3 research outputs found

    Supporting Telecommunication Alarm Management System with Trouble Ticket Prediction

    Get PDF
    Fault alarm data emanated from heterogeneous telecommunication network services and infrastructures are exploding with network expansions. Managing and tracking the alarms with Trouble Tickets using manual or expert rule- based methods has become challenging due to increase in the complexity of Alarm Management Systems and demand for deployment of highly trained experts. As the size and complexity of networks hike immensely, identifying semantically identical alarms, generated from heterogeneous network elements from diverse vendors, with data-driven methodologies has become imperative to enhance efficiency. In this paper, a data-driven Trouble Ticket prediction models are proposed to leverage Alarm Management Systems. To improve performance, feature extraction, using a sliding time-window and feature engineering, from related history alarm streams is also introduced. The models were trained and validated with a data-set provided by the largest telecommunication provider in Italy. The experimental results showed the promising efficacy of the proposed approach in suppressing false positive alarms with Trouble Ticket prediction

    A Hybrid Continual Machine Learning Model for Efficient Hierarchical Classification of Domain-Specific Text in The Presence of Class Overlap (Case Study: IT Support Tickets)

    Get PDF
    In today’s world, support ticketing systems are employed by a wide range of businesses. The ticketing system facilitates the interaction between customers and the support teams when the customer faces an issue with a product or a service. For large-scale IT companies with a large number of clients and a great volume of communications, the task of automating the classification of incoming tickets is key to guaranteeing long-term clients and ensuring business growth. Although the problem of text classification has been widely studied in the literature, the majority of the proposed approaches revolve around state-of-the-art deep learning models. This thesis addresses the following research questions: What are the reasons behind employing black box models (i.e., deep learning models) for text classification tasks? What is the level of polysemy (i.e., the coexistence of many possible meanings for a word or phrase) in a technical (i.e., specialized) text? How do static word embeddings like Word2vec fare against traditional TFIDF vectorization? How do dynamic word embeddings (e.g., PLMs) compare against a linear classifier such as Support Vector Machine (SVM) for classifying a domain-specific text? This integrated article thesis aims to investigate the aforementioned issues through five empirical studies that were conducted over the past four years. The observation of our studies is an emerging theory that demonstrates why traditional ML models offer a more efficient solution to domain-specific text classification compared to state-of-the-art DL language models (i.e., PLMs). Based on extensive experiments on a real-world dataset, we propose a novel Hybrid Online Offline Model (HOOM) that can efficiently classify IT Support Tickets in a real-time (i.e., dynamic) environment. Our classification model is anticipated to build trust and confidence when deployed into production as the model is interpretable, efficient, and can detect concept drifts in the data
    corecore