366,502 research outputs found

    A mixed-methods exploration of an environment for learning computer programming

    Get PDF
    A mixed-methods approach is evaluated for exploring collaborative behaviour, acceptance and progress surrounding an interactive technology for learning computer programming. A review of literature reveals a compelling case for using mixed-methods approaches when evaluating technology-enhanced-learning environments. Here, ethnographic approaches used for the requirements engineering of computing systems are combined with questionnaire-based feedback and skill tests. These are applied to the ‘Ceebot’ animated 3D learning environment. Video analysis with workplace observation allowed detailed inspection of problem solving and tacit behaviours. Questionnaires and knowledge tests provided broad sample coverage with insights into subject understanding and overall response to the learning environment. Although relatively low scores in programming tests seemingly contradicted the perception that Ceebot had enhanced understanding A mixed-methods approach is evaluated for exploring collaborative behaviour, acceptance and progress surrounding an interactive technology for learning computer programming. A review of literature reveals a compelling case for using mixed-methods approaches when evaluating technology-enhanced-learning environments. Here, ethnographic approaches used for the requirements engineering of computing systems are combined with questionnaire-based feedback and skill tests. These are applied to the ‘Ceebot’ animated 3D learning environment. Video analysis with workplace observation allowed detailed inspection of problem solving and tacit behaviours. Questionnaires and knowledge tests provided broad sample coverage with insights into subject understanding and overall response to the learning environment. Although relatively low scores in programming tests seemingly contradicted the perception that Ceebot had enhanced understanding of programming, this perception was nevertheless found to be correlated with greater test performance. Video analysis corroborated findings that the learning environment and Ceebot animations were engaging and encouraged constructive collaborative behaviours. Ethnographic observations clearly captured Ceebot’s value in providing visual cues for problem-solving discussions and for progress through sharing discoveries. Notably, performance in tests was most highly correlated with greater programming practice (p50.01). It was apparent that although students had appropriated technology for collaborative working and benefitted from visual and tacit cues provided by Ceebot, they had not necessarily deeply learned the lessons intended. The key value of the ‘mixed-methods’ approach was that ethnographic observations captured the authenticity of learning behaviours, and thereby strengthened confidence in the interpretation of questionnaire and test findings. of programming, this perception was nevertheless found to be correlated with greater test performance. Video analysis corroborated findings that the learning environment and Ceebot animations were engaging and encouraged constructive collaborative behaviours. Ethnographic observations clearly captured Ceebot’s value in providing visual cues for problem-solving discussions and for progress through sharing discoveries. Notably, performance in tests was most highly correlated with greater programming practice (p50.01). It was apparent that although students had appropriated technology for collaborative working and benefitted from visual and tacit cues provided by Ceebot, they had not necessarily deeply learned the lessons intended. The key value of the ‘mixed-methods’ approach was that ethnographic observations captured the authenticity of learning behaviours, and thereby strengthened confidence in the interpretation of questionnaire and test findings

    Analysing the learning pathways of students in a large flipped engineering course

    Get PDF
    Recent advancements in educational technologies (learning management systems, online discussion forums, peer-learning tools) coupled with new methods of course delivery (e.g. blended, flipped, MOOCs) provide significant opportunities for universities to deliver challenging, high quality, yet engaging curriculum for students. In this paper, we examine the variations and similarities of student's approaches to learning (learning pathways) by examining how well they performed in a large (N ~ 1000 student) first year engineering flipped classroom. The analysis focused on student's performance in their assessment (formative and summative) as well as their online interaction with a range of tools purposely built to support students through peer learning and acquisition of resources and expertise. Analysis using k-means clustering reveals that students do in fact adopt a variety of successful pathways through the course. The unique aspects of this work lie in the use of analytics algorithms that whilst perhaps routinely utilised in data mining, are not as well utilised in better understanding patterns (successful or otherwise) of student interactions within a technology enhanced active learning environment that integrates theory with engineering practice

