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Abstract 

 In today’s world, support ticketing systems are employed by a wide range of 

businesses. The ticketing system facilitates the interaction between customers and the 

support teams when the customer faces an issue with a product or a service. For large-

scale IT companies with a large number of clients and a great volume of 

communications, the task of automating the classification of incoming tickets is 

important for customer relationships and ensuring business growth. 

 Although the problem of text classification has been widely studied in the literature, 

the majority of the proposed approaches revolve around state-of-the-art deep learning 

models. This thesis addresses the following research questions: What are the reasons 

behind employing black box models (i.e., deep learning models) for text classification 

tasks? What is the level of polysemy (i.e., the coexistence of many possible meanings for 

a word or phrase) in a technical (i.e., specialized) text? How do static word embeddings 

like Word2vec fare against traditional TFIDF vectorization? How do dynamic word 

embeddings (e.g., PLMs) compare against a linear classifier such as Support Vector 

Machine (SVM) for classifying a domain-specific text?  

 This integrated article thesis aims to investigate the aforementioned issues through 

five empirical studies that were conducted over the past four years. The observation of 

our studies is an emerging theory that demonstrates why traditional ML models offer a 

more efficient solution to domain-specific text classification compared to state-of-the-art 

DL language models (i.e., PLMs).  

 Based on extensive experiments on a real-world dataset, we propose a novel Hybrid 

Online Offline Model (HOOM) that can efficiently classify IT Support Tickets in a real-

time (i.e., dynamic) environment. Our classification model is anticipated to build trust 

and confidence when deployed into production as the model is interpretable, efficient, 

and can detect concept drifts in the data. 

Keywords: Customer Support Tickets, Static Word Embeddings, Hierarchical Text 

Classification, Pre-trained Language Models, Machine Learning, Domain-Specific Datasets, 

Natural Language Processing, Overlapping Classes, Rule-Based Learning.
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Summary for Lay Audience 

 According to a recent study, 96% of unhappy customers don’t complain, and 91% of 

those will simply leave and never come back. In the IT business, when customers have 

issues with the systems they are using, they submit a ‘support ticket’. A ‘Support 

Ticketing System’ is the term used to describe the way customers interact with the 

support agents to get their issues resolved. For large IT firms, support agents deal with a 

tremendous volume of support tickets daily. Handling these tickets manually is almost 

impossible, so the need to automate the process of organizing these tickets into different 

categories becomes crucial. This is called Text Classification (TC), which is one of 

several Natural Language Processing (NLP) tasks. 

 Due to the complexity of the unstructured nature of human language, TC is 

challenging. Recently, a suite of deep learning models called Pre-trained Language 

Models (PLMs) have been used extensively for all NLP tasks, including TC. These PLMs 

have achieved striking success in the NLP field where they are trained on an enormous 

amount of text (e.g., books, Wikipedia, etc), which enables these models to better 

understand the language. However, despite their impressive performance, we argue 

against the need to employ PLMs for TC tasks, especially when the text is domain-

specific (i.e., related to a specialized domain such as IT).  

 Based on this, we pose the key research question: Are PLMs the most cost-efficient 

solution for domain-specific TC tasks?. The findings of our study suggest that the 

problem of classifying domain-specific can be addressed efficiently using old traditional 

classifiers such as SVM and a vectorization technique such as TFIDF that do not involve 

the complexity found in neural network models such as PLMs. 

 This thesis proposes a novel hybrid approach to classify IT Support Tickets using a 

non-deep learning approach that combines a static ML model trained in an offline setting 

with an online ML model trained in a dynamic (real-time) environment. Our 

classification model is anticipated to build trust and confidence when deployed into 

production as the model is efficient and can detect data changes that occur over time.    
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Chapter 1: Introduction 

 

              When confronted with two or more competing theories that are supposed to 

explain the phenomena, one should favor the simplest approach. – William of Ockham.  

     

    As the volume of information available on the Internet increases, there is a growing 

interest in developing tools to rapidly find, filter, and better manage these electronic 

resources. Text classification (a task of classifying text, e.g., tweets, news, and customer 

reviews) into different categories (also referred to as tags) is a crucial aspect of 

information organization and management.  

 With the ubiquity and volume of available data, the need to fully automate text 

classification methods becomes vital; otherwise, the data soon becomes unmanageable. 

In IT service management (the broad context of this thesis), text classification can be 

applied for many purposes, one of which is classifying IT support tickets into different 

categories organized in a hierarchy. A support ticket describes an issue faced by the 

customer that is submitted as a bug report to the IT support team. Support agents then 

spend a significant amount of time manually classifying incoming tickets; there is no 

reference to best practices based on historical data. 

    In today’s world, support ticketing systems are employed by a wide range of 

businesses. The ticketing system facilitates the interaction between customers and the 

support teams when the customer faces an issue with a product or a service. However, 

for large-scale IT corpora with hundreds of classes organized in a hierarchy, the task of 

accurately classifying the classes at the higher levels in the hierarchies is critical for 

preventing the propagation of errors down to the lower levels of the hierarchy. Besides, 

as the number of classes increases, the possibility of overlapping between the classes 

also increases. Overlapping classes may occur when an incoming ticket appears as a 

valid classification for more than one class.  

  A current trend in the Natural Language Processing (NLP) community is towards 

employing huge deep learning pre-trained language models (PLMs) for almost any kind 
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Figure 1-1: The difference between deep learning and traditional machine learning 

(Alzubaidi et al., 2021, p.7) 

of NLP task [Yoon et al., 2020; Zhou et al., 2020; Nguyen et al., 2020]. These models 

are also known as transformer-based models (e.g., BERT). Examples of NLP tasks are: 

question answering, sentiment analysis, and text classification.  

 This trend is stimulated by the prevalence of ‘Leaderboards’. A leaderboard is the 

main component of machine learning competitions that are hosted by large companies 

such as Netflix or popular online platforms such as Kaggle [Blum and Hardt, 2015]. The 

‘Leaderboard’ ranks the best submissions for the participating teams by their accuracy 

scores (i.e., classifier’s performance). Recently, NLP leaderboards are dominated by 

PLMs which achieve state-of-the-art (SOTA) results on several benchmarks such as 

GLUE [Wang et al., 2018] or individual datasets such as SQuAD [Rajpurkar et al., 

2016].  

 Another reason why deep-learning (DL) models are favorable in the NLP community 

is that they do not require feature engineering (e.g., pre-processing) as this step is 

integrated into the model fitting process. Figure 1-1 [Alzubaidi et al., 2021] shows the 

difference between traditional Machine Learning (ML) models and DL models for a text 

classification task.  

  

 Despite the widespread use of PLMs and their impressive performance in a broad 
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range of NLP tasks, there is a lack of a clear and well-justified need to as why these 

models are being employed for domain-specific text classification tasks [Chalkidis et al., 

2020; Blinov et al., 2020; Zhao et al., 2021], given the following: 

• Most text classification problems are linearly separable [Joachims, 1998; Tong and Koller, 

2001].  

• The large gap between the pre-training cloze-style formulation and objectives (e.g., predict 

target words) and the downstream objectives (e.g., classification) limit the ability to fully 

utilize the knowledge encoded in PLMs [Han et al., 2021]. 

• The level of polysemy in domain-specific (i.e., specialized) text is low because scientific 

terms need a precise meaning in order to function and be easily recognized [Wielgosz, 

2017], defeating the purpose of contextualized embeddings that aim to capture word 

polysemy and provide more than one embedding for a single word. 

• Domain-specific terms are challenging for PLMs since there are few statistical clues in the 

underlying training corpora [Bollegala et al., 2015; Pilehvar and Collier, 2016]. 

 Our work with IT support agents for a large industrial IT partner to classify customer 

support tickets has shed light on two main real-world concerns these large corporations 

face with DL-based models. The first concern is reproducibility which creates trust and 

credibility with the ML model. A recent literature survey [Pham et al., 2020] reveals that 

the reproducibility of DL models remains a major concern. Due to the randomness of the 

hyperparameters and weights used in the training stage for DL models and non-

determinism in the hardware (i.e., computing resources like GPUs), it is challenging to 

reproduce these models [Chen et al., 2022; Pham et al., 2020].  

 The second concern is the interpretability of the results. While the field of 

eXplainable Artificial Intelligence (XAI) has regained the attention of researchers over 

the past few years [Lundberg and Lee, 2017; Ribeiro et al., 2016; Fong and Vedaldi, 

2019], the explanations they provide are not accurate (i.e., low fidelity) [Rudin, 2019]. 

Cynthia Rudin [Rudin, 2019] argues that if the explanations were completely faithful to 

what the original model computes, we would not need the original model in the first 

place and the explanations should suffice.  
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 The proposed approach and models used in this thesis are towards satisfying the 

needs of the support agents and business stakeholders by providing them with an 

interpretable, high-accuracy, and less-expensive model that could be easily reproduced. 

 Following Occam’s razor, we propose a novel Hybrid Online Offline Model (HOOM) 

to classify hierarchical domain-specific text with overlapping classes. The hybrid model 

combines a static ML model trained in an offline setting with an online ML model 

trained in a dynamic (real-time) environment.  

 The offline model is based on a linear SVM classifier and a rule-based algorithm that 

relies on a set of handcrafted rules based on external knowledge. External knowledge 

incorporates the most important features (i.e., words) that contribute to the learning 

process. That knowledge is based on: (1) domain expertise from the support agents and 

(2) a Python library that highlights important features based on the chosen ML 

classifier(s).  

 The online ML model is based on a Passive Aggressive Classifier (PAC), first 

proposed by Crammer [Crammer et al., 2006]. This classifier belongs to a family of 

margin-based online learning algorithms, that can handle large datasets.  

 For our work to be reproducible, we provide the code and the computational 

environment. However, for the datasets, we only provide the three generic datasets used 

in this study. Due to a confidentiality agreement with our industrial partner, we are not 

able to provide their dataset of support tickets.  

 

1.1 Thesis Architecture  

This thesis is documented in the “integrated-article” format1. This format reports each 

discrete study (i.e., research paper) in a separate chapter (Chapters 2 to 6). Following 

these chapters is a chapter (Chapter 7) reflecting on the previous chapters.  

The key outcome of this reflection chapter is an emerging theory as a singleton 

contribution of this thesis to the body of knowledge. Lastly, Chapter 8 concludes the 

thesis and describes future work. The following diagram (Figure 1-2) shows the thesis 

 

1
 https://grad.uwo.ca/resources/regulations/8.html#8321 
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Figure 1-2: Thesis architecture 

architecture. The upper (non-leaf) layers of the architecture depict conceptual layers to 

give context to the leaf layer that represents concrete chapters of the thesis. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The thesis architecture (Figure 1-2) defines the research goal (numbered 1 to 3: 

Efficiency, Continual learning, and Class overlap, represented by the root node). The 

root node is decomposed into sub-goals that translates to individual chapters.  

 In Chapter 2, we start by exploring an efficient way of vectorizing specialized text 

with domain-specific words. Thus, in Chapter 2 we compare static word embeddings 

(e.g., Word2vec) against traditional bag-of-words models such as TFIDF for domain-

Goal: Propose an (1) efficient and (2) continual ML model to  

classify IT tickets in the presence of  (3) class overlap. 

A hybrid model for 
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(Chapter 5) 
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word embeddings 
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        (Chapter 6) 

Towards mitigating 
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stacking. 

     (Chapter 4) 

(3) Class  

overlap. 

(1) Efficiency. 
(2) Continual 

Learning (CL). 
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specific text classification. Chapter 3 compares state-of-the-art dynamic word 

embeddings (e.g., BERT) against TFIDF. Chapters 2 and 3 address the problem of 

classifying support tickets using efficient (i.e., low computational complexity) and 

simple methods.  

 After text vectorization (i.e., the first step in text classification), we explore a 

challenging issue, that of overlapping classes. An attempt to mitigate the problem of 

overlap is proposed in Chapter 4. This method shows a significant improvement in terms 

of accuracy and reducing misclassification errors. However, when testing the model with 

an IT support agent from the collaborating organization, it did not meet the 

interpretability and efficiency criteria. Hence, in Chapter 5, we successfully tackled the 

problem of overlap using a cheap, interpretable, and high-accuracy ML model based on 

a hybrid rule-based algorithm [Wahba et al., 2022] (also Chapter 5).  

 The next step was to deploy the proposed model into production. However, during 

testing on a recent dump of incoming support tickets, we observed that the taxonomy 

(i.e., class hierarchy) had changed from what had been agreed upon the with support 

agents.  

In essence, for project reasons, they had introduced new classes, which resulted in a poor 

performance for our model. This problem is widely known as ‘concept drift’ (i.e., the 

problem of changing the data distribution over time) [Widmer and Kubat, 1993] and that 

was the motivation behind Chapter 6. Thus, in Chapter 6 we propose a hybrid model 

(HOOM) that can learn in a real-time environment (i.e., Continuous Learning) and can 

detect data drifts that evolve over time.  

  Together, Chapters 2-6 address the goal of the thesis: to efficiently classify domain-

specific text (e.g., IT Support tickets) in the presence of class overlap in a real-time 

environment.  

 

1.2   Thesis Contributions 

This thesis aims to provide IT support agents with an interpretable, efficient, and 

reproducible ML model. Our model is anticipated to classify customer support tickets 

with high accuracy in a real-world scenario. The contribution of this thesis is a 
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combination of five empirical studies that were conducted over the last four years. The 

thesis contributions are as follows: 

1. Feature Engineering Phase (Chapter 2): we studied the effectiveness of static 

word embedding models (e.g., GloVe) to classify IT support tickets against a traditional 

vectorization technique (i.e., TFIDF). The findings of this study show that traditional 

TFIDF provides comparable performance to static word embeddings with a low 

computational cost and fast training time. 

2. Feature Engineering & Model Building Phase (Chapter 4): we propose an 

approach for reducing the misclassification caused by the class overlapping problem in 

multi-class text classification scenarios. This approach leverages the power of stacking 

different ML models that are trained on different pre-chosen feature subsets (i.e., feature 

selection). The findings of this study show that stacking can be used to tackle the 

problem of overlapping classes as well as increase the overall accuracy.  

3. Model Building Phase (Chapters 3): we studied the performance of SOTA PLMs 

(e.g., BERT, XLM) against that of a linear SVM classifier. The findings of this study 

show that PLMs do not provide significant gains over the linear SVM and indicate a 

comparable performance for both models on text classification tasks. 

4. Model Building and Evaluation Phase (Chapter 5): we propose a hybrid ML 

model (HSVM-RB)  based on a set of N hand-crafted rules and a linear SVM classifier 

that supports hierarchical classification structures. The findings of this study show that 

our proposed hybrid model provides a cheap, interpretable, and efficient solution to the 

problem of classifying IT support tickets in the presence of class(es) overlap. 

5. Model Building and Deployment Phase (Chapter 6): we propose a Hybrid Online 

Offline Model (HOOM) that combines a static ML model trained in an offline setting 

with an online ML model trained in a dynamic (real-time) environment. Finally, we 

deployed our model by building a web application using Flask2 and Google Colab 3for 

the support agents to test and validate our proposed ML model. 

