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ABSTRACT 
 

Seasonal thermal energy storage (STES) is widely researched because it utilizes excess energy that would be wasted 

otherwise. The purpose of this study is to analyze the energy efficiency of seasonal solar thermal energy systems as 

heating systems for greenhouses and to compare it with conventional variable air volume (VAV) heating systems. A 

greenhouse was chosen as a simulation model, because it requires constant and stable heating through the winter to 

extend the growing season and also because one can easily find adequate area to install solar collectors and heat 

storage tanks in the district for greenhouses. When STES is used in greenhouse buildings to control the temperature, 

it is expected to perform at its full capacity, because greenhouses only need heating, and a large amount of heating is 

needed. The proposed seasonal solar thermal energy storage system consists of a solar thermal collector, fully mixed 

heat storage tank, and VAV heating system. Energy simulation was conducted in two steps: heat storing throughout 

the year and heating in the winter. 125 greenhouses with area of 32 m2 each, 125 solar thermal collectors of 10 m2 

each, and heat storage tank of 2000 m3 was designed. TRNSYS 18 and an engineering equation solver were 

implemented for simulation and calculation of the system’s thermal data. Simulation results showed STES heating 

contributing to 29% of the total heating load.  

 

1. INTRODUCTION 
 

Thermal energy collected during the summer is dissipated, because the summer has a higher solar thermal collecting 

rate and lower heating load than the winter. However, the winter lacks thermal energy to supply heating load. In this 

situation, seasonal thermal energy storage (STES) has its benefits in utilizing excess energy that is wasted in the 

summer. By simply storing heat in water tanks, collected heat can be used in the winter.  

 

Storing solar thermal energy has been widely researched, especially for storing midday’s ample thermal energy. By 

storing midday’s solar thermal energy to support nighttime’s heating load, otherwise-wasted midday’s excess heat can 

be put to use. The diurnal offset is known to be relatively easy to compensate with water tanks (Khalifa et al., 2009). 

However, installing small-sized tanks to residential buildings shows lower energy efficiencies because of the storage 

tank’s characteristics of thermal loss. The storage tank has its thermal loss coefficient according to the surface area to 

volume ratio, and it should be at least 2000 m3 to be used effectively as a thermal storage tank (Braun et al., 1980). 

 

Therefore, a thermal storage system must be integrated with large-scale heating, ventilating, and air conditioning 

(HVAC) systems. A STES system can be a more effective way to use excess energy than day-to-day energy storage, 

because STES has bigger and, thus, less-thermal-loss-inducing storage tanks. Sillman et al. (1981) concluded that 

the performance of STES systems becomes more beneficial as the storage size increases to the point of 

unconstrained operation; further, STES systems may cost the same or less per unit heat delivered than overnight 

storage systems that contribute to half of STES’s heating load. 

 

There are many methods to utilize stored heat. Using heat collected during the summer to charge sorption or desiccant 

material to cool and dehumidify buildings is a way to use excess summer production and is gaining more attention 
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(Pinel et al., 2011). This study mainly focuses on reliably storing and using the heat of a STES and on whether STES 

performance varies over years of operation. A greenhouse was chosen as the simulation model to verify the STES’s 

reliability, because a greenhouse only has heating load, and it needs to be heated steadily throughout the year. 

Validating the reliability and economic benefits of a STES can lead to a more complex system with such components 

as sorption or desiccant materials. A venlo-type greenhouse that has a gable roof and is made mainly of 6-mm-thick 

glass was chosen because of its high thermal efficiency 

 

2. SYSTEM SCHEMATICS 
 

As shown in Figure 1, heat collected by a solar thermal collector is transferred to a thermal storage tank. When it is 

heating season, heat is transferred from a storage tank to a variable air volume (VAV) system via a water-to-air heat 

exchanger. The storage tank’s temperature was evaluated for a 1-h time step. Stored heat in the tank is expected to be 

depleted during the winter. Therefore, an auxiliary boiler raises the air temperature after it receives heat from the heat 

exchanger. Supply air (SA) mainly supplies required minimum ventilation, but if more heat needs to be supplied, the 

volume of SA increases to meet the need.  

 

Ethylene glycol (EG) is chosen as the brine for the solar collector, because the storage tank’s temperature is expected 

to rise to 90–95°C. To make the temperature more than 90°C after going through the heat exchanger, fluid that provides 

heat needs to be at least 95-100°C, and water temperature should not be more than 100°C. Therefore, usable EG’s 

highest concentration rate of 60% is chosen, and its boiling point is 111°C. Furthermore, the specific heat of EG is 

evaluated according to its function of temperature (Melinder, 2010). As a result, by using EG as the brine for the solar 

collector, a solar thermal collector can produce enough heat to make a 20°C tank 90°C before the heating season. 