    Systems thinking, systems design and learning power in engineering education

    Full text link
    Educating Engineers in systems thinking and systems design require an approach to teaching and learning in which the purpose is to achieve competence rather than to acquire specialised subject knowledge, abstracted from its socio-technical context. Such an approach is structured by context-driven enquiry, supported by learning power, positioned at the interface of knowledge generation and use, and grounded in a commitment to sustainable development. Rather than beginning with pre-defined abstract subject knowledge, the students begin with an engineering problem in a particular territory or a place, and develop a systems architecture, a holistic way of defining that territory, which facilitates synergy as well as analysing performance. In order to do this, students need to be able to uncover the different knowledge systems through which their territory can be perceived and known, and explore the different parameters and measurements which can be applied to them. Such 'systems architecting' cannot be achieved through rote learning or the cognitive application of pre-defined knowledge, since by definition the solution to the problem to be solved cannot be known in advance. Rather it depends on the ability to learn, and to progress through an open-ended, formative, dynamic learning process. It is framed by a selected purpose, fuelled by learning power (including creativity, meaning making, curiosity and resilience) and cogenerated through knowledge structuring processes. It begins with experience and observation and concludes with a product which is a unique application of knowledge for a particular engineering purpose. One of the challenges of technology enhanced learning is how to integrate learning design in an architectural framework which leverages mobile, social and 'big' data to enhance the processes and social relationships of learning, rather than simply providing information or evaluating outcomes. The approach presented in this paper outlines what can be understood as 'learning design principles' which support the development of semantic web applications, through the application of learning power and knowledge structuring processes. A pilot study demonstrates that students who successfully undertook an assignment requiring the development of a systems architecture increased in the strategic awareness-a key dimension of learning power. This small pilot study makes a contribution to the debate about the education of Chartered Engineers characterised "by their ability to develop appropriate solutions to engineering problems, using new or existing technologies, through innovation, creativity and change" (UK Engineering Council)

    TLAD 2011 Proceedings:9th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the ninth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2011), which once again is held as a workshop of BNCOD 2011 - the 28th British National Conference on Databases. TLAD 2011 is held on the 11th July at Manchester University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.Due to the healthy number of high quality submissions this year, the workshop will present eight peer reviewed papers. Of these, six will be presented as full papers and two as short papers. These papers cover a number of themes, including: the teaching of data mining and data warehousing, databases and the cloud, and novel uses of technology in teaching and assessment. It is expected that these papers will stimulate discussion at the workshop itself and beyond. This year, the focus on providing a forum for discussion is enhanced through a panel discussion on assessment in database modules, with David Nelson (of the University of Sunderland), Al Monger (of Southampton Solent University) and Charles Boisvert (of Sheffield Hallam University) as the expert panel

    TLAD 2011 Proceedings:9th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the ninth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2011), which once again is held as a workshop of BNCOD 2011 - the 28th British National Conference on Databases. TLAD 2011 is held on the 11th July at Manchester University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.Due to the healthy number of high quality submissions this year, the workshop will present eight peer reviewed papers. Of these, six will be presented as full papers and two as short papers. These papers cover a number of themes, including: the teaching of data mining and data warehousing, databases and the cloud, and novel uses of technology in teaching and assessment. It is expected that these papers will stimulate discussion at the workshop itself and beyond. This year, the focus on providing a forum for discussion is enhanced through a panel discussion on assessment in database modules, with David Nelson (of the University of Sunderland), Al Monger (of Southampton Solent University) and Charles Boisvert (of Sheffield Hallam University) as the expert panel

