1,406,478 research outputs found

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Dynamic simulation of reeving systems with the extension of the modal approach in the axial direction

    Get PDF
    Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 9: 17th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC). Virtual, Online. August 17–19, 2021. V009T09A015. ASME.In this work, the simulation of reeving systems has been studied by including axial modes using the Arbitrary Lagrangian-Eulerian (ALE) description. The reeving system is considered as a deformable multibody system in which the rigid bodies are connected by the elastic wire ropes through sheaves and reels. A set of absolute nodal coordinates and modal coordinates is employed to describe the motion and deformation in the axial direction. This new method allows the analysis of elements with non-constant axial strain along its length. In addition, modal coordinates are employed to describe the dynamic motion in the transverse direction. The non-constant axial displacement within the wire rope is computed in terms of the absolute position coordinates, longitudinal material coordinates, and modal deformation coordinates. To derive the governing equations of motion, Lagrange's equation is employed. The formulation is validated for a simple pendulum-like motion actuated by an initial velocity. The simulation results are provided to trace the movements of the payload. It can be seen that by adding modal coordinates, the axial force within the element changes. Moreover, the effects of modal coordinates in the axial direction are presented for a different number of nodes, and the resulting axial forces are compared with reference solution.Unión Europea - Horizon 2020 Marie Skłodowska-Curie project No. 860124 (THREAD

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Energy Efficiency of Seasonal Solar Thermal Energy Storage System for Greenhouse Heating

    Get PDF
    Seasonal Thermal Energy Storage (STES) is widely researched for having benefits in that it utilizes excess energy which would be wasted otherwise. The purpose of this study is to analyze energy efficiency of seasonal solar thermal energy system as heating system for greenhouses and compare it with conventional variable air volume (VAV) heating system. Greenhouse was chosen as a simulation model because it requires constant and stable heating through winter season to extend growing season and also because greenhouse can provide enough area to install solar collectors and heat storage tanks. The proposed seasonal solar thermal energy storage system consists of solar thermal collector, fully mixed heat storage tank, and VAV system. Energy simulation was conducted in two steps: heat storing in summer season, and heating in winter season. For greenhouses with area sizing 1600 m2, solar thermal collector of 1250 m2 and heat storage tank of 2000 m3 were designed. TRNSYS 17 and engineering equation solver (EES) were implemented for simulation and calculation of the systems thermal data. Simulation results showed the tank water temperature rising up to optimal temperature (95 oC) before heating season, and STES heating contributed to 55% of total heating load. Consequently, 30% of total heating cost was cut down showing energy efficiency of seasonal solar thermal energy storage system

    Optimal Number, Location, and Size of Distributed Generators in Distribution Systems by Symbiotic Organism Search Based Method

    Get PDF
    This paper proposes an approach based on the Symbiotic Organism Search (SOS) for optimal determining sizing, siting, and number of Distributed Generations (DG) in distribution systems. The objective of the problem is to minimize the power loss of the system subject to the equality and inequality constraints such as power balance, bus voltage limits, DG capacity limits, and DG penetration limit. The SOS approach is defined as the symbiotic relationship observed between two organisms in an ecosystem, which does not need the control parameters like other meta-heuristic algorithms in the literature. For the implementation of the proposed method to the problem, an integrated approach of Loss Sensitivity Factor (LSF) is used to determine the optimal location for installation of DG units, and SOS is used to find the optimal size of DG units. The proposed method has been tested on IEEE 33-bus, 69-bus, and 118-bus radial distribution systems. The obtained results from the SOS algorithm have been compared to those of other methods in the literature. The simulated results have demonstrated that the proposed SOS method has a very good performance and effectiveness for the problem of optimal placement of DG units in distribution systems

    Application of Grey Wolf Optimizer Algorithm for Optimal Power Flow of Two-Terminal HVDC Transmission System

    Get PDF
    This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO) algorithm for Optimal Power Flow (OPF) of twoterminal High Voltage Direct Current (HVDC) electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm
    corecore