The sizing of components is related to the weather condition, design load, thermal loss, etc. In this study, sizing was 

done through a trial and error method to meet the largest solar fraction of total load. According to Braun et al. (1980), 

the optimal ratio of storage volume to collector area is approximately 1.5. In this study, the solar collector was designed 

to be 10 m2 and the storage tank 16 m3. However, because total tank volume must be at least 2000 m3 to minimize the 

tank loss (Guadalfajara et al., 2014), tank loss was calculated using a model of collective tank size of 125 small tanks 

(16 m3 *125 each).  

 

 
Figure 1: System schematics 

 

 

3. SIMULATION MODEL OVERVIEW 

 
3.1 Model Building 
The sensible and latent loads of the designed greenhouse building were taken from building energy simulation 

software (i.e., TRNSYS 18). The designed greenhouse is located at Taean, South Korea. Taean has a district of 

greenhouses, and the simulated design load was validated by comparison with an existing study about greenhouse 

heating and ventilation load in Korea. For 125 greenhouses, each greenhouse has 4-m width, 8-m length, and 5.5-m 

height. All walls and roof are 6-mm-thick glass. Korea’s greenhouse-grown vegetables’ living temperature ranges 

from 15–25°C; thus, the room temperature was set at 20°C throughout the year. 
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Table 1: Specifications of designed greenhouse 

 

Description Value 

Dimension 4 m (W) × 8 m (L) × 5.5 m (H) 

 Volume 176 m3 

Capacitance 211.2 kJ/K 

Glass 

Thickness 

 Conductivity 

g-value 

6 mm 

5.69 W/m2 K 

0.855 

 

3.2 Solar Collector Model  
A compound parabolic collector (CPC) was chosen to provide better solar collector performance but less dissipating 

collected heat to the ambient air. The solar collector was controlled according to whether it can generate heat and 

whether the collector fluid had a higher temperature than the tank fluid. Typical CPC characteristics from the research 

of Kalogirou (2004) were used in the simulation. The total useful energy produced by the solar thermal collector were 

calculated using Equation (1). Each calculation was done in a 1-h time step with hourly weather conditions. If there 

was useful energy gained and if the collector fluid’s temperature was higher than the storage tank fluid’s temperature, 

then the collector fluid gave heat to the tank fluid via a heat exchanger. The solar collector fluid’s temperature change 

is depicted in Equation (2). The heat exchanger had a typical efficiency of 0.7. Both fluids’ mass flow rate was 0.005 

kg/s. This mass flow rate was the optimum mass flow rate for evacuated tube collectors (Eldighidy et al., 1983). After 

exchanging heat, the new fluid temperature that flows again into the collector was calculated using Equation (3). 

Likewise, the tank fluid’s temperature was derived using Equation (4). In these cases, because the mass flow rates of 

both fluids were the same and EG always has a lower specific heat than water, (�̇�𝐶𝑝)𝐸𝐺 is the minimum heat capacity.  

 

 𝑄𝑢 = 𝐴𝑐𝐹𝑅  [𝐺𝑇(𝜏𝛼)𝑎𝑣 − 𝑈𝐿(𝑇𝑖 − 𝑇𝑎)]+ (1) 

 𝑇𝑎𝑓𝑡𝑒𝑟 =
𝑄𝑢

�̇�𝐶𝑝
+ 𝑇𝑏𝑒𝑓𝑜𝑟𝑒  (2) 

 ε =
(�̇�𝐶𝑝)𝐸𝐺(𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟,𝑖𝑛)

(�̇�𝐶𝑝)𝑚𝑖𝑛(𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟,𝑜𝑢𝑡 − 𝑇𝑡𝑎𝑛𝑘,𝑜𝑢𝑡)
 (3) 

 ε =
(�̇�𝐶𝑝)𝑤𝑎𝑡𝑒𝑟(𝑇𝑡𝑎𝑛𝑘,𝑜𝑢𝑡 − 𝑇𝑡𝑎𝑛𝑘,𝑖𝑛)

(�̇�𝐶𝑝)𝑚𝑖𝑛(𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟,𝑜𝑢𝑡 − 𝑇𝑡𝑎𝑛𝑘,𝑜𝑢𝑡)
 (4) 

   

 

3.2 Storage Tank Model 
A fully mixed tank was designed to serve as the STES tank. There are many solutions that can be used as a storage 

medium, but, in this study, the storage solution was water, because water has the most reasonable cost, is easy to 

implement, and has a relatively high specific heat (Socaciu et al., 2011). 

 

The tank was designed to be buried underground. Thermal loss to the ground was considered throughout the year 

according to the research of Florides et al. (2004). Equation (6) was used to get the ground temperature of the depth 

to which the STES tank was set. For 2000 m3 of STES tank, it was buried below 10 m from ground level. The U-value 

was estimated to be 11.1 W/m2 K 

 

Tank performance was mainly evaluated through Equation (7). The tank’s energy loss to the ground was considered, 

and energy loss to the load was considered by exchanging heat to the water-to-air heat exchanger. The water mass 

flow rate was 0.005 kg/s and stayed the same. The air flow rate changed according to the VAV’s mode of operation. 

The temperature of the tank fluid after heating air is given by Equation (8). 𝑇𝑀𝐴 is the temperature before receiving 

heat from the tank. After the heat exchange between air and tank water, the air is termed, 𝑇𝑃𝐴. 

 

 𝑇𝑆 = 𝑇mean − 𝑇𝑎𝑚𝑝 exp (−z√
 𝜋

365𝑎
) cos (

2𝜋

365
[𝑡𝑦𝑒𝑎𝑟 − 𝑡𝑠ℎ𝑖𝑓𝑡 −

𝑍

2
√

365

𝜋𝑎
]) (6) 
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𝑇𝑠

+ = 𝑇𝑠 +
𝛥𝑡

(𝑚𝐶𝑝)
𝑆

{𝐿 − (𝑈𝐴)𝑆(𝑇𝑆 − 𝑇𝑎)} 

 

(7) 

 ε =
(�̇�𝐶𝑝)𝑤𝑎𝑡𝑒𝑟(𝑇𝑡𝑎𝑛𝑘,𝑜𝑢𝑡 − 𝑇𝑡𝑎𝑛𝑘,𝑖𝑛)

(�̇�𝐶𝑝)𝑎𝑖𝑟(𝑇𝑡𝑎𝑛𝑘,𝑜𝑢𝑡 − 𝑇𝑃𝐴)
 (8) 

 

After receiving/giving heat from and to the components, the tank’s temperature changed. Mainly, the tank was 

considered full at the start, and tank’s temperature was 20oC at the start of the simulation. Equation (9) describes the 

mass balance of the tank’s temperature after heat exchange. 

 

�̇�𝑓𝑢𝑙𝑙𝑇𝑡𝑎𝑛𝑘 = �̇�ℎ𝑜𝑢𝑟𝑙𝑦 𝑚𝑎𝑠𝑠  ×  𝑇𝑡𝑎𝑛𝑘,𝑎𝑓𝑡𝑒𝑟 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + (�̇�𝑓𝑢𝑙𝑙 − �̇�ℎ𝑜𝑢𝑟𝑙𝑦 𝑚𝑎𝑠𝑠)  ×  𝑇𝑡𝑎𝑛𝑘,𝑏𝑒𝑓𝑜𝑟𝑒 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  (9) 

 

3.3 VAV Model 
The greenhouse’s minimum required ventilation rate was used from an existing study about greenhouses’ ventilation 

system design parameters (Gates et al., 1999). The minimum ventilation rate was zone volume per 1 h. Equation (10) 

was used to calculate minimum ventilation rate. If the greenhouse needs more heat than what  �̇�oz can deliver, SA 

increases. Otherwise,  �̇�oz is always supplied. The increment of air mass is given from return air (RA) from the 

greenhouse. Therefore, mixed air (MA) was formed, and the MA exchanged heat with the tank fluid and became 

processed air (PA). This procedure is shown in Equation (11).  

 

The room temperature of the greenhouse was 20oC, which most common in Korea’s greenhouse plants. To maintain 

20oC, the SA is set to 50oC. When PA’s temperature was not high enough, an auxiliary heater operated and set the 

temperature to 50oC — see Equation (12). 

 

  �̇�oz = �̇�𝑧𝑜𝑛𝑒 / 3600 (10) 

 ε =
(�̇�𝐶𝑝)𝑎𝑖𝑟(𝑇𝑃𝐴 − 𝑇𝑀𝐴)

(�̇�𝐶𝑝)𝑎𝑖𝑟(𝑇𝑡𝑎𝑛𝑘,𝑜𝑢𝑡 − 𝑇𝑀𝐴)
 (11) 

 �̇�aux = (�̇�𝐶𝑝)𝑎𝑖𝑟(𝑇𝑆𝐴 − 𝑇𝑃𝐴) (12) 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

 

Figure 2 shows tank temperature change for a year. The tank temperature was initially 20°C, but over the time of 

summer season, because of the high intensity of solar radiation of summer, the tank temperature increased to 82.7°C. 

The velocity of the temperature increase decreased as thermal loss to the ambient air increased. Although the tank’s 

storage medium, water, can be heated up to 100°C, simulation without load to VAV showed that tank temperature 

setting reached an equilibrium (unable to produce more useful energy) at 87.2°C. Methods to heighten the equilibrium 

temperature are adjusting solar collector size and tank solution medium. However, differentiating the size of the 

components may result in storing less heat, and change of the solution to other brines can cause less heat to be stored 

and a higher cost for the solution. 

 

In the winter, solar thermal energy was continuously produced, but at a lower rate. Korea’s winter solar radiation is 

higher than that of most northern-latitude countries, but, because the solar zenith angle in the winter is larger than in 

the summer, the solar thermal energy production rate is lower. Beginning to transfer heat to the VAV system to meet 

the heat load made the tank’s temperature drop drastically. By the end of the winter, when the heating load reached 0, 

the tank temperature stabilized at 20°C, which was the starting temperature of the simulation. Furthermore, 20°C was 

close to the underground temperature where tank was buried, so the tank no longer lost heat to the ground, causing 

the tank to maintain its temperature. 
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Figure 2: Tank temperature 

 

Figure 3 depicts total sensible heating load of the greenhouse and amount of heat supplied by the auxiliary boiler. 

Therefore, the black lines that are not covered with orange lines are the amount of heat that the STES provided to heat 

the SA of the VAV system. The fraction of the STES for total energy consumption was 29%. Total energy needed to 

meet the heating load for the greenhouses was reduced to 71% by implementing the STES system.  

 

  
 

Figure 3: Design load and load of auxiliary boiler 

 

To compare the amount of energy saved by the STES system, the additional energy used by the STES when using 

three more pumps was calculated. The pump power was estimated from the water flow rate (Q), density (ρ), head 

(H), gravitational acceleration (g), and pump efficiency (η) using Equation (19). For variable volume pumps, the 

affinity law of pumps was applied to calculate the actual pump power, as in Equation (13). The reference values for 

the head (20 m) and pump efficiency (60%) were obtained from EnergyPlus (EnergyPlus, 2013). 

 

 

Ppump =  ρgVH/1000 η 

 

(13) 
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The overall energy consumption converted into primary energy is shown in Table 2. Used local primary energy 

factors were 2.75 for electricity and 1.1 for the natural gas boiler. 

 

Table 2: Overall energy savings 

 

Description Value 

Saved boiler energy consumption 

[kW] 
5,016  

STES pump energy consumption 

[kW] 
962  

Total saved energy consumption 

[kW] 
4,054  

 
Therefore, by installing the STES system, 4054 kW was saved yearly. Compared with the VAV system, which has a 

total primary energy consumption of 23,500 kW, approximately 17% was saved. 

 

5. CONCLUSIONS 
 

By installing a storage tank with a solar thermal collector, thus forming an STES system, a heating system was able 

to utilize excess thermal energy from the summer. A 2000-m3 storage tank was filled with water heated from 20°C to 

82°C during the summer. Stored heat depleted by the middle of the winter and tank temperature decreased to 20°C at 

the start of next summer. Of the total heating load, 29% was supplied by the STES system. This resulted in savings in 

primary energy consumption of approximately 17%.  

 

Compared with a conventional VAV heating system for greenhouses, implementing the STES system resulted in 

energy savings. In addition, adding a storage tank to existing solar collectors can lead to better energy efficiency. The 

storage tank makes utilizing excess energy from the summer possible to increase the energy usage and overall 

efficiency of the heating system. 

 

 

NOMENCLATURE 
 

𝐴𝑐 Area of solar collector (m2)   

𝑎 Thermal diffusivity of ground (–)   

Cp Specific heat capacity (kJ/kg⋅°C) 

ε Heat exchanger efficiency (–) 

𝐹𝑅 Collector heat removal factor (–)   

L Greenhouse load (W) 

�̇�oz Minimum ventilation rate (kg/s)   

𝑄𝑎𝑢𝑥  Auxiliary boiler load (W)   

𝑄𝑢 Useful energy (W)   

𝑡𝑦𝑒𝑎𝑟  Current time (day) (–)   

𝑡𝑠ℎ𝑖𝑓𝑡 Day of minimum surface temperature (–)   

𝑇𝑎 Ambient air temperature (K) 

𝑇𝑎𝑚𝑝 Amplitude of surface temperature (K) 

𝑇𝑚𝑒𝑎𝑛 Mean surface temperature (K) 

𝑇𝑆 Storage tank temperature (K)   
(𝑈𝐴)𝑆 Tank heat transfer coefficient (W/m2⋅K)   

𝑈𝐿 Collector heat transfer coefficient (W/m2⋅K) 

(𝜏𝛼)𝑎𝑣 Effective transmittance-absorptance (–) 

𝑍 Depth below the surface (m) 

 

 



 

 3513, Page 7 
 

5th International High Performance Buildings Conference at Purdue, July 9-12, 2018 

Subscript   

collector Solar thermal collector 

EG Ethylene glycol 

PA Processed air  

MA Mixed air  

SA Supply air 

STES Seasonal thermal energy storage  

tank Storage tank  

VAV Variable air volume system 
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