    Redesigning engineering courses by introducing digital ink technology

    Full text link
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We applied the How People Learn framework (HPLf) in two different higher education contexts. On one hand, a first-year core course on Computer Technology, taught at the Computer Engineering Degree Program at Universitat Politècnica de València, Spain. On the other hand, two Food Chemistry related courses, taught at Universidad de las Américas Puebla, Mexico, as part of food engineering undergraduate and food science graduate programs. The goal of these works was to redesign studied courses at both universities from a lecture-based format to a "challenge-based" format by using Tablet PCs and digital ink. In order to support the studied approach, different inkenabled software tools were utilized. Class sessions were enhanced through the usage of Classroom Presenter, a penbased interaction system that supports the sharing of digital ink on slides between instructors and students. InkSurvey also allowed teachers to pose questions, receive instantly digital ink responses, and provide real-time formative feedback. Some other tools such as PDF Annotator and Ardesia helped instructors to review coursework and assignments and provide formative feedback as well. We studied our approach over the two last academic years by observing classes at both universities, obtaining selected student achievement indicators and conducting surveys with students and instructors.We acknowledge financial support from HEWLETT-PACKARD (HP), through the HP Technology for Teaching Higher Education Grant Initiative for Latin America for the project "High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn" as well as through the HP Catalyst Grant Initiative for the project “Critical Support Systems to Enhance the Development of 21st Century Expertise in Engineering Students: Using Tablet PCs and Associated Technologies, the Framework for 21st Century Learning, and Guidelines from Research on How People Learn”. Similarly, UPV group received an HP Technology for Teaching High Education Grant Program for Europe, Middle East and Africa in 2008: “Improving effective learning in a first-year Computer Engineering course by using mobile Tablet PC technology”.Benlloch-Dualde, J.; Buendía García, F.; Lemus Zúñiga, LG.; Cano Escribá, JC.; Gutiérrez Cuba, JV.; López-Malo, A.; Palou, E. (2013). Redesigning engineering courses by introducing digital ink technology. IEEE. https://doi.org/10.1109/FIE.2013.6684786

    E-Learning In Continuous Professional Development Across The Globe. An experience in Water Engineering

    Full text link
    [EN] Based on our wide experience in continuous professional development (CPD) through traditional activities and hands-on experience on several commonly used Learning Management Systems, we have integrated both concepts and developed a simple, yet effective e-learning approach to help professionals in the water field to fill the gap between their sometimes not updated background and the new features that characterize the water field in the present days. We argue that this task can make use of the same approach that is essential to the knowledge discovery process, to which the e-learning process boils down to. In this contribution we present the work performed at the Polytechnic University of Valencia, within the Multidisciplinary Team of Fluid Modelling, on web systems to support technology enhanced learning specifically addressed to professionals in the Water field. Our approach hinges on the joint use of the online as well as the offline characteristics of the e-learning proces s and puts to work together in a synergic way both traditional and technology-based learning know-how. As a result, a number of distance courses have been produced that are used for Engineering CPD across the globe, since many professionals worldwide, mainly from Spanish speaking countries, have followed our courses. We present the evolution of our system and the results obtained from testing and evaluating the prototype during the last three years. We have identified issues significant to users in order to better manage the system and changes required to adapt our system to organizational processes and context. Feedback received from trainees indicates both the validity of our approach and the feasibility of implementing e-learning materials to contribute to CPD in the water field in particular and in any field in general, since the methodology herein presented can be exported in a straightforward manner.This work has been performed under the support of the projects Investigación Interdisciplinar nº 5706 (UPV) and DPI2004-04430 of the Dirección General de Investigación del Ministerio de Educación y Ciencia (Spain) and FEDER funds.Izquierdo Sebastián, J.; López Jiménez, PA.; Fuertes-Miquel, VS.; Izquierdo Sebastián, FJ. (2018). E-Learning In Continuous Professional Development Across The Globe. An experience in Water Engineering. WEBIST. 3:383-390. https://doi.org/10.5220/0001269803830390S383390

    Reasoning by Analogy in a Multi-Level System Architecture for the Design of Mechanisms

    Get PDF
    Since the first attempts to integrate AI technology and engineering design nearly two decades ago, few expert systems have been shown to demonstrate sufficient reasoning capabilities to solve real-world design problems. The complex nature of design, the lack of understanding of the design process, and the limitations of current expert system technology have all been shown to have adverse effects on the maturity of this research area. Therefore, our direction in this research concentrates on understanding the design process, investigating a novel area of research focusing on creative design, and incorporating the results into a system model feasible for production use. The model presented is based on the concept of reusing past experience and existing cases to solve future design problems in different application domains. The resulting system performs its task by reasoning and learning by ANALOGY while utilizing the Logical-Building Block approach to design. Our method demonstrates the use of a case-based reasoner in conjunction with other existing techniques, such as heuristic reasoning and first principle reasoning, to produce a system with three levels of reasoning strategies. Such a system will exhibit a learning capability by which its performance is enhanced with repeated use. A prototype has been implemented and tested for the synthesis of various mechanisms

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities
    corecore