 

2
 A web application framework written in Python. 
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Abstract: Recently, various state-of-the-art machine learning and deep learning methods 

have been applied to automate the process of text classification. Because the quality of 

these methods highly depends on the quality of the associated “features”, in this paper we 

focus on the “feature engineering” step in the classification process. In particular, we 

evaluate the effectiveness of using different static word embeddings on the accuracy of 

classifying IT support tickets. 

Chapter 2: Evaluating the Effectiveness of Static Word 

Embeddings on the Classification of IT Support Tickets4 

 

2.1   Introduction  

Support tickets are service requests, initiated by a system’s end-users when they 

encounter issues with their system. With a wide user-base and system issues, there will 

be an ongoing influx of generated support tickets. Service agents spend a large amount 

of time manually classifying the incoming tickets. Unfortunately, this process is 

complicated, and the support agents have no reference to best practices based on 

historical data. With the massive growth of data, incorrect routing and delays in the 

resolution of the issues are frequent and hence, the need to automate ticket classification 

becomes crucial. Based on the ticket description, the support agents determine the 

category of the problem and triage the ticket to the appropriate team for resolving the 

issue.  

 A typical ticket description is unstructured and hence this makes it challenging for 

natural language processing. Also, the ticket may contain typos as well as abbreviations 

which adds to the complexity. Ticket classification is an important process that ensures 

that tickets get routed to the right support agent. Otherwise, there can be delays, 

 

4
  A version of this chapter has been published in (Wahba, Y., Madhavji, N.H. and Steinbacher, J., 2020, 

November. Evaluating the effectiveness of static word embeddings on the classification of IT support 

tickets. In Proceedings of the 30th Annual International Conference on Computer Science and Software 

Engineering (CASCON), pp. 198-206). 
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customer dissatisfaction, escalation to management, and reactionary fixes at high costs 

[Sheng et al., 2014]. 

 Recently, neural networks and deep learning models have surpassed traditional 

machine learning approaches by delivering state-of-the-art results in several natural 

language processing (NLP) tasks, including spam filtering, sentiment analysis, and 

question answering. Hence, these models have become a favorable choice for any text 

classification or clustering task. However, this comes with the cost of increased 

computational complexity and therefore increased model training time [Fu and Menzies, 

2017].  

 Word embeddings are one of the popular uses of neural networks for handling natural 

language text. These embeddings are able to place words in a vector space that contains 

semantic information about the words. Thus, similar words will be placed close to each 

other. Capturing word semantics in different contexts is what differentiates between a 

static and a dynamic word embedding.  

 Because the quality of these methods highly depends on the quality of the associated 

“features”, in this paper we focus on the “feature engineering” step in the classification 

process. In particular, we evaluate the effectiveness of using different static word 

embeddings on the accuracy of classifying IT support tickets. To our knowledge, no 

work has compared the performance of these word embeddings against old methods like 

bag-of-words. Thus, the key question being addressed in this paper is: How effective is 

using static word embeddings in the task of IT ticket classification? 

 The experimental results show that the traditional Term Frequency Inverse Document 

Frequency (TFIDF) bag-of-words along with Support Vector Machines (SVM) provides 

competitive results and sometimes outperforms static word embedding models such as 

word2vec while maintaining low computational cost. Overall, the findings of this study 

suggest that the problem of classifying IT support tickets can be addressed efficiently 

using old traditional methods such as TFIDF bag-of-words that do not involve the 

complexity found in neural network models.   

 The rest of the paper is organized as follows. Section 2.2 describes the background. 

Section 2.3 describes related work. Section 2.4 describes our project context. Section 2.5 
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describes the methodology and Section 2.6 presents the research results. Section 2.7 

concludes the paper. 

 

2.2   Background 

The quality of ML or DL model comes from extensive feature engineering than from the 

learning technique itself, as the quality of these methods highly depends on the quality of 

available features [Dong and Liu, 2018]. To apply machine learning algorithms, human 

text must be converted to numeric form through what is known as vector representation 

[Orsenigo et al., 2018].  

 Handling vector representations is of the challenges of natural text processing. This is 

because the same set of words can convey different meanings in different contexts or if 

given in a different order. This is known as polysemy, which is the association of one 

word with two or more distinct meanings [Sennet, 2014]. This level of sophistication in 

understanding text and coming up with the best vector representation for words is why 

word embeddings emerged in this research direction as an alternative to the bag-of-

words (BOW) vector model [Harris, 1954].  

 The core idea behind word embeddings is that words that are used in similar contexts 

will be given similar representations, thus capturing word semantics. Two of the popular 

word embeddings that attracted many researchers are Word2Vec [Mikolov et al., 2013] 

trained on Google News, and Glove [Pennington et al., 2014] which is trained on 

Wikipedia. These methods generate word vectors by training the word embedding 

algorithm against a huge corpus of text. However, these embeddings are referred to as 

‘static’, in the sense that each word is represented by only one vector regardless of the 

context. Thus, the word bank in “I went to the bank to withdraw money before going 

fishing at the riverbank “will have the same embedding. To mitigate this problem, 

dynamic representations or so-called contextualized embeddings emerged as a 

replacement for static word embeddings and improved many NLP tasks [Liu et al., 2019; 

Devlin et al., 2018; Yao et al., 2018]. These embeddings aim to capture word semantics 

in different contexts to address the issue of the context-dependent nature of words. 

 

https://www.thoughtco.com/meaning-semantics-term-1691373
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2.3   Related Work    

Since our work aims to investigate the effectiveness of using word embeddings to 

classify IT support tickets, we first give an overview of the existing literature studies on 

the problem of ticket classification, and then we examine some of the studies on the 

effectiveness of domain-specific word embeddings.   

 Diao [Diao et al., 2009] leveraged large expert communities with domain knowledge 

to develop a rule-based approach, where experts author the classification rules to classify 

problem tickets. Paramesh’s [Paramesh et al., 2018] followed the ensemble approach to 

improve the accuracy of their ticket classifier system, by combining the predictions of 

Bagging, Boosting, and Voting ensemble on four base classifiers. Similarly, the work in 

[Xu et al., 2016] tackled the problem using an ensemble of SVM classifiers and re-

sampling techniques to handle the problem of data imbalance. 

 Authors in [Paramesh and Shreedhara, 2019] investigated different classification 

algorithms to classify incident tickets, SVM was reported to perform well on all data 

samples. However, [Son et al., 2014] reported Multinomial Naive Bayes (MNB) to 

outperform Softmax Regression Neural Network (SNN) for classifying help desk tickets.  

 In contrast to ‘Flat’ text classification, hierarchal classification has also been 

addressed. Authors in [Cai and Hofmann, 2004] proposed a novel architecture for 

hierarchical classification that extends the strengths of SVM classifiers to leverage prior 

knowledge about class relationships. While authors in [Zeng et al., 2017] investigated 

hierarchal multi-label classification of incident tickets by leveraging the known 

hierarchical relationship between categories using a novel greedy algorithm ‘GLabel’ to 

label the predicting ticket. Adding to the previous work, authors in [Zeng et al., 2014] 

proposed an algorithm to utilize the knowledge from domain experts. Note that all these 

papers focus on the final stage of the text classification pipeline, which is model building 

and machine learning algorithms. 

 With the introduction of static word embeddings in 2013 by Mikolov [Mikolov, Chen 

et al., 2013] that leveraged neural networks, Natural Language Processing (NLP) tasks 

have changed dramatically. Accordingly, text classification methods were classified into 

those which use neural networks and the ones that do not. Authors in [Lyubinets et al., 

2018] reported that recurrent neural networks (RNNs) using word embeddings data 



 

16 

outperform the classic solutions for the task of classifying data from customer service 

systems and task trackers. Similarly, the work in [Han and Akbari, 2018] leveraged deep 

networks, where a convolutional neural network (CNN) was reported to achieve the best 

performance for the task of classifying IT tickets without much feature engineering. 

However, authors in [Lilleberg et al., 2015] achieved an improved classification 

accuracy using a linear support vector machine (SVM) along with the term weighted 

Word2Vec model. In contrast to using pre-trained word vectors, authors in [Rabut et al., 

2019] provided additional semantic information by enriching the vectors with Part-of-

Speech (POS) tags. 

 Despite the success of general domain word embeddings like Word2Vec in many 

NLP tasks, domain-specific terms always represent a challenge, since these embeddings 

are trained over general corpora like books or Wikipedia. Some researchers suggested 

fusing domain-specific data with general data for better performance [Yen et al., 2017; 

Wu et al., 2017]. While the work in [Efstathiou et al., 2018] introduced 

‘SO_Word2Vec’, a domain-specific word embedding that is trained over 15GB of 

textual data from Stack Overflow posts. Similarly, authors in [Roy et al., 2019] 

presented Annotation Word Embedding (AWE) which incorporates different kinds of 

domain knowledge. The model’s performance outperformed state-of-the-art baselines on 

two cybersecurity applications. The work in [Risch and Krestel, 2018] reported an 

increase of 17 percent in accuracy compared to state-of-the-art methods when using a 

domain-specific word embedding to classify patent applications.  

 Upon critical analysis of the literature, we note that it is not clear at all how effective 

static word embeddings are in solving the task of IT support ticket classification. This 

problem has a caveat that it contains IT-related terminologies (e.g., mongoDB, 

kubernetes, and logdna) and unique fragments of text (e.g., HTML code, IP addresses, 

XML code) and specific abbreviations (e.g., paas, vlan, and iam). We note the current 

trend of using neural and deep learning architectures for solving text classification 

problems. This imposes us to think about whether it is worth using sophisticated and 

computationally expensive neural or deep learning architectures for the task of 

classifying support tickets.  
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Table 2-1: Example snapshot of the dataset 

 This was thus a motivation for us to investigate the usefulness of word embeddings 

over the simple TFIDF in solving the IT support ticket classification problem. 

 

2.4   Project Context 

This section describes the nature of our dataset. This is followed by an analysis of the 

problem context in Section 2.4.2 

2.4.1   Dataset  

Our dataset is considered a large-scale dataset containing over 1.6 million support tickets 

classified into 32 different ticket categories. For customers to submit a new ticket, they 

have to give a short and full description of their issue. We noted that predominantly only 

the short description field is used (as shown in Table 2-1). This problem is handled in the 

pre-processing stage by concatenating both fields into a new one. Also, the description 

entered by the customer is unstructured containing non-English characters, dates, and 

typos.  

                                       

 

     

 

                                    

 

 

 

 

 

 

2.4.2   Problem Analysis  

In a typical IT organization, customers raise an issue (i.e., open a ticket), through the IT 

service desk. IT service management (ITSM) is responsible for dealing with the 

resolution of these tickets. Figure 2-1 depicts the standard process of incident 
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management that starts with ticket generation, which is followed by prioritization, 

categorization, and then a resolution of the ticket by an IT specialist. If the customer is 

satisfied, then the ticket is closed. 

 

Legend: Ellipse – entity; Rectangle – task; Arrow – flow. 

 

 

 As can be seen from the processing pipeline, classification plays a substantial role. 

Wrong manual ticket classification will prevent the tickets from being triaged to the 

appropriate support team. In turn, this can lead to the problem of time delays in ticket 

resolution, violation of service-level agreements, and customer dissatisfaction.  

 Thus, ML-based methods for automation are considered crucial for the overall 

incident management efficiency. Millions of support tickets can be sorted in a fraction of 

the time spent manually for this task, thus freeing the agents to focus on more important 

or other tasks. In addition to reducing the number of escalations triggered by unhappy 

customers. 

 Ticket classification is one of the use cases of document classification where the 

ticket’s description submitted by customers represents a document and the ticket 

category is the document label. Therefore, the steps for classifying a support/issue ticket 

are the same steps followed in a typical document classification problem.  

 ustomers

Service  esk

Incident         

 anagement

Identify

 ustomer
Open Ticket Prioritize Ticket  lassify Ticket

 esolve Ticket valuate Ticket lose Ticket

Figure 2-1: Process flow of IT service management 
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Figure 2-2: Text classification steps 

The following figure (Figure 2-2) shows the main steps for a text classification model.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are a few types of text classification based on the number of classes/categories to 

predict:  

▪ Binary classification: When the total number of classes is two, any prediction can 

contain either one of those classes. 

▪ Multi-class classification: Involves classifying instances into more than two classes, 

where each instance can be classified into one of those classes. 

▪ Multi-label classification: Involves classifying instances into more than two classes, 

where each instance can be classified into one or more categories at the same time.  
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Our work is considered a multi-class classification task, where the support tickets are 

classified into 32 different ticket categories (e.g., Infrastructure, Project Office, Sales, 

Databases, etc. – please see later in Figure 2-3 for more). 

 

2.5  Methodology   

This section gives an overview of the dataset we used in our study and the pre-

processing steps performed to clean the data. This is followed by the experimental steps 

and the word embeddings used in this study. 

 

2.5.1   Dataset Preparation 

The first stage in building a text classification model is cleaning the data (the data pre-

processing stage). This stage aims to reduce the vocabulary size and remove noise found 

in the input documents. This is anticipated to help in maximizing the classifier’s 

performance [Krouska et al., 2016; Barushka and Hajek, 2019].  

 For a natural language text, noise can be spelling errors, abbreviations, character 

repetitions, missing punctuations, non-standard words, etc. In our work, we applied the 

regularly used operations in text mining in addition to domain-specific operations that 

we perform based on the ticket descriptions and domain experience from the support 

agents of our industrial partner. Given the ticket structure in Table 2-2, we are only 

interested in the ticket description and its corresponding category; all other fields are 

thus ignored. 

 

Table 2-2: Typical support ticket data 

Ticket 

number 

Ticket category Ticket 

priority  

Ticket  

state 

Ticket description 

CS177 Services Medium In 

Progress 

IP Billing address 

missing 

 

CS190 Infrastructure High Open Payment late  
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The following are the common pre-processing tasks that we carried out in this order:  

1. Removing missing data.  

2. Removing numbers and special characters. 

3. Converting text to lowercase  

4. Word tokenization. 

5. Removing stop words. 

6. Lemmatization. 

7. Removing non-English words.  

 While we applied such operations, we also found the need to employ some domain-

specific steps. For example, upon careful examination of our ticket descriptions, we 

noticed the presence of Chinese characters. Hence, we performed the regular step of 

non-English words removal. A side-effect was that some important domain-specific 

words were removed in the process. Thus, we created a list of words that could have an 

impact on ticket classification and called it the ‘to_keep’ list. For this purpose, we 

incorporated domain knowledge from our support agents along with some common 

knowledge of some IT terminologies. For example, words such as “Watson” and 

“Vmware” are kept and not removed during the pre-processing step.  

 Since the focus of this research is more on feature engineering and pre-processing 

steps. We carefully examined the list of discarded words during the step of non-English 

words removal, and, to our surprise, we found a huge list of common English words. For 

example, words such as groups, questions, requests, and chatbot were removed.  

There are two reasons behind this. First, the “Words”  orpus from NLTK [Bird et al., 

2009a] that we used is a delimited list of dictionary words, hence, words are stored in 

their singular form. Second, this Corpus is not an exhaustive list of all English words, so 

some words might be missing [Bird et al., 2009b] (e.g., blog, chatbot). To mitigate the 

first problem, we performed lemmatization which ensures that words are kept in their 

dictionary or base form, known as a “lemma”. This step is done prior to removing non-

English words. While for the second problem, we added the missing words to our 
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Figure 2-3: Distribution of classes and the severe imbalance 

“to_keep” list and used another lexical database for  nglish called “WordNet” which is 

published by Princeton University [Miller, 1995]. 

 Our dataset described in Section 2.4.1 suffers from a severe imbalance, where the 

distribution of class samples is uneven by a large amount in the training dataset (e.g., 

1:100 or more) as shown in Figure 2-3. This imbalance makes the classification 

algorithm biased toward the major categories and ignores the minor ones, leading to 

poor classification for these classes [Akkaradamrongrat et al., 2019; Wang and Zhang, 

2018].  

 

 

 

 There are several approaches for handling this imbalance, and they can be grouped 

into four categories [Ma and He, 2013]: (i) algorithm-level, (ii) data-level, (iii) cost-

sensitive, and (iv) ensemble learning. Since our work is focused on the pre-processing 

stage, ‘data-level’ approaches such as oversampling techniques [Chiamanusorn and 

Sinapiromsaran, 2017; Zhu et al., 2017] and undersampling [Yap et al., 2014] are more 

relevant to our purpose. However, these methods have major drawbacks [Ma and He, 

2013] and are sometimes reported to be ineffective, and may often cause negative effects 

on multiclass tasks [Zhou and Liu, 2005]. Hence, we decided to keep the original 

distribution while in the future we intend to gather more data for the minor classes. 
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2.6   Empirical Study 

In this section, we describe the empirical study that we conducted. In particular, we 

describe data characteristics, the infrastructure used, the word vectorization models used, 

and the performance measures.  

 We collected over 1.6 million tickets from a large cloud-based ticketing system, 

classified into 32 different categories. Our experimental algorithms are written in Python 

3.8.3. The testing machine is Windows 10 with an Intel Core i7 CPU 2.71 GHz and 

32GB of RAM. 

The following are the different word vectorization models used in this study: 

1. GN_Word2Vec [Miháltz, 2016]: This is a neural network–based implementation that 

is provided by Google and is trained on a part of the Google News dataset (about 100 

billion words). The model contains 300-dimensional vectors for 3 million words and 

phrases. 

2. SO_Word2Vec [Efstathiou, 2018b]: This is a domain-specific Word2Vec model that 

is trained on Stack Overflow posts which is a generic model of Software Engineering 

knowledge containing 200-dimensional vectors. 

3. CO_Word2Vec: This is the Word2Vec algorithm trained on our corpus of support 

tickets using a size of 100-dimensional vectors. Thus, we call it Corpus Word2Vec 

(CO_Word2Vec). 

4. TFIDF5: This is the simplest yet powerful technique for vectorizing text documents 

[Sarkar, 2016]. 

 An important parameter that we considered when applying the TFIDF vectorizer is N-

grams. An ‘N-gram’ is simply a sequence of N words that predicts the occurrence of a 

word based on the occurrence of its (N – 1) previous words. Unigrams or single words 

 

5 TFIDF stands for Term Frequency-Inverse Document Frequency, which is a combination of two metrics:  

1. Term frequency (tf):  a measure of how frequently a term, t, appears in a document, d. 

2. Inverse document frequency(idf): a measure of how important a term is. It is computed by dividing the 

total number of documents in our corpus by the document frequency for each term and then applying 

logarithmic scaling on the result. 
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are the default setting. In our study, we set ngram_range to (1,3) which means that we 

included feature vectors consisting of all unigrams, bigrams, and trigrams. 

For the machine learning models we chose two popular and simple classification 

algorithms: 

1. Support Vector Machines (SVM): reported as one of the best algorithms for text 

classification [Joachims, 1998; Telnoni et al., 2019].  

 We chose the LinearSVC algorithm in the Scikit-learn library [Pedregosa et al., 

2011a]. The reason is that this algorithm implements “one-vs-the-rest” or what is known 

as a one-versus-all (OVA) multi-class strategy, which is suitable for high dimensional 

data and, has a very low running time [Chauhan et al., 2019]. 

2. Logistic Regression (LR): a simple linear classifier that uses maximum likelihood for 

estimation method [Pedregosa et al., 2011b]. 

 To evaluate the performance of the above-mentioned two classification algorithms, 

we used the standard information retrieval (IR) measures, Precision6, Recall7 , and F-

measure8 or F-score.  As mentioned before, our task is a multi-classification one, and our 

data is hugely imbalanced, so, we used the F-score metric which is the harmonic mean 

value of precision and recall. This measure is suitable for multi-classification tasks.  

However, the F-score does not take into account the True Negatives (TN) [Powers, 

2015]. In our case, we give more importance to classifying rare positives and this is why 

F-score is a suitable measure. 

2.7   Results  

 The experimental results obtained after experimenting with different static word 

embeddings are presented in Figure 2-4, which shows the weighted-average F1 score of 

each word embedding model evaluated using two base classifiers: Linear SVM and 

Logistic Regression. 

 

 

6
  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
 

7 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

8 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =   2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
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Figure 2-4:  Performance of different Word2Vec embeddings versus TFIDF  

  

 

 Surprisingly, the traditional TFIDF model achieved a competitive accuracy of 92% 

using the SVM classifier and 91% using Logistic Regression. While the three static 

word2vec models achieved a close classification accuracy of 89% trained using the 

Logistic Regression classifier, however, with a high computational cost. Although SVM 

and LR generally have close performance (i.e., accuracy), the SVM may work better for 

the highly imbalanced datasets [Musa, 2013]. 

 Also, since our dataset is highly skewed, it was expected that the classification 

algorithm will be biased towards the major classes, leading to a high classification 

accuracy for the two major ticket categories (Infrastructure & Project Office), while 

showing poor accuracies towards the minor ones. This is shown clearly in the detailed 

classification report presented in Figure 2-5.  

 The first column in Figure 2-5 represents the class number as given in the dataset we 

collected. While the last column (i.e., support) represents the number of instances for a 

given class. For the precision and recall values, note that some classes show zero or very 

low F-scores. This is because the number of instances collected for these categories was 

below 50 records; hence, the classification algorithm failed to classify them. 
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Figure 2-5: Classification report of TFIDF showing precision and recall of Linear 

SVM for all 32 classes 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 It must be noted that, when using the TFIDF model, trying different n-grams is 

important. In our study, we experimented with different n-grams and recorded the 

performance for all 32 classes. Results showed that using trigrams (1,3) enhanced the F-

score of almost all minor classes.  

 In Figure 2-6, we describe the performance of the four vectorization models used in 

the study to classify each of the classes. It is clear that the imbalance problem is 

affecting the classifier’s performance to recognize the minor classes. However, the 

performance of the traditional TFIDF to classify the minor classes outperformed that of 

the three static word embeddings. This is demonstrated in Figure 2-6(d). The 

performance of the static word embeddings (Figures 2-6(a), 2-6(b), and 2-6(c)) to 

classify the minor classes is almost the same with neglectable differences. Both 

classification algorithms (SVM & LR) showed very similar results, for the sake of space 

for this paper, we included only the results for SVM classifier. 
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Figure 2-6: Classification accuracy of SVM using different embedding models for 

all 32 Classes 

  

 This is demonstrated in Figure 2-6(d). The performance of the static word 

embeddings (Figures 2-6(a), 2-6(b), and 2-6(c)) to classify the minor classes is almost 

the same with neglectable differences. Both classification algorithms (SVM & LR) 

showed very similar results, for the sake of space for this paper, we included only the 

results for SVM classifier. 

  

 However, in an effort to examine the representational power of the domain-specific 

word embedding SO_Word2Vec versus the general word embedding GN_Word2Vec in 

capturing some of the ticket-specific keywords, we retrieved the top 5 similar words for 

some of the four frequently appearing keywords that we noticed while pre-processing 

our support tickets. These results are shown in Table 2-3. As can be seen from the table, 

the domain-specific word embedding trained on a software engineering domain (Stack 

Overflow), was able to capture semantically related words better than the general pre-
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trained model on Google news. It’s also clear that they are very effective in identifying 

domain-specific ambiguities.  

 

Table 2-3: Examples of top 5 related words in SO Word2Vec and Google News model 

  

 One important observation to note here is that the task of classification of support 

tickets can be automated using simple traditional methods such as TFIDF with a high 

classification accuracy and a very low computational power compared to complex 

algorithms that are often hard to interpret. While the problem of poor accuracies for 

minor classes can be mitigated efficiently by collecting more data for the minor 

categories, or by using a closed feedback loop between the support agents and the ML 

algorithm, which continuously improves the model by adding new ticket information for 

minor classes. 

2.8   Conclusion and Future Work 

Classifying support tickets plays an important role in any help disk system. Automation 

of the tickets’ classification should improve the resolution time significantly and 

minimize errors in the escalation process. In this paper, we describe the effectiveness of 

different static word embeddings including a domain-specific word embedding for the 

Keyword Most similar in SO 

Word2Vec 

Most similar in GN Word2Vec 

cloud clound, cloud-based, azure, 

gcp, iaas 

clouds, cloud, cloud_computing 

Abu_Risha_assassination 
 

fetch  retrieve, fetching, fetched, 

fetches, retrieved 

fetchesd, fetches, fetching, 

Sotheby_auction, presale_estimate 

 

watson nlc, nlu, stt, speech-to-text, 

luis 

thompson, walsh, bennett, armstrong, 

crawford 

abort aborts, aborting, aborted, 

interrupted, terminate 

aborting, aborted, aborts, abort, 

abort_fetus 
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software engineering domain (SO_Word2Vec) on the task of classifying IT support 

tickets of a real-world dataset. 

 Results showed that, unlike general document classification, IT support tickets do not 

benefit much from using static word embeddings. This is due to the domain-specific 

words that are considered as Out of Vocab (OOV) words for pre-trained embeddings. 

Also, the level of polysemy (i.e., the coexistence of many possible meanings for a word 

or phrase) in IT technical text is very low which is the reason why the traditional TFIDF 

bag-of-words provided comparable performance and sometimes outperformed static 

word embeddings with a low computational cost and fast training time. For future work, 

we plan to apply contextual word embeddings (e.g., BERT, ELMO) and investigate their 

effectiveness in improving the accuracy of our minor classes. Also, we intend to address 

the hierarchical classification problem of support tickets.  
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Abstract: The emergence of pre-trained language models (PLMs) has shown great 

success in many Natural Language Processing (NLP) tasks including text classification. 

Due to the minimal to no feature engineering required when using these models, PLMs 

are becoming the de facto choice for any NLP task. In this paper, we compare the 

performance of four different PLMs on three public domain-free datasets and a real-

world dataset containing domain-specific words, against a simple SVM linear classifier 

with TFIDF vectorized text. 

Chapter 3: A Comparison of SVM against Pre-trained 

Language Models (PLMs) for Text Classification Tasks9 

 

3.1  Introduction  

Text classification is the task of classifying text (e.g., tweets, news, and customer 

reviews) into different categories (i.e., tags). It is a challenging task especially when the 

text is ‘technical’. We define ‘technical’ text in terms of the vocabulary used to describe 

a given document, e.g., classifying health records, human genomics, IT discussion 

forums, etc. These kinds of documents require special pre-processing since the basic 

NLP pre-processing steps may remove critical words necessary for correct classification, 

resulting in a performance drop in the deployed system [Brundage et al., 2021]. 

 Recently, pre-trained language models (PLMs) such as BERT [Devlin et al., 2018] 

and ELMO [Neumann et al., 2018] have shown promising results in several NLP tasks, 

including spam filtering, sentiment analysis, and question answering. In comparison to 

traditional models, PLMs require less feature engineering and minimal effort in data 

cleaning. Thus becoming the consensus for many NLP tasks [Han et al, 2021].  

 With an enormous number of trainable parameters, these PLMs can encode a 

substantial amount of linguistic knowledge that is beneficial to contextual 

 

9
 A version of this chapter has been published in (Wahba, Y., Madhavji, N.H. and Steinbacher, J., 2022, A 

Comparison of SVM against Pre-trained Language Models (PLMs) for Text Classification Tasks, 8th 

International Conference on Machine Learning, Optimization, and Data Science (LOD 2022), Lecture 

Notes in Computer Science (LNCS),Cham: Springer Nature Switzerland, pp. 304-313) 
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representations [Han et al, 2021]. For example, word polysemy (i.e., the coexistence of 

multiple meanings for a word or a phrase –e.g., ‘bank’ could mean ‘river bank’ or 

‘financial bank’) in a domain-free text.  

 In contrast, in a domain-specific text that contains technical jargon, a word has a more 

precise meaning (i.e., monosemy) [Aronoff and Rees-Miller, 2020]. For example, the 

word ‘run’ in an IT text would generally only mean ‘execute’ and not ‘rush’. Thus, it 

appears that domain-specific text classification will likely not benefit from the rich 

linguistic knowledge encoded in PLMs.  

 Despite the widespread use of PLMs in a broad range of downstream tasks, their 

performance is still being evaluated by researchers for their drawbacks [Acheampong et 

al., 2021]. For example: (i) the large gap between the pre-training objectives (e.g., 

predict target words) and the downstream objectives (e.g., classification) limits the 

ability to fully utilize the knowledge encoded in PLMs [Han et al., 2021], (ii) the high 

computational cost and the large set of trainable parameters make these models 

impractical for training from scratch, (iii) dealing with rare words is a challenge for 

PLMs [Schick and Schütze, 2020], and (iv) the performance of PLMs may not be 

generalizable [McCoy et al., 2019]. 

 Thus, this paper evaluates the performance of different pre-trained language models 

(PLMs) against a linear Support Vector Machine (SVM) classifier. The motivation for 

this comparative study is rooted in the fact that: (i) while PLMs are being used in text 

classification tasks [Zhao et al., 2021; Zheng and Yang, 2019], they are more 

computationally expensive than the simpler SVMs, and (ii) PLMs have been used 

predominantly on public or domain-free datasets and it is not clear how they fare against 

simpler SVMs on domain-specific datasets. 

 The findings of our study suggest that the problem of classifying domain-specific or 

generic text can be addressed efficiently using old traditional classifiers such as SVM 

and a vectorization technique such as TFIDF that do not involve the complexity found in 

neural network models such as PLMs. To the best of our knowledge, no such 

comparative analysis has so far been described in the scientific literature. 
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 The rest of the paper is organized as follows. Section 3.2 describes related work. 

Section 3.3 describes the empirical study. Section 4.4 presents the research results. 

Section 4.5 concludes the paper. 

 

3.2   Related Work 

In this section, we give an overview of the existing literature on the applications of 

PLMs and some of the drawbacks reported. 

Pre-trained language models (PLMs) are deep neural networks trained on unlabeled 

large-scale corpora. The motivation behind these models is to capture rich linguistic 

knowledge that could be further transferred to target tasks with limited training samples 

(i.e., fine-tuning). BERT [Devlin et al., 2018], XLM [Lample and Conneau, 2019], 

RoBERTa [Liu et al., 2019], and XLNet [Yang et al., 2019] are examples of PLMs that 

have achieved significant improvements on a large number of NLP tasks (e.g., question 

answering, sentiment analysis, text generation).  

 Nevertheless, the performance of these models on domain-specific tasks was 

questioned [Gururangan et al., 2020] as these models are trained on general domain 

corpora such as Wikipedia, news websites, and books. Hence, fine-tuning or fully re-

training PLMs for downstream tasks has become a consensus. Beltagi et al. [Beltagy et 

al., 2019] released SciBERT which is fully retrained on scientific text (i.e., papers). Lee 

et al. [Lee et al., 2020] released BioBERT for biological text. Similarly, Clinical BERT 

[Huang et al., 2019; Alsentzer et al., 2019] was released for clinical text and FinBERT [ 

Araci, 2019] for the financial domain. 

 Other researchers applied PLMs by fine-tuning the final layers to the downstream 

task. For example, Elwany et al. [Elwany et al., 2019] report valuable improvements on 

legal corpora after fine-tuning. Lu [Lu, 2020] fine-tuned RoBERTa for Commonsense 

Reasoning and Tang et al. [Tang et al., 2020] fine-tuned BERT for multi-label sentiment 

analysis in code-switching text. Finally, Yuan et al. [Yuan et al., 2020] fine-tuned BERT 

and   NI  [Sun et al., 2020] for the detection of Alzheimer’s  isease. 

 However, Gururangan et al. [Gururangan et al., 2020] show that simple fine-tuning of 

PLMs is not always sufficient for domain-specific applications. Their work suggests that 
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the second phase of pre-training can provide significant gains in task performance. 

Similarly, Kao et al. [Kao et al., 2020] suggest that duplicating some layers in BERT 

prior to fine-tuning can lead to better performance on downstream tasks. 

 Another body of research focuses on understanding the weaknesses of PLMs by 

either applying them to more challenging datasets or by investigating their underlying 

mechanisms. For example, McCoy et al. [McCoy et al., 2019] report the failure of BERT 

when evaluated on the HANS dataset. Their work suggests that evaluation sets should be 

drawn from a different distribution than the train set. Also, Schick and Schütze [Schick 

and Schütze, 2020] introduce WNLaMPro (WordNet Language Model Probing) dataset 

to assess the ability of PLMs to understand rare words. Lastly, Kovaleva et al. [Kovaleva 

et al., 2019] show redundancy in the information encoded by different heads in BERT, 

and manually disabling attention in certain heads will lead to performance improvement. 

 This paper adds to the growing literature on evaluating PLMs. In particular, our 

investigative question is: How does a linear classifier such as SVM compare against the 

state-of-the-art PLMs on both general and technical domains? 

 

3.3   Empirical Study 

In this section, we describe the empirical study that we conducted. In particular, we 

describe the infrastructure used, the datasets, and the different PLMs used. Finally, we 

describe the SVM algorithm used, and the pre-processing steps done prior to applying 

SVM. The experimental algorithms are written in Python 3.8.3. The testing machine is 

Windows 10 with an Intel Core i7 CPU 2.71 GHz and 32GB of RAM. 

 

3.3.1   Text Classification Datasets 

Our experiments were evaluated on four datasets:  

1. BBC News [Greene and Cunningham, 2006]: a public dataset originating from BBC 

News. It consists of 2,225 documents, categorized into 5 groups, namely: business, 

entertainment, politics, sport, and tech. 

2. 20NewsGroup [20Newsgroups, 2022]: a public dataset consisting of 18,846 

documents, categorized into 20 groups. 
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3. Consumer Complaints [Bureau of Consumer Financial Protection, 2022]: a public 

benchmark dataset published by the Consumer Financial Protection Bureau; it is a 

collection of complaints about consumer financial products and services. It consists of 

570,279 documents categorized into 15 classes. 

4. IT Support tickets: a private dataset obtained from a large industrial partner. It is 

composed of real customer issues related to a cloud-based system. It consists of 194,488 

documents categorized into 12 classes.  

Table 3-1 summarizes the properties of the four datasets. 

Table 3-1: Dataset properties 

Dataset # of 

classes 

# of 

instances 

# of features 

(n-gram=1) 

# of features 

(n-gram=3) 

BBC News 5 2,225 26,781 811,112 

20NewsGroup 20 18,846 83,667 2,011,358 

Consumer Complaints 15 570,279 53,429 6,112,905 

IT Support tickets 12 194,488 16,011 3,185,796 

   

 The IT Support tickets dataset will be referred to hereon as the ‘domain-specific’ 

dataset. This dataset suffers from a severe imbalance as seen in Figure 3-1. However, we 

prefer to avoid the drawbacks of sampling techniques [Zhou and Liu, 2006; He and Ma, 

2013] and keep the distribution as is. 
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Figure 3-1: Class distribution of the domain-specific dataset showing 

imbalance 

 

 

 

  

 Another problem with this dataset is the presence of a large number of technical 

words (i.e., jargon) related to the Cloud terminologies (e.g., Bluemix, Kubernetes, Iaas, 

Vmware, etc.). These words are not found in the PLMs vocabulary and hence, they get 

broken down into subwords using a subword tokenization algorithm. For instance, 

BERT uses a WordPiece tokenizer [Wu et al., 2016] which handles non-technical words 

quite well. However, we notice that it fails to tokenize technical words and domain-

specific abbreviations in our domain-specific dataset. For example:  

"Kubernetes" ⇒ ['ku', '##ber', '##net', '##es'] 

"configuration" ⇒ "config" ⇒ ['con', '##fi', '##g'] 

 

3.3.2   Pre-trained Language Models (PLMs) 

The following PLMs were considered for this study: 

1. BERT [Devlin et al., 2018]: A widely used pre-training language model that is based on 

a bidirectional deep Transformer as the main structure. BERT achieved state-of-the-art 

results on 11 different NLP tasks including question answering and named entity 

recognition (NER).  

2. DistilBERT [Sanh et al., 2019]: A lighter, smaller, and faster version of BERT. By 

reducing the size of the BERT model by 40%, while keeping 97% of its language 

understanding capability, it’s considered 60% faster than B  T. 

3. RoBERTa [Liu et al., 2019]: One of the successful variants of BERT that achieved 

impressive results on many NLP tasks. By changing the MASK pattern, discarding the 

NSP task, and using a larger batch size and longer training sentences.  

4. XLM [Lample and Conneau, 2019]: Designed specifically for cross-lingual 

classification tasks by leveraging bilingual sentence pairs. XLM uses a known pre-

processing technique (BPE) and a dual-language training mechanism.  

 For this study, we fine-tuned all the PLMs to the domain-specific dataset and the 

three generic datasets. In all our experiments, we use the following hyperparameters for 
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fine-tuning: maximum sequence length of 256, adam learning rate (lr) of 1e-5, batch size 

of 16, and a train-test split ratio of 80:20. 

 

3.3.3   Support Vector Machines (SVM) 

A Support Vector Machine is a popular supervised margin classifier, reported as one of 

the best algorithms for text classification [Joachims, 1998; Telnoni et al., 2019]. We 

chose the LinearSVC algorithm in the Scikit-learn library [Pedregosa et al., 2011], which 

implements a one-versus-all (OVA) multi-class strategy. This algorithm is suitable for 

high-dimensional datasets and is characterized by a low running time [Chauhan et al., 

2019].  

 Unlike PLMs, traditional machine learning models require pre-processing data 

cleaning steps. In our study, we used the following pre-processing steps on the four 

datasets: (i) removing missing data; (ii) removing numbers and special characters; (iii) 

lower casing; (iv) tokenization; (v) lemmatization; and (vi) word vectorization using 

TFIDF10. 

 It is important to note that when applying the TFIDF vectorizer, we tried different N-

grams. An ‘N-gram’ is simply a sequence of N words that predicts the occurrence of a 

word based on the occurrence of its (N – 1) previous words. The default setting is 

Unigrams. In our study, we used trigrams which means that we included feature vectors 

consisting of all unigrams, bigrams, and trigrams. 

3.4   Results 

In this section, we discuss the results of applying four different fine-tuned PLMs (i.e., 

BERT, DistilBERT, RoBERTa, XLM) and a linear SVM classifier on the four datasets 

described in Section 3.1. 

 

10  TFIDF stands for Term Frequency-Inverse Document Frequency, which is a combination of two 

metrics:  

1. Term frequency (tf): a measure of how frequently a term t, appears in a document d.  

     2. Inverse document frequency(idf): a measure of how important a term is. It is computed by dividing 

the total number of documents in our corpus by the document frequency for each term and then applying 

logarithmic scaling on the result.   
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 Table 3-2 shows the F1-scores obtained when applying the four PLMs and a linear 

SVM classifier on the four datasets. When evaluating PLMs, we used 3 epochs because 

we observed that when the number of epochs exceeds 3, the training loss decreases with 

each epoch, and the validation loss increases. This translates to overfitting. Thus, all our 

experiments are run for 3 epochs only.  

For the domain-specific dataset, it is clear how the linear SVM achieves a comparable 

performance (0.79) as any of the fine-tuned PLMs. Similarly, for the BBC dataset, SVM 

surprisingly achieves the same F1-score (0.98) as RoBERTa on the third epoch. 

However, we expected that PLMs would significantly outperform SVM on general 

domain datasets. 

 For the 20NewsGroup, SVM outperformed all PLMs with an F1-score of 0.93. This 

accuracy score was a result of considering the meta-data (i.e., headers, footers, and 

quotes) as part of the text that is fed to the classifier. However, when we ignored the 

meta-data, there was a performance drop of 15%.  

 The last dataset is the Consumer Complaints which is the largest dataset (570,279 

instances) as described in Table 3-1. The accuracy of the linear SVM (0.82) was very 

close to the highest accuracy of 0.85 obtained by BERT and RoBERTa. While 0.82 is 

very competitive, we believe there is room for improvement if feature selection 

techniques were considered as this dataset is characterized by a large feature set. 

 The accuracy scores of PLMs are generally higher on generic datasets that do not 

contain domain-specific or rare words. Also, we notice a small gap between the accuracy 

scores of all PLMs in the third epoch for all datasets. 

In summary, the key points are: 

• Linear SVM proved to be comparable to PLMs for text classification tasks. 

• PLMs accuracy scores are generally higher on generic datasets. 

• The importance of feature engineering for text classification is highlighted by 

including meta-data. 

Table 3-2: Comparison of four PLMs against SVM Linear classifier in terms of accuracy 

(F1-score) 

Dataset Model Epoch 1 

 

 

Epoch 2 Epoch 

3 
Accuracy (F1-score) 
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3.5   Conclusions 

The study described in this paper compares the performance of several fine-tuned PLMs 

(see Section 3.3.2) against that of a linear SVM classifier (see Section 3.3.3) for the task 

of text classification. The datasets used in the study are: a domain-specific dataset of 

real-world support tickets from a large organization as well as three generic datasets (see 

Table 3-1).  

 To our surprise, we found that a pre-trained language model does not provide 

significant gains over the linear SVM classifier. We expected PLMs to outperform SVM 

on the generic datasets, however, our study indicates comparable performance for both 

models (see Table 3-2). Also, our study indicates that SVM outperforms PLMs on one of 

the generic datasets (i.e., 20NewsGroup). 

 Our finding goes against the trend of using PLMs on any NLP task. Thus, for text 

classification, we recommend prudence when deciding on the type of algorithms to use. 

Since our study seems to be the first comparative study of PLMs against SVM on 

generic datasets as well as on a domain-specific dataset, we encourage replication of this 

IT Support 

Tickets 

BERT 0.78 0.79 0.79 

DistilBERT 0.77 0.78 0.79 

XLM 0.77 0.79 0.79 

RoBERTa 0.77 0.78 0.79 

LinearSVM(n-gram=3) 0.79 

BBC BERT 0.97 0.97 0.97 

DistilBERT 0.97 0.97 0.97 

XLM 0.88 0.96 0.97 

RoBERTa 0.97 0.97 0.98 

LinearSVM(n-gram=3) 0.98 

20NewsGroup BERT 0.85 0.91 0.92 

DistilBERT 0.82 0.90 0.90 

XLM 0.89 0.91 0.92 

RoBERTa 0.84 0.87 0.90 

LinearSVM 0.93 

Consumer 

Complaints 

BERT 0.83 0.84 0.85 

DistilBERT 0.82 0.84 0.84 

XLM 0.80 0.82 0.83 

RoBERTa 0.83 0.84 0.85 

LinearSVM 0.82 
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study to create a solid body of knowledge for confident decision-making on the choice 

of algorithms. 
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Addendum to Chapter 3: Attention is Not Always What You 

Need: Towards Efficient Classification of Domain-Specific 

Text11 
 

This Chapter is an addendum to Chapter 3. The reason that led to the inclusion of this 

addendum is to increase the empirical power of the results reported in Chapter 3. 

In Chapter 3, we compared the performance of four PLMs (i.e., BERT, DistilBERT, 

XLM, RoBERTa) against a linear SVM on four multi-class datasets (see Section 3.3.1). 

Our results showed that the linear SVM achieves comparable performance to the fine-

tuned PLMs, and even outperformed on one of the datasets (i.e., 20NewsGroup) (see 

Table 3-2). 

However, we had trained (i.e., fine-tuned) our PLMs for only 3 epochs, because we 

experienced overfitting after the third epoch. There could be an assumption that the low 

number of epochs used (i.e., 3) is the reason behind the comparable performance. To 

eliminate that assumption, we surveyed the literature on various SOTA models using a 

higher number of epochs (4-15) and compared their performance against our linear SVM 

classifier. Results are shown in Table Add-1 where ’Add’ stands for the addendum.  

 The following three datasets are used for the comparison:  

1. 20NewsGroup [20Newsgroups, 2022]: a public dataset consisting of 18,846 

documents, categorized into 20 groups. We note that some research paper uses a 

version of this dataset with only four major categories (comp, politics, rec, and 

religion), hence their results were not included in this paper. 

2. BBC News [Greene and Cunningham, 2006]: a public dataset originating from BBC 

News. It consists of 2,225 documents, categorized into 5 groups, namely: business, 

entertainment, politics, sport, and tech.  

3. IT Support tickets: a private dataset obtained from a large IT industrial partner. It is 

composed of real customer issues related to a cloud-based system. It consists of 

194,488 documents categorized into 12 classes. 

 

11
 A version of this addendum has been accepted in (Wahba, Y., Madhavji, N. and Steinbacher, J., 2023. 

Attention is Not Always What You Need: Towards Efficient Classification of Domain-Specific Text . In  

Intelligent Computing: Proceedings of the 2023 Computing Conference. Cham: Springer International 

Publishing, 2023. 
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Table Add-1: Accuracy results of SOTA models reported in the literature on two TC 

datasets against a Linear SVM classifier with the highest accuracies in bold. 

Dataset Model Accuracy(%) Reference 

20NewsGroup 

    (20 classes) 

TFIDF with 

Naive-Bayes 

81.69 [Wagh et al., 2021] 

GloVe+Average 80.43 [Wagh et al., 2021] 

GloVe+Attention 81.65 [Wagh et al., 2021 

LSTM+CNN 79.74 [Wagh et al., 2021] 

BiLSTM+Max 83.02 [Wagh et al., 2021] 

BiLSTM+Attention 81.76 [Wagh et al., 2021] 

Universal Sentence 
Encoder (USE) 

81.76 [Wagh et al., 2021] 

ULMFiT 82.4 [Wagh et al., 2021] 

Hierarchical Attention 

Network (HAN) 

85.01 [Wagh et al., 2021] 

BERT 85.78 [Wagh et al., 2021] 

DistilBERT 85.43 [Wagh et al., 2021] 

fastText 79.4 [Joulin et al., 2017] 

MS-CNN 86.1 [Pappagari et al., 2018] 

Text GCN 86.3 [Yao et al., 2019] 

TensorGCN 87.74 [Liu et al., 2020] 

Simplified GCN 88.50 [Wu et al., 2019] 

MLP over BERT 85.5 [Pappagari et al., 2018] 

LSTM over BERT 84.7 [Pappagari et al., 2018] 

LEAM 81.91 [Wang et al., 2018]  

CogLTX (Glove init) 87.0 [Ding et al., 2020] 

BoW + SVM  63.0 [Ding et al., 2020] 

Bi-LSTM 73.2 [Ding et al., 2020] 

RoBERTaGCN 89.5 [Lin et al., 2021] 

SVM+TFIDF 90.0  

BBC News 

     (5 classes) 

BERT 97 [Arslan et al., 2021] 

DistilBERT 97 [Arslan et al., 2021] 

XLM 97 [Arslan et al., 2021] 

RoBERTa 99 [Arslan et al., 2021] 

XLNET 98 [Arslan et al., 2021] 

TFIDF with 

Naive-Bayes 

95.73 [Wagh et al., 2021] 

GloVe+Average 94.16 [Wagh et al., 2021] 

GloVe+Attention 95.28 [Wagh et al., 2021] 

LSTM+CNN 96.18 [Wagh et al., 2021] 

BiLSTM+Max 95.73 [Wagh et al., 2021] 

BiLSTM+Attention 96.63 [Wagh et al., 2021] 

Universal Sentence 

Encoder (USE) 

96.63 

 

[Wagh et al., 2021] 

ULMFiT 97.07 [Wagh et al., 2021] 
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Hierarchical Attention 
Network (HAN) 

97.75 

 

[Wagh et al., 2021] 

BERT 98.2 [Wagh et al., 2021] 

DistilBERT 97.3 [Wagh et al., 2021] 

SVM+TFIDF 98.0  

IT Support 

Tickets 
   (12 classes) 

BERT 0.79 

DistilBERT 0.78 

XLM 0.79 

RoBERTa 0.79 

SVM+TFIDF 0.79 

 

 Table Add-1 shows that the linear model (i.e., SVM) is comparable to several SOTA 

models reported in the literature on three text classification datasets. 

 It is to be noted that for the 20NewsGroup dataset, some authors reported accuracies 

higher than 90%. For instance, [Zhou et al., 2016] reported an accuracy of 96.5% using a 

2D Convolutional Filter. Similarly, [Lai et al., 2015] reported an accuracy of 96.49% 

using recurrent convolutional neural networks. However, we note that they use only four 

major categories (comp, politics, rec, and religion) out of the original 20 categories for 

the 20NewsGroup. Hence, we strongly recommend renaming this dataset to include the 

number of categories (e.g., 20NewsGroup-4) to denote using only four categories and to 

provide a fair comparison. 

 To elaborate more on the results, we provide another reason behind the comparable 

performance of PLMs against a linear model such as SVM, and their failure to utilize 

their huge linguistic knowledge when employed for a domain-specific task. The reason 

lies behind the phenomenon of ‘monosemy’. The term ‘Monosemy’ from the Greek 

roots: mono (“one”) and semainein (“to signify”) -- stands for words with only one 

meaning [Wielgosz, 2017]. It is the opposite of ‘polysemy’ where words could have more 

than one meaning [Ravin and Leacock, 2000]. For domain-specific text, the monosemic 

nature of words is intrinsically linked to the technical/specialized vocabulary (e.g., DNS). 

The reason behind this is that scientific terms need a precise meaning in order to function 

and be easily recognized [Wielgosz, 2017].  

 Table Add-2 shows a sample of pre-processed tickets (see the first column) from our 

support tickets dataset. The second column highlights a specialized (i.e., domain-specific) 

word that could have different possible meanings if appeared in a different context. 
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However, the actual meaning (in the third column) is the only logical/intended meaning 

for the word in the context of a ticketing system. 

 

Table Add-2: The monosemic nature of some words that appear in the IT Support Tickets 

dataset, their actual meaning in the text, and another possible meaning. 

 

Examples of support 

tickets 

Specialized word Actual meaning in the 

text 

Other possible 

meaning 

Subscription account 

link cloud … 

Cloud A system hosting 

software services 

A visible mass of 

particles of 

condensed vapor 

Cancel line item 

whiskey 

Whiskey A user-interface A drink 

Slave node serve 

customer traffic … 

Slave A device A person held in 

forced servitude 

Host freeze case brings 

production back … 

Host A computer A person who talks to 

guests on a program 

Good regard 

organization space 

resource field … 

Space A container  The region beyond 

the earth's atmosphere 

Clear cookie success Cookie A file A cake 

Make soap connection 

web team … 

Soap Simple Object Access 

Protocol 

A cleansing agent 

Boot access web 

service … 

Boot Verb- to reload A footwear 

  

 This study raises the question of whether PLMs are the most cost-efficient solution 

for domain-specific TC tasks. We encourage the replication of this study on more 

domain-specific datasets (e.g., law, medicine, and finance) for greater validity of the 

findings. 
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Abstract: Correct classification of customer support tickets or complaints can help 

companies to improve the quality of their services to the customers. One of the 

challenges in text classification is when certain classes tend to share the same vocabulary. 

In this paper we propose a stacking algorithm based on combining different selected 

classifiers that operate on different feature subsets, depending on those features that tend 

to improve the recall and the precision of the overlapped classes. 

Chapter 4: Reducing Misclassification Due to Overlapping 

Classes in Text Classification via Stacking Classifiers on 

Different Feature Subsets12 

 

4.1  Introduction  

Due to the rapid increase in the complexity of IT environments, support agents need to 

handle thousands of incoming user tickets daily. To resolve these tickets efficiently, 

automation of ticket classification is considered crucial for IT service management 

[Paramesh and Shreedhara, 2019]. 

 Text classification is a challenging task due to the complexity of the unstructured 

nature of human language and the explosive growth of documents on the internet. The 

task is even harder when the dataset suffers from imbalance and overlapping classes 

[Lee and Kim, 2018]. In a multi-class text classification task, when two or more classes 

share the same features (i.e., words), the class boundaries are not clearly defined, and 

thus, the classifier’s performance to distinguish between the overlapped classes 

decreases. This problem is known as ‘overlapping classes’ [Xiong et al., 2013]. Different 

schemes have been proposed to handle the problem of overlapping classes [Sáez et al., 

2019; Sit et al., 2009]. These schemes generally fall into two categories: either 

modifying the classification algorithm or altering the original data by separating or 

 

12
 A version of this chapter has been published in (Wahba, Y., Madhavji, N. and Steinbacher, J., 2022, 

March. Reducing Misclassification Due to Overlapping Classes in Text Classification via Stacking 

Classifiers on Different Feature Subsets. In Future of Information and Communication Conference (pp. 

406-419). Springer, Cham). 
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merging the overlapped region. Despite their ability to reduce the effect of overlap, they 

have their drawbacks. The first technique lacks generalizability to other classification 

algorithms. In contrast, the second technique suffers from a loss of predictability if the 

overlapped region is merged or designed for data having special characteristics [Liu, 

2008]. 

 To avoid these drawbacks, we propose a new method to reduce the misclassification 

of overlapped classes based on “stacking” different classifiers on different feature 

subsets. Stacking or stacked generalizer is introduced by Wolpert [Wolpert, 1992], to 

combine the predictions of multiple base models. This results in reducing the bias and 

minimizing the error rate. 

 The success of stacking stems from utilizing the diversity of the base-level models’ 

predictions. Unlike Bagging [Breiman, 1996] and Boosting [Freud, 1996], stacking 

combines heterogeneous classifiers (e.g., decision trees, logistic regression, and neural 

networks). The basic stacked model consists of two levels. Level-0 is composed of the 

base models (i.e., learners), and Level-1 is the final learner or so-called the meta learner. 

Stacking can be extended to include more levels; however, the only disadvantage would 

be increased computational complexity and therefore increased model training time. 

In our approach, first, we train different linear and non-linear classifiers on the full 

feature set. Second, we use the Chi2 test to determine the best feature set for all our pre-

trained classifiers that improve the f1-score for the overlapped class(es). Finally, we 

train a two-layered stacked model composed of the best base learners obtained from the 

first step as layer-1 and combine it with a strong meta-learner for the second layer. 

 Unlike the previous approaches, our method is generalizable as it does not depend on 

a specific classifier, but on the features that improve the classifier’s accuracy to classify 

the overlapped class. Recursive searching of feature subsets is employed to identify 

features that tend to improve the classifier’s ability to distinguish the overlapped class. 

By leveraging the power of using ensembles of classifiers (i.e., stacking) combined with 

pre-chosen features, the overall accuracy is shown to increase and the misclassification 

for the overlapped class(es) is shown to decrease. 



 

60 

 The rest of the paper is organized as follows. Section 4.2 describes related work. 

Section 4.3 describes our methodology. Section 4.4 presents the experiments. Section 

4.5 describes the results, and Section 4.6 concludes the paper. 

 

4.2  Related Work 

In this section, we give an overview of the existing literature on the domain of 

classification in the presence of overlapping regions and class imbalance.  

 Xiong et al. [Xiong et al., 2010] have proposed three different schemes for handling 

overlapping regions: discarding, merging, and separating: (i) The ‘discarding’ scheme 

simply ignores the overlapping region and the classifier learns only from non-

overlapping regions. This can be achieved using techniques of imbalanced learning such 

as Tomek Links [Ivan, 1976] and SMOTE [Chawla et al., 2002]. (ii) The ‘merging’ 

scheme considers the overlapping region as an extra new class (i.e., metaclass), and the 

classification is done in a 2-tier approach. The top tier handles the entire dataset with the 

additional class that represents the overlapping region, and the lower tier handles those 

instances belonging to the ‘overlapped region’ class. (iii) In the ‘separating’ scheme, 

data belonging to the overlapped region is not modified (i.e., either ignored or merged). 

However, each region is treated separately by a learning model. 

 Trappenberg and Back [Trappenberg and Back, 2000] followed the merging approach 

to tackle the overlapping problem. They referred to the new class as the ‘I don’t know’ 

class. The authors stated that by sacrificing the predictability of the overlapped region, 

they gained a drastic increase in the confidence of other classes. However, a major 

drawback of the merging (and discarding) schemes is the loss of prediction accuracy for 

data belonging to the overlapping region. 

   Tang and Gao [Tang and Gao, 2007] applied the reverse k-nearest neighbour algorithm 

(RkNN) [Korn and Muthukrishnan, 2000] to eliminate noisy patterns and the k-nearest 

neighbor algorithm (KNN) [Cover and Hart, 1967] is applied to extract boundary 

patterns. Then they utilize rough set theory to train a Support Vector Classifier (SVC) on 

the classes represented by lower and upper approximation sets. While this approach 

achieves an improved classification performance without losing predictability for 
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instances belonging to the overlapping regions, a major drawback is the high complexity 

of KNN which makes it inappropriate for high-dimensional datasets. 

  Following the ‘separating’ scheme, Liu [Liu, 2008] propose a new scheme and called it 

partial discriminative training (PDT) scheme that attempts to improve the separation 

between metaclasses, where the pattern of an overlapping class is used as a positive 

sample of its labeled class, and neither positive nor negative sample of the allied classes. 

In contrast, [Fu et al., 2015] and [Xiong et al., 2013] tackled the problem by modifying 

the learning algorithm. The above techniques belong to a crisp decision, where only a 

single label is assigned to a pattern. A different solution that uses a soft decision strategy 

was proposed by Tang et al. [Tang et al., 2010], this solution provides multiple decisions 

to the system operators which the authors believe is better than providing a wrong 

classification. While the previous approaches handled the problem of overlapping 

classes separately, Lee and Kim in [Lee and Kim, 2018] addressed both overlapping and 

imbalance using an overlap-sensitive margin (OSM) classifier based on a modified fuzzy 

support vector machine and k -nearest neighbor algorithm. 

 Different from the above, some researchers usually deal with poor model accuracies 

due to overlap in text classification tasks by switching to more complex models such as 

Deep Learning or Neural Networks (NN). Saeed et al. [Saeed et al., 2018] propose Deep 

Neural Network to classify overlapped toxic sentiments with high accuracy. Similarly, 

Zhang et al. [Zhang et al., 2018] and Badjatiya et al. [Badjatiya et al., 2017] utilize deep 

neural networks to detect hate speech in tweets. Various authors (e.g., [Agrawal and 

Awekar, 2018] & [Ptaszynski et al., 2017]) have also used Convolutional Neural 

Networks (CNNs) for cyberbullying detection, and Zhou et al. [Zhou et al., 2016] used 

Bidirectional LSTM to improve different text classification tasks. 

 We classify the above approaches for handling overlap as non-deep learning and 

deep-learning approaches. Drawbacks for the non-deep learning approaches are either 

loss of predictability for the overlapping regions or lack of generalizability to other 

algorithms. On the other hand, deep learning approaches are known for their high 

computational complexity and significant training time, they also require huge amounts 

of data to train. 
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 Our research follows a different route by leveraging ensemble methods based on the 

stacking of different linear and tree-based machine learning models. These models do 

not require large volumes of data and are characterized by a fast training time. We train 

the stacked models on different feature subsets selected prior to model training. To the 

best of our knowledge, in prior research, stacking classifiers on different feature subsets 

has not been considered for handling the problem of class overlap. 

 

4.3   Methodology 

Section 4.3.1 gives an overview of the dataset cleaning steps used in our study and the 

exploratory steps performed to analyze and gain more insights into the data. We then 

discuss the two main techniques used in our study: Stacking in Section 4.3.2 and Feature 

Selection in Section 4.3.3. In Section 4.3.4, we list the various classification algorithms 

we use in our study. 

 

4.3.1   Exploratory Data Analysis (EDA) 

Figure 4-1 (upper) depicts the distribution of the Customer Support Tickets dataset 

across different categories. Likewise, Figure 4-1 (lower) depicts the distribution of the 

Customer Complaint dataset. As evident from Figure 4-1, both datasets are imbalanced, 

where the distribution of class samples is uneven by a large amount in the training 

dataset. This is expected to bias the classifier towards the major classes and in many 

cases lead to poor classification accuracies for the minor classes [Wang and Zhang, 

2018]. As in our previous work [Wahba et al., 2020], we prefer not to over-sample the 

minority and to keep the original distributions as is. To remove noise (i.e., words that do 

not contribute to the learning), we removed time indicators (e.g., last week, now, etc.) 

and location names (i.e., countries and cities) and extended our Stop Words list to 

include common generic words (e.g., please, kindly, help, etc.). This greatly reduced our 

feature size by 12,000 features for the Customer Support Tickets dataset (hereon, D1) 

and by 500 features for the Consumer Complaint dataset (hereon, D2). 
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Figure 4-1: (upper) Class distribution for Customer Support Tickets dataset, 

(lower) Class distribution for Consumer Complaint dataset. 

 

 

 

  

  

 

 

 

 

The next step after cleaning the dataset is experimenting with some baseline 

classifiers (i.e., simple basic classifiers with no hyperparameter optimization) and their 

accuracies will be referred to as baseline accuracies. Our baseline classifiers are 

described in Section 4.4. This step is important for determining: (i) whether or not 

feature selection is needed and (ii) whether or not adding new features would help 

improve the accuracy of classification. While inspecting the accuracy of our baseline 

classifier(s), we noticed that some classes (e.g., Apps and Bank account) with a large 

number of instances suffer from low accuracy (F1-scores: 0.26 and 0.4, resp., -- see 

Table 4-1); whereas other classes with a relatively smaller number of instances (e.g., 

VPC and Virtual currency) were successfully classified with higher accuracy (F1 scores: 

0.56 and 0.5, resp., -- see Table 4-1). This concludes that poor accuracy is not always the 

result of an imbalance or a low number of instances. Other reasons might involve class 

overlap, outliers, and noise. 
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Figure 4-2:  onfusion matrix for  1 showing the overlap between ‘Apps’, 

‘Platform/ onsole’ and ‘Services’ 

  Table 4-1: Baseline accuracies (F1-scores) for two minor and major classes 

We excluded noise as a reason behind the misclassification as both our datasets were 

cleaned and pre-processed extensively before training our ML models. So, to check for 

features’ overlap, we utilize the confusion matrix [Kulkarni et al., 2020] and the popular 

Venn diagrams [Baron, 1969]. Figure 4-2 presents the confusion matrix for D1, which 

shows that the classifier (i.e., Logistic  egression) is confusing ‘Apps’ with 

‘Platform/ onsole’ and ‘Services’. Only 106 instances are correctly classified as ‘Apps’, 

while 157 instances are mistakenly classified as ‘Platform/ onsole’ and 171 are 

classified as ‘Services’.  Similarly, Figure 4-3 shows the high confusion between ‘Bank 

account’ and ‘ hecking/saving’ in  2, with 1266 correctly classified as ‘Bank account’ 

while 1107 mistakenly classified as ‘ hecking/saving’. 

Class name Precision Recall  F1-score # of Instances 

Apps (D1) 0.47 0.18 0.26 2,872 

VPC (D1) 0.67 0.48 0.56 919 

Bank account(D2) 0.40 0.39 0.40 14,885 

Virtual currency(D2) 1 0.3 3 0.50 16 
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Figure 4-3: Confusion matrix for D2 showing the overlap between 'Bank 

account' and 'Checking/Saving' 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 While the confusion matrix is a great way to detect overlapping classes, we also used 

Ven diagrams to investigate the overlapping vocabulary. Figure 4-4 displays the top 50 

words in each of the ‘Apps’ class (left circle) and ‘Platform/ onsole’ class (right circle), 

and the intersection between the two sets is shown in the middle region. It is clear from 

Figure 4-4 that the number of shared vocabularies between ‘Apps’ and 

‘Platform/ onsole’ is large. The same steps were performed on the  onsumer  omplaint 

dataset. 
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Figure 4-4: Venn diagram showing vocabulary overlap between two classes 

 

4.3.2   Stacking 

Model stacking is an efficient ensemble method that has been widely used to improve 

prediction accuracy [Bennett et al., 2007]. We utilize stacking to reduce the 

misclassification rate caused by the overlapping phenomenon. By (a) training our 

machine learning classifiers on feature subsets that showed an improvement to the F1-

score of the overlapped classes and (b) combining the predictions of the base-level 

classifiers through stacking, it can result in a model with an improved classification 

accuracy and reduced misclassification rate for overlapped classes. Figure 4-5 shows a 

basic diagram for a stacked model composed of combining the predictions of m base 

classifiers (i.e., learners), which then provides the input for the meta-learner level. 
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Figure 4-5: Basic stacked model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3   Feature Selection 

Feature selection is the process that aims to reduce the size of the features (i.e., 

vocabulary) to only those features that contribute to the learning process of the classifier. 

This process helps in reducing text classification errors [Kou et al., 2020] and increases 

the model's accuracy. Feature selection methods can be classified into three main 

categories: filters, wrappers, and embedded methods [Chandrashekar and Sahin, 2014]. 

The latter two (wrapper and embedded methods) select features using a classification 

algorithm and a search strategy. These methods are computationally expensive and thus 

are not suitable for high-dimensional datasets. 

 However, filter methods exhibit a very low computational cost since they are 

classifier independent and thus, they are more commonly used for text classification 

tasks [Yang and Pedersen, 1997]. We use the Chi-squared test [Thomas et al., 2020] for 

feature selection on the two linear classifiers: SVC and LR (Section 4.3.4). While for the 

Extra Trees classifier, we experimented with both the Gini index and information gain 
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[Rokach and Maimon, 2005]. In our experiments, we tested both datasets with different 

numbers of features: 100, 500, 1000, 2000,5000,8000,10000,12000,500000 and 600000.  

4.3.4   Classification Algorithms 

The following are the classification algorithms considered for our experiments:  Linear 

Support Vector Classifier (SVC) [Joachims, 1998], Logistic Regression (LR) [Zou et al., 

2019], Extremely randomized trees (ET) [Geurts et al., 2006], Extreme Gradient 

Boosting (XGBoost) [Chen and Guestrin, 2016], K- nearest neighbor (KNN) [Cover and 

Hart, 1967].  

 

4.4  Experiments  

This section gives an overview of the datasets used and their properties. This is followed 

by the experimental steps taken in this study. 

 

4.4.1   Text Classification Datasets  

Our experiments were evaluated on two datasets. The first one (D1) is a real-world 

dataset for a global IT industrial partner; it is a collection of customer support tickets for 

a cloud-based system. The second dataset (D2) is a benchmark dataset published by the 

Consumer Financial Protection Bureau; it is a collection of complaints about consumer 

financial products and services [Bureau of Consumer Financial Protection, 2022]. The 

properties of both datasets are described in Table 4-2. 

 

Table 4-2: Dataset properties 

Dataset # of classes # of instances 
# of features 

 (n-gram= 1) 

# of features  

(n-gram= 3) 

Customer Support 

Tickets (D1) 
13 194,488 15,886 2,496,703 

Consumer 

Complaint (D2) 
15 570,279 53,444 6,112,905 
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 As can be seen from the table, both datasets are characterized by a huge feature set 

which when used in conjunction with trigrams (i.e., n=3) would greatly exceed the 

number of instances in the dataset. 

 

4.4.2    Empirical Procedure  

The following are the experimental steps performed for this study: 

Step 1: Dataset pre-processing and exploratory analysis (see Section 4.3.1). 

Step 2: Text vectorization. This transforms the natural text into vectors (i.e., numbers). 

We use Term Frequency Inverse Document Frequency13 (i.e., TFIDF) technique for its 

simplicity and efficacy. 

It is important to note that we experiment with different n-grams to check whether they 

improve the performance of the model. For dataset D1, trigrams, delivered the highest 

performance on all our baseline classifiers, with a low training time given our choice of 

learning algorithms. For dataset D2, as seen in Table 4-2, the feature dimensions for 

trigrams exceeded 6 million features. So, we kept the feature set size as the default 

unigrams (i.e., n=1) for the sake of computational complexity. 

Step 3: Training on a baseline model(s) described in Section 4.3.4 and recording 

accuracy. Baseline models are basic ML models (e.g., Logistic regression, SVC, etc.) 

with the default parameters. 

Step 4: Evaluation of the baseline model(s). If accuracy was satisfactory then 

hyperparameter optimization (i.e., parameter tuning) would be the last step before 

deploying the model. 

Step 5: If baseline model(s) accuracy is poor, then reinspect the dataset (step 1) and add 

new features or identify new relevant features in conjunction with domain experts and 

business stakeholders. 

 

13
 TFIDF stands for Term Frequency-Inverse Document Frequency, which is a combination of two 

metrics: Term frequency (tf): a measure of how frequently a term, t, appears in a document, d. And Inverse 

document frequency(idf): a measure of how important a term is. It is computed by dividing the total 

number of documents in our corpus by the document frequency for each term and then applying 

logarithmic scaling on the result.   



 

70 

Step 6: If adding new features is not possible or did not improve accuracy, then try 

different feature selection techniques described in Section 4.3.3. 

Step 7:  odel Stacking or ensemble learning is the final step for improving the model’s 

accuracy. Try a different combination of machine learning models with different meta-

learners. 

 

4.5   Results 

Table 4-3 shows the overall F1-score14for the six baseline classification algorithms (see 

Section 4.3.4) on the two text classification datasets. Due to the fundamental recall 

precision trade-off [Gordon and Kochen, 1989] (where improving the precision always 

results in lowering the recall and vice versa), we chose the F1-score as our performance 

metric. The highest overall accuracy for D1 is 79% which is achieved by SVC and XGB; 

whereas, for D2, 82% is the highest accuracy achieved by XGB and LR. 

 

Table 4-3: Baseline F1-scores for our classification algorithms 

Dataset SVC XGB LR KNN ET NB 

D1 0.79 0.79 0.78 0.70 0.77 0.68 

D2 0.80 0.82 0.82 0.42 0.81 0.75 

 

 In our experiments, we split the dataset into 80% for training samples and 20% for 

testing (i.e., evaluation). Since both datasets suffer from imbalance, we use the stratified 

splitting approach that preserves the same proportions of examples in each class 

[Sechidis et al., 2011]. To avoid overfitting [Dietterich, 1995], the final estimator (i.e., 

meta-learner) is trained on K-fold cross-validation where K=5. 

 The experimental results obtained after experimenting with different ensembles of 

stacked classifiers are presented in Table 4-4 and Table 4-5. We use the following 

abbreviations for simplicity: 

SVC1: Support Vector classifier trained on 500 features selected by using the Chi2 test. 

 

14 F1-score = 2x Precision x Recall / Precision+ Recall 
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SVC2: Support Vector classifier trained on 10,000 features selected by using the Chi2 

test. 

ET1: Extra Trees classifier trained on features selected to split on by using the Gini 

index. 

ET2: Extra Trees classifier trained on features selected to split on by using Information 

gain. 

LR1: Logistic Regression classifier trained on 10,000 features. 

 

Table 4-4: Results of different stacked models on the overall accuracy and the overlapped 

class on the Customer Support Tickets dataset (D1) 

 

 

 

Experiment 

No. 

 

Base Models 

 

Meta-

Learner  

 

F1-score 

 

Macro-

Avg 

Precision 

(Apps) 

Recall 

(Apps) 

F1-Score 

(Apps) 

1 
4 base-learners: 

SVC1, SVC, LR, ET1 
LR 0.794 0.56 0.43 0.36 0.39 

 

2 

5 base-learners: 

SVC1, SVC, LR, ET1, 

ET2 

 

LR 

 

0.80 

 

0.56 

 

0.45 

 

0.35 

 

0.40 

 

3 

5 base-learners:     

SVC1, SVC, LR, 

XGB, ET1 

 

LR 

 

0.80 

 

0.55 

 

0.50 

 

0.30 

 

0.37 

4 
4 base-learners: 

SVC1, SVC, ET1, ET2 
LR 0.794 0.56 0.43 0.36 0.39 

 

5 

5 base-learners: SVC1, 

SVC, KNN, ET1, ET2 

 

LR 

 

0.80 

 

0.56 

 

0.45 

 

0.36 

 

0.40 

6 
3 base-learners: 

SVC1, SVC, KNN 
LR 0.792 0.55 0.42 0.34 0.38 

 

7 

3 base learners: SVC, 

LR, XGB 

 

LR 

 

0.77 

 

0.55 

 

0.36 

 

0.45 

 

0.40 

 

8 

3 base-learners: SVC, 

LR, KNN 

 

LR 

 

0.792 

 

0.55 

 

0.42 

 

0.36 

 

0.39 
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 The choice of the number of features used for training the classifiers is based on 

several experiments conducted prior to stacking. For each feature subset selected by the 

Chi-squared test, the accuracy (F1-score) was recorded for the two overlapped classes: 

“Apps” and “Bank account”. We notice that the SVC classifier when trained on 500 

features (out of 15,886) delivered the highest F1- score for the ‘Apps’ class. While for 

dataset D2, the highest F1- score is obtained by training both the SVC and LR on 10,000 

features (out of 53,444). 

 Tables 4-4 and 4-5 demonstrate that our approach of stacking classifiers based on 

different feature subsets achieves superior overall performance compared to stacking on 

all features. This is clear in experiments number 2,3 and 5 in Table 4-4, where the F1-

score (0.80) is higher than the highest baseline accuracy (0.79) as described in Table 4-3. 

Also, for the overlapped class ‘Apps’, it is clear that all experiments (1-8) achieved a 

higher F1-score than the baseline accuracy for ‘Apps’ (0.26) as described in Table 4-1. 

 

Table 4-5: Results of different stacked models on the overall accuracy and the overlapped 

class on the Consumer Complaint dataset (D2) 

Experiment 

No. 

 

Base Models 

 

Meta-

Learner 

 

F1-score 

 

Macro-

Avg 

Precision 

(Bank 

account) 

Recall 

(Bank 

account) 

F1-Score 

(Bank 

account) 

 

1 

3 base-learners: 

SVC, LR, XGB 

 

SVC 

 

0.81 

 

0.60 

 

0.48 

 

0.42 

 

0.45 

 

2 

3 base-learners: 

SVC, LR, XGB 

 

LR 

 

0.82 

 

0.54 

 

0.52 

 

0.32 

 

0.40 

 

3 

3 base-learners: 

SVC2, LR, XGB 

 

LR 

 

0.82 

 

0.55 

 

0.53 

 

0.32 

 

0.40 

 

4 

4 base-learners: 

SVC2, LR1, SVC, 

XGB 

 

LR 

 

0.83 

 

0.56 

 

0.54 

 

0.34 

 

0.42 

 

5 

4 base-learners: 

SVC2, SVC, LR, 

XGB 

 

SVC 

 

0.82 

 

0.61 

 

0.49 

 

0.41 

 

0.45 

 

6 

5 base-learners: 

SVC2, LR1, SVC, 

ET1,ET2 

 

SVC 

 

0.83 

 

0.56 

 

0.54 

 

0.41 

 

0.46 
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7 
3 base-learners: 

SVC2, SVC, LR1 
LR 0.82 0.57 0.52 0.35 0.42 

 

 Similarly, for dataset D2, experiment number 4 and 6 in Table 4-5 achieved a higher 

F1-score (0.83) than the highest baseline accuracy (0.82) in Table 4-3. Also, for the 

overlapped class ‘Bank account’, experiments 4,5,6, and 7 achieved a higher F1-score 

than the baseline accuracy for ‘Bank account’ (0.40) as described in Table 4-1. We 

excluded KNN from our stacking experiments on D2 due to the slow running time as 

well as the low baseline accuracy (0.42) for KNN on dataset D2 as shown in Table 4-3. 

Similarly, NB (0.68) was excluded from our stacking experiments on D1. 

 

4.6   Conclusion and Future Work 

 orrect classification of customers’ support tickets is crucial to organizations. However, 

one of the challenges that face text classification is the presence of common words 

between different classes, known as class overlap. 

    This paper proposes a new method for reducing the misclassification caused by the 

class overlapping problem in multi-class text classification tasks. The proposed solution 

is based on stacking different ML models that are trained on different feature subsets 

described in Tables 4-4 and 4-5. The feature selection step is done prior to stacking to 

determine the best feature set for the given overlapped class(es). 

    Our experimental results on two multi-class text classification datasets show that our 

method achieves an improvement in the overall accuracy for our classifiers as well as an 

improvement for the misclassification rate given by a high F-score for our two chosen 

classes (i.e., ‘Apps’ and ‘Bank account’). 

In the future, we plan to investigate the problem of class overlapping in the presence of 

imbalance for large-scale hierarchical datasets. Also, we plan to include more feature 

selection approaches in our experiments. 
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Abstract: Classifying customer support tickets according to the desired criteria is an 

important task in IT service management. One of the biggest challenges is the presence of 

a large number of shared words between different classes. This problem is widely known 

as overlapping classes. Misclassification due to overlapping regions is a critical problem 

that is not well addressed in the NLP field. In this paper, we detect overlapping classes 

from an ML algorithm perspective and propose a hybrid machine learning model based 

on a linear SVM classifier and a set of N hand-crafted rules to classify the incoming 

ticket with high accuracy where N is the number of overlapped classes. 

 

Chapter 5: A Hybrid Machine Learning Model for Efficient 

Classification of IT Support Tickets in The Presence of Class 

Overlap15 

 

5.1   Introduction 

In today’s world, support ticketing systems are employed by a wide range of businesses. 

The ticketing system facilitates the interaction between customers and the support teams 

when the customer faces an issue with a product or a service. For large-scale IT 

companies with a large number of clients and a great volume of communications, the task 

of automating the classification of incoming tickets is key to guaranteeing long-term 

clients and ensuring business growth.  

 According to a survey by Zendesk [Zendesk, 2022], quick resolution time was rated 

as a top factor for a good customer experience. The fastest way to resolve a ticket is by 

accurately classifying the incoming tickets which would then be routed to the right 

support team, avoiding any significant delays in resolution.  

 

15
 A version of this chapter has been published in (Wahba, Y., Madhavji, N.H. and Steinbacher, J., 2022, 

A Hybrid Machine Learning Model for Efficient Classification of IT Support Tickets in The Presence of 

Class Overlap, In Proceedings of the 32nd Annual International Conference on Computer Science and 

Software Engineering (CASCON22), (pp. 151-156). 
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For large-scale IT firms, classification involves hundreds or thousands of ticket 

categories which poses a challenge for accurate classification. As the number of classes 

increases, the possibility of overlapping between the classes also increases. Overlapping 

classes is a critical problem where an incoming ticket appears as a valid classification for 

more than one class.  

 The class overlap problem has been widely studied by researchers in myriad subjects 

(e.g., smart cities, image segmentation, document analysis, pattern recognition, etc..) 

either in isolation [Xiong et al., 2013] or in conjunction with class imbalance [Das et al., 

2014; Lee and Kim, 2018]. However, few studies have investigated the aforementioned 

problem in the NLP domain and specifically for large-scale text classification tasks [Liu 

et al., 2019; Wahba et al., 2022].  

 There are two approaches for classifying instances belonging to an overlapping 

region. The first approach is when the system generates a single label (i.e., target) for a 

given instance which is known as a ‘crisp decision’ strategy. The second approach is 

known as a ‘soft decision’ strategy where the system generates multiple labels for a 

given instance that are further analyzed and judged by the support teams. Our work 

follows a crisp decision strategy.  

 In this paper, we propose a hybrid solution based on a linear SVM classifier and a set 

of simple rules for text classification scenarios involving class overlap. The rules are for 

classifying only those classes with low accuracy due to overlap. Hence, our rules are 

easy to update. Formulation of the rules is based on expert knowledge of the support 

agents and a Python library (i.e., eli5) to extract the most unique and important words for 

each of the overlapped classes. We investigated overlap from the classification 

algorithms’ (i.e., SV ) perspective since SV  has proven to be a robust choice for text 

classification tasks with high dimensional feature space [Joachims, 1998]. Thus, we 

analyze its confusion matrix to determine severe overlaps, then a set of handcrafted 

simple rules is created based on the presence of unique keywords. 

 The rest of the paper is organized as follows: Section 5.2 describes related work. 

Section 5.3 describes the empirical study. Section 5.4 presents the experiments and 

research results. Section 5.5 concludes the paper. 
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5.2   Related Work  

In this section, we first give an overview of the literature on the problem of overlapping 

classes, and then we present a sample of studies for handling overlapping in text 

classification tasks.  

 The early work by [Xiong et al., 2010] examined the problem of overlapping classes 

on five real-world binary datasets. They propose three different modelling schemes for 

handling overlapping regions, namely: discarding, merging, and separating. The 

discarding scheme ignores the overlapping region and learns only from non-overlapping 

regions. While this scheme might perform well on datasets with minimal overlapping, it 

is not suitable when the overlapping ratio is high because the discarding scheme will 

result in losing important information and hence a poor classification accuracy for the 

overlapped classes.  

 The merging scheme considers the overlapping region as a new class labelled as 

‘overlapping’, and the classification is done in a 2-tier approach. The top tier learns the 

entire data with the additional class that represents the overlapping region, and the lower 

tier learns those instances belonging to the ‘overlapping class. Authors in [Trappenberg 

and Back, 2000] followed the merging approach on two UCI Machine Learning 

 epository datasets and referred to the overlapping region as ‘I don’t know’ class. The 

authors indicated that by sacrificing the predictability of the overlapped region, they 

gained a significant increase in the confidence of other classes.  

 In the separating scheme, two models are used to learn about both the overlapping 

and non-overlapping regions separately. Authors in [Tang and Gao, 2007] followed the 

separating scheme on five benchmark data sets from UCI Machine Learning Repository. 

They applied the k-nearest neighbour algorithm (KNN) [Cover and Hart, 1967] to 

extract boundary patterns and rough set theory to train a Support Vector Classifier 

(SVC) on the classes represented by lower and upper approximation sets. While this 

approach does not sacrifice the predictability of the overlapped region, the high 

complexity of KNN renders it not suitable for high-dimensional text datasets. Similarly, 

the work in [Xiong et al., 2013] reports improvements following the separating approach 

using Naïve Bayes classifier on five real-world binary data sets from UCI. Similarly, 
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authors in [Fu et al., 2015] propose a Two-Step Classification SVM (TSC-SVM) and 

applied wavelet transform to denoise adjacent samples on the abalone dataset.  

 None of the aforementioned works, which handle the problem of overlapping classes, 

were evaluated on datasets involving natural language text. Only a few works addressed 

the overlapping problem in the NLP domain. For example, the work in [Liu et al., 2019] 

proposes a fuzzy approach for hate speech text classification with overlapping instances. 

Their work shows that fuzzy approaches are superior in dealing with the fuzziness and 

ambiguity of the text. Likewise, authors in [Wahba et al., 2022a] propose the stacking of 

different machine learning models based on different feature subsets and show accuracy 

improvements on two domain-specific text datasets. 

 However, some researchers favor more complex models such as Neural Networks or 

Deep Learning in an effort to handle the problem of overlapping classes. For instance, 

authors in [Saeed et al., 2018] recommend the use of Deep Neural Network (DNN) 

models on unprocessed datasets for overlapping multi-label text classification problems. 

The study was evaluated on a real-world dataset of toxic comments and the text was 

vectorized using the pre-trained word embedding FastText by Facebook. Similarly, the 

work by [Georgakopoulos et al., 2018] shows promising results using Convolutional 

Neural Networks (CNN) based models for the task of toxic comment classification. 

However, their study does not investigate the presence of overlap. 

 Therefore, our study contributes to the meager literature on overlapping classes in the 

NLP domain. Specifically, the classification of domain-specific text with multiple 

categories that overlap. We propose a hybrid ML model based on a linear classifier and a 

set of simple handcrafted rules for overlapped categories with minimal human 

intervention. 

 

5.3   Empirical Study  

Below, we describe the infrastructure and the datasets we used in the empirical study. We 

also outline the overlapped classes for each dataset considered for this study and the 

formulation of the rules. The experimental algorithms are written in Python 3.8.3. The 

testing machine is Windows 10 with an Intel Core i7 CPU 2.71 GHz and 32GB of RAM. 
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5.3.1   Text Classification Datasets  

We notice that most publicly available large-scale text datasets with a hierarchical nature 

contain minor to no overlap; thus, they were not suitable for this study. Hence, we 

selected the following datasets carefully based on the presence of a clear overlap between 

two or more classes (as described in Section 5.3.2):  

1. IT Support Tickets: a private dataset obtained from a large industrial IT partner with 

real customer issues concerning a cloud-based system. The dataset consists of 194,488 

documents categorized into 12 classes on the first level of the hierarchy and 110 classes 

on the second level.  

2. MIND [Wu et al., 2020]: a large-scale hierarchical dataset for news recommendation. 

It was collected from anonymized behaviour logs of the Microsoft News website. It 

consists of 101,527 documents categorized into 15 classes.  

3. Endava Anonymized Support Tickets (EAST) [Preda G., 2020]: an anonymized 

hierarchical dataset imported from  ndavas’ helpdesk system for customer support 

tickets. It consists of 48, 549 documents categorized into 13 classes.  

4. Consumer Complaints [Bureau of Consumer Financial Protection, 2022]: a large-scale 

hierarchical dataset published by the Consumer Financial Protection Bureau; it is a 

collection of complaints about consumer financial products and services. It consists of 

570,279 documents categorized into 15 classes.  

 

5.3.2   Overlapped Classes  

A simple and straightforward way to determine overlap between classes is the confusion 

matrix [Kulkarni et al., 2020] which shows the correct and wrong predictions in terms of 

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

This way detects overlap in the space inferred by the classifier. Figure 5-1 shows the 

confusion matrix of a linear SVM classifier applied to each of the four datasets described 

in Section 5.3.1. 

For the IT Support Tickets, we notice that the SV  classifier is confusing ‘Apps’ 

with ‘Platform/ onsole’ and ‘Service. Only 272 instances are correctly classified as 
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‘Apps’, while 227 are mistakenly classified as ‘Platform/ onsole’ and ‘181’ are 

mistakenly classified as ‘Services’. For the  IN  dataset, the classifier is confusing 

‘news’ with ‘video’ with 490 instances correctly classified as video, while mistakenly 

classifying 597 video instances as ‘news’. Similarly, for the  AST dataset, class ‘4’ is 

greatly confused with class ‘6’ with ‘426’ instances mistakenly classified as class ‘4’ 

while in fact, they belong to class ‘6’. The final confusion matrix is for the  onsumer 

 omplaints dataset, which shows a large confusion between ‘Bank account’ and 

‘ hecking/saving’. For the sake of space, we did not consider all overlapped classes for 

the four datasets. 

 

Figure 5-1: Confusion matrix for linear SVM showing overlap between two or more 

classes for IT Support Tickets, MIND, EAST and Consumer Complaints datasets 

 



 

86 

 It is to be noted that the degree of overlap between two classes Ci and Cj is not 

always symmetric, meaning that the classifier could be confusing class Ci with class Cj 

but not necessarily confusing class Cj with class Ci. For instance, in our private IT 

Support Tickets dataset, the classifier is greatly confusing ‘Apps’ with 

‘Platform/ onsole’ with 227 correctly classified and 272 misclassified as 

‘Platform/ onsole’. However, for the ‘Platform/ onsole’, the confusion is more clear 

with ‘Services’ (688 instances) and less severe with ‘Apps’ (209 instances). 

 The above asymmetrical nature is a result of class imbalance which is discussed in 

several research studies to be strongly correlated with the problem of overlap [Das et al., 

2014; Lee and Kim, 2018]. This overlap leads to poor accuracy for the minor class 

involved in the overlap. We measure the class accuracies in terms of the F1-score (i.e., 

the harmonic mean of precision and recall) [E. Zhang and Y. Zhang, 2009] which is a 

widely accepted measure for imbalanced datasets. 

 

5.3.3   Rules Formulation  

In order to formulate the rules for the overlapped classes, we first created a list of unique 

keywords for each overlapped class. These words were selected based on the domain 

knowledge of the experts (i.e., support agents) combined with the most important words 

(i.e., features) determined by the python library ‘eli5’ [ li5, 2022]. The library helps to 

determine important words for each category based on their weights (see Table 5-1) 

which shows the weights based on the predictions of the linear SVM classifier on the 

Consumer Complaints dataset. Positive values (green highlight) indicate a high score and 

hence are considered important for the accuracy of the model; whereas, negative values 

(red highlight) indicate a low score and hence could be removed without affecting the 

classifier’s accuracy. 
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 The eli5 library was used to compensate for the lack of domain knowledge for the 

three public datasets used in this study as well as to enrich the list of keywords of our 

private dataset. There is no limit to the number of keywords selected for an overlapping 

class. 

However, it would be difficult to guarantee the uniqueness of chosen words if the list is 

large. Second, a score is calculated for each overlapped class based on the number (i.e., 

count) of keywords present in the input/test sentence. The class with the highest score is 

selected as the target class. The number of rules is determined by the number of 

overlapped classes for a specific dataset. Hence, our rules are simple and easy to 

interpret and update by the support agents. 

 

Table 5-1: Linear SVM top 20 features and their weights displayed as an HTML 

table using the eli5 library 
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5.3.4   Algorithm  

We propose a hybrid algorithm where rules are used as a pre-processing step to classify 

the N overlapped classes only. First, the incoming ticket is passed to our rule-based 

model, it would then be evaluated against the rules, and would either be successful (i.e., 

the incoming ticket contains one or more words specified in the list of keywords) and 

outputs the target label or it would then be passed to the ML model (LinearSVM) in our 

case. Our proposed Support Vector Machine Rule-based classifier “SV - B” algorithm 

is described in Algorithm 1. 

 

Algorithm 1 (SVM-RB): Support Vector Machine Rule-Based Classifier 

Input: Ticket t 

Output: Class C 

Initialize: C1- score, C2-score, ..., Cn-score=0. Where n is the number of overlapped 

classes 

Method Calculate-scores (t): 

C1-keywords = [list of words based on domain knowledge from experts + Top k words 

based on eli5] 

.. 

Cn-keywords = [list of words based on domain knowledge from experts + Top k words 

based on eli5] 

## Calculate a score for each class Cn 

C1-score = (foreach word in t present in C1-keywords C1-score++) 

.. 

Cn-score = (foreach word in t present in Cn-keywords Cn-score++) 

return C1-score, C2-score, …, Cn-score 

 
if (C1-score ≥ C2-score) & (C1-score ≥ C3-score) ... & (C1-score ≥ Cn-score) and C1- 

score ≠ 0: 

then → C = C1 

return C 

else if (C2-score ≥ C1-score) & (C2-score ≥ C3-score) ... & (C2-score ≥ Cn-score) 

and C2-score ≠ 0: 

then → C = C2 

return C 

else if (Cn-score ≥C1-score) & (Cn-score ≥ C2-score) ... & (Cn-score≥ Cn-1- 

score) and Cn-score ≠ 0: 

then → C = Cn 

return C 

else: Move to SVM classifier 

1 V-text = Vectorize t using TFIDF 

2 C = Predict on trained model (V-text) 

return C 

  end  
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5.4   Experiments and Results  

In this section, we discuss the learning algorithms used for this study and the results of 

applying our hybrid model (SVM-RB) to the four datasets described in Section 5.3.1. For 

this study, we chose three popular machine learning algorithms: support vector machines, 

logistic regression, and decision trees.  

For the support vector machines, we use the LinearSVC algorithm from the Scikit-learn 

library [Pedregosa et al., 2011]. LinearSVC proved to be efficient for high-dimensional 

datasets as it achieves high classification accuracy with low training time [Chauhan et al., 

2019].  

 Furthermore, the work in [Wahba et al., 2022b] shows that Linear SVM provides 

comparable performance to state-of-the-art Pre-trained Language Models (PLMs) (e.g., 

BERT). 

 Another reason why we choose LinearSVM for our hybrid model is that most text 

classification problems are linearly separable (i.e., if graphed in two dimensions, can be 

separated by a straight line) [Joachims, 1998] and thus mapping the data to a higher 

dimension space using an SVM kernel (e.g., RBF kernel) would be futile. 

For decision trees, we chose eXtreme Gradient Boosting ‘XGBoost’, an efficient 

implementation of the gradient boosting framework by [Chen and Guestrin, 2016]. The 

number of trees for each dataset is determined based on a grid search using 10-fold 

cross-validation.  

 In all our experiments, we use stratified splitting [Sechidis et al., 2011] of the datasets 

into 70% for training samples and 30% for testing. Stratification ensures that the train 

and test have the same percentage of samples of each target class.  

 For text vectorization, we use TFIDF [Sammut and Webb, 2010] which is a simple 

yet powerful technique. Moreover, we use n-grams as sometimes single words are not 

sufficient to determine the category. For instance, for the real-world dataset of IT 

Support Tickets, we use trigrams (i.e., n=3) as they deliver the highest accuracy.  

 Table 5-2 shows a comparison of the accuracies (i.e., F1-scores) of the three chosen 

classification models against our proposed hybrid model (SVM-RB) on the overlapped 
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classes of the four datasets described in Section 5.3.1. The comparison data in Table 5-2 

clearly show that our hybrid approach with rules integration performs significantly better 

than other classification models, in terms of improving the accuracy of all overlapped 

classes (higher accuracies in bold). For the IT support tickets dataset, our model achieves 

53% accuracy for the ‘Apps’ class, which shows an increase of 17% higher than the 

highest accuracy achieved by the XGboost (36%). Similarly, the hybrid model achieves 

a 17% increase in accuracy for the ‘Platform/ onsole’ which is higher than the highest 

accuracy achieved by SV  (40%). However, for the ‘Services’ class, our model shows 

an increase of only 5% higher than the highest accuracy achieved by SVM (77%). This 

is because ‘Services’ is a major class with no significant overlap with other classes (see 

Figure 5-1). 

 For the MIND dataset, our model achieves a significant increase in the accuracy of 

the ‘Video’ class (70%) which shows an increase of 27% higher than the highest 

accuracy achieved by XGBoost (43%). Whereas an increase of 8% is achieved for the 

‘News’ class with minor overlap with other classes (see confusion matrix Figure 5-1). 

 Similarly for the EAST and the Consumer Complaints datasets, our model shows a 

large increase in accuracy for class ‘6’ and class ‘Bank Account’ with 28% and 14% 

respectively, while achieving a 4% and 5% increase for class ‘4’ and class 

 hecking/Saving’. It is to be noted that the performance of our proposed hybrid model 

depends mainly on the unique list of keywords chosen for each overlapped class in the 

pre-processing step using expert domain knowledge and the eli5 library. 

 

Table 5-2: Comparison of SVM, LR, and XGboost against our proposed hybrid approach 

in terms of accuracy (F1-score) 

Dataset 
Overlapped 

Classes 

 

SVM 

 

 

LR XGBoost 
Proposed 

Hybrid Model 

(SVM-RB) 

F1-score (CV = 10-folds)  

IT Support 

Tickets 

Apps 0.35 0.27 0.36 0.53 

Platform/Console 0.40 0.32 0.37 0.57 

Services 0.77 0.75 0.76 0.82 

MIND 
News 0.69 0.73 0.72 0.81 

Video 0.42 0.41 0.43 0.70 
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Figure 5-2: Confusion matrix for hybrid (SVM-RB) showing reduced overlap between 

classes for IT Support Tickets, MIND, EAST and Consumer Complaints datasets 

 

 To better assess the performance of our hybrid model to reduce the degree of overlap, 

we include the confusion matrix (Figure 5-2) of our proposed hybrid model for the four 

datasets. The proposed hybrid model shows a considerable reduction in the overlapping 

between the selected classes for all four datasets. For instance, for the IT Support 

Tickets, we notice the confusion between ‘Apps’ and ‘Platform/ onsole’ is reduced 

from ‘227‘misclassified instances to ‘124’. Also, the confusion between ‘Apps’ and 

‘Services’ is reduced from ‘181’ to ‘82’ instances. Hence, the total number of correctly 

classified instances for the ‘Apps’ class is increased from ‘272’ to ‘536’. 

  

 

 

EAST 
6 0.51 0.41 0.40 0.79 

4 0.90 0.91 0.91 0.95 

Consumer 

Complaints 

Bank Account 0.40 0.39 0.19 0.54 

Checking/Saving 0.63 0.67 0.61 0.72 
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 Similarly, for the MIND dataset, our hybrid model reduces the confusion between the 

‘News’ and ‘Video’ classes from ‘597’ misclassified instances to ‘317’. 

Furthermore, we notice that our hybrid model also improves the accuracy of all other 

classes that are not covered by the rules of our model. This can be noticed by looking at 

the diagonal of the confusion matrix (Figure 5-2), where almost all classes have a higher 

number of correctly classified instances. For instance, the number of correctly classified 

instances of the ‘Project Office(internal)’ class of the IT Support Tickets dataset was 

increased from 95 instances to 303. 

 Our experiments suggest that for domain-specific text classification tasks (e.g., IT 

Support Tickets) with a clear presence of class overlap, a simple linear model (e.g., 

SVM) along with a set of handcrafted rules can reduce the degree of overlapping as well 

as enhance the overall classification accuracy with the advantage of a fast-running time 

using a linear algorithm and better interpretability. 

 

5.5   Conclusions and Future Work  

The task of classifying IT support tickets becomes challenging as the number of classes 

grows and classes tend to overlap. This paper focuses on the task of classification of 

domain-specific text in the presence of clear overlap between two or more classes 

leading to poor accuracy for the minor class involved in the overlap. 

 We propose a hybrid method based on a linear SVM classifier and a rule-based 

algorithm. First, we detect classes involved in the overlap using the classifier’s 

confusion matrix. Second, we generate N rules with minimal intervention from the 

support agents (i.e., domain expertise) and a python library (i.e., eli5). The number of 

these rules is determined by the number of overlapped classes for a given problem. 

Finally, the tickets are sent to the rule-based algorithm to filter the confusing N classes 

and if none of the rules apply, tickets are classified using the linear SVM classifier. 

 Results show that the proposed hybrid model achieves significant improvements over 

the three text classification algorithms namely (LR, SVM, and XGBoost) in terms of the 

F1-score. The hybrid linear model provides a cheap and interpretable solution to the 

problem of classifying support tickets in the presence of overlap. For future work, we 
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plan to enhance the hybrid algorithm to support hierarchical classification. Also, we 

intend to include more datasets in our studies.  
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Abstract: For large-scale IT corpora with hundreds of classes organized in a hierarchy, 

the task of classifying support tickets is vital to guarantee long-term clients. Due to the 

complexity of the unstructured nature of human language, text classification is 

challenging. The task is even harder when classes overlap.  

In the business world, an efficient and interpretable ML model is preferred over an 

expensive black-box model. In this paper, we propose a Hybrid Online Offline Model 

(HOOM) for efficient classification of hierarchical text documents using linear ML 

models. 

Chapter 6: A Hybrid Continual Learning Approach for 

Efficient Hierarchical Classification of IT Support Tickets in A 

Real-World Scenario16 

 

6.1   Introduction  

Continual Learning (CL) [Parisi et al., 2019], also known as Lifelong learning (LL) 

[Chen and Liu, 2018] is inspired by the human intelligence to learn continuously. 

Humans learn from past experiences and accumulate the knowledge to improve 

generalization for future tasks [Chomsky, 2009]. CL which is commonly used in the deep 

learning field aims to solve a serious problem called catastrophic forgetting (CF) when 

learning a series of tasks [McCloskey and Cohen, 1989]. CF refers to a significant drop in 

performance on previous tasks. 

 In IT Support ticketing systems, users submit a support ticket as a bug report to the IT 

support team. With a wide user base and system issues, there will be an ongoing influx of 

generated support tickets. The need to automate ticket classification becomes crucial for 

rendering quality service and high customer satisfaction. 

 

16 A version of this chapter is to appear in (Wahba, Y., Madhavji, N. and Steinbacher, J., 2023. A Hybrid 

Continual Learning Approach for Efficient Hierarchical Classification of IT Support Tickets in A Real-

World Scenario. The 24th IEEE International Conference on Industrial Technology (ICIT). 
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 While traditional linear classifiers such as SVM or LR proved comparable to state-of-

the-art (SOTA) deep-learning models for domain-specific text classification [Wahba et 

al., 2022c] (Chapter 3), their performance is not reliable for practical environments and 

real-world scenarios. This is because a traditional ML model cannot handle the problem 

of concept drift (i.e., changes in the underlying data distribution over time) [Widmer and 

Kubat, 1993; Sayed-Mouchaweh, 2016], which could also involve the emergence of new 

classes/features (i.e., target drift).  

 In order to ensure the effectiveness of the deployed ML classifiers over time, CL is 

employed to allow classifiers to adapt to new changes. In a typical CL scenario, the 

model receives a data stream one at a time and predicts a class label, then the model 

reveals the true label, and then updates the classifier, and repeats the process with the 

new incoming stream. This is different from traditional batch learning where we have all 

the data available when training our model. 

 The existing body of work on the topic of CL is oriented towards deep neural network 

models [Hadsell et al., 2020; van de Ven et al., 2020; Chaudhry et al., 2021]. However, 

the topic of applying CL to traditional (i.e., classical) ML models is scarcely discussed. 

This work adds to the growing literature on the topic of applying CL to traditional ML 

models for classifying domain-specific text (i.e., IT Support tickets). 

 In this paper, we propose a Hybrid Online Offline Model (HOOM) for efficient 

classification of hierarchical text documents. Hierarchical classification problems can be 

classified into two main categories: Hierarchical Single Label (HSL) and Hierarchical 

Multi-Label (HML). In HSL problems, instances/samples are classified into a single path 

of classes; whereas in HML, instances can have more than one label assigned to them. 

Our work is categorized as an HSL problem. 

 The motivation behind (HOOM) was realized during the evaluation phase of the pre-

trained ML model. The pre-trained model performed well on the historical dataset. 

However, it suffered from a sudden drop in performance on new, unseen instances. The 

reason for this was a change in the original taxonomy where new classes were added to or 

removed from the hierarchy. This motivated us to think of integrating an online learning 

model that continuously learns about changes in the incoming data and passes this 

knowledge on to the offline pre-trained ML model 
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 The experimental results on a private dataset of IT Support tickets show that the 

hybrid model (HOOM) provides superior results over the individual models and is 

anticipated to have a fast inference time given the underlying linear classifiers. 

 The rest of the paper is organized as follows. Section 6.2 describes related work. 

Section 6.3 describes our proposed hybrid model. Section 6.4 describes the dataset and 

Section 6.5 presents the research results. Section 6.6 concludes the paper. 

 

6.2   Related Work 

The research scope of this paper is somewhat diverse. Thus, we divide the related work 

into the following subsections: 

I. Handling class overlapping in text classification problems 

The problem of overlapping classes is extensively studied in the literature, however, only 

a few works addressed the overlapping problem in the NLP domain. We classify the 

literature approaches for handling overlap as non-deep learning [Liu et al., 2019; Wahba 

et al., 2022a] and deep-learning approaches [Saeed et al., 2018; Georgakopoulos et al., 

2018]. Our study contributes to the non-deep learning approaches in the NLP domain. 

This study extends the work of [Wahba et al., 2022b] (Chapter 5) to address hierarchical 

text classification scenarios in the presence of class overlap. Our approach follows a top-

down strategy using a linear SVM classifier as the base classifier. 

II. Continual learning in text classification 

The field of CL in the NLP domain is still nascent [Sun et al., 2019; Greco et al., 2019]. 

[Shu et al., 2016] follow an unsupervised CL approach to classify opinion targets. 

Furthermore, the work of [Shu et al., 2017] specifically contributes to supervised aspect 

extraction using conditional random fields. However, the work of [D'Autume et al., 2019] 

uses episodic memory to mitigate catastrophic forgetting in unsupervised text 

classification tasks. The majority of the literature on the topic of CL is geared towards 

deep-learning methods. However, the topic of applying CL to traditional (i.e., classical) 

ML models is scarcely discussed.  

 Our work contributes to the supervised CL approaches for text classification using 

traditional ML models. In particular, we study the problem of classifying overlapped 
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domain-specific text (i.e., IT Support tickets) