter 2.1 --- MPEG Compression Scheme --- p.13Chapter 2.2 --- Problems of Transmitting MPEG Video --- p.17Chapter 2.3 --- Two-layer Coding and Transport Strategy --- p.19Chapter 2.3.1 --- Framework of MPEG-based Layering --- p.19Chapter 2.3.2 --- Transmission of GS and ES --- p.20Chapter 2.3.3 --- Problems of Two-layer Video Transmission --- p.20Chapter 3 --- Video Aggregation --- p.24Chapter 3.1 --- Motivation and Basic Concept of Video Aggregation --- p.25Chapter 3.1.1 --- Description of Video Aggregation --- p.28Chapter 3.2 --- MPEG Video Aggregation System --- p.29Chapter 3.2.1 --- Shortcomings of the MPEG Video Bundle Scenario with Two-Layer Coding and Cell-Level Multiplexing --- p.29Chapter 3.2.2 --- MPEG Video Aggregation --- p.31Chapter 3.2.3 --- MPEG Video Aggregation System Architecture --- p.33Chapter 3.3 --- Variations of MPEG Video Aggregation System --- p.35Chapter 3.4 --- Experimental Results --- p.38Chapter 3.4.1 --- Comparison of Video Aggregation and Cell-level Multi- plexing --- p.40Chapter 3.4.2 --- Varying Amount of the Allocated Bandwidth --- p.48Chapter 3.4.3 --- Varying Number of Sequences --- p.50Chapter 3.5 --- Conclusion --- p.53Chapter 3.6 --- Appendix: Alternative Implementation of MPEG Video Aggre- gation --- p.53Chapter 3.6.1 --- Profile Approach --- p.54Chapter 3.6.2 --- Bit-Plane Approach --- p.54Chapter 4 --- A Control-Theoretic Study of Video Traffic Adaptation --- p.58Chapter 4.1 --- Review of Previous Adaptation Schemes --- p.60Chapter 4.1.1 --- A Generic Model for Adaptation Scheme --- p.60Chapter 4.1.2 --- Objectives of Adaptation Controller --- p.61Chapter 4.2 --- Motivation for Control-Theoretic Study --- p.64Chapter 4.3 --- Linear Feedback Controller Model --- p.64Chapter 4.3.1 --- Encoder Model --- p.65Chapter 4.3.2 --- Adaptation Controller Model --- p.69Chapter 4.4 --- Analysis --- p.72Chapter 4.4.1 --- Stability --- p.73Chapter 4.4.2 --- Robustness against Coding-mode Switching --- p.83Chapter 4.4.3 --- Unit-Step Responses and Unit-Sample Responses --- p.84Chapter 4.5 --- Implementation --- p.91Chapter 4.6 --- Experimental Results --- p.95Chapter 4.6.1 --- Overall Performance of the Adaptation Scheme --- p.97Chapter 4.6.2 --- Weak-Control verus Strong-Control --- p.99Chapter 4.6.3 --- Varying Amount of Reserved Bandwidth --- p.101Chapter 4.7 --- Conclusion --- p.103Chapter 4.8 --- Appendix I: Further Research --- p.103Chapter 4.9 --- Appendix II: Review of Previous Adaptation Schemes --- p.106Chapter 4.9.1 --- Watanabe. et. al.'s Scheme --- p.106Chapter 4.9.2 --- MPEG's Scheme --- p.107Chapter 4.9.3 --- Lee et.al.'s Modification --- p.109Chapter 4.9.4 --- Chen's Adaptation Scheme --- p.110Chapter 5 --- Conclusion --- p.116Bibliography --- p.11
    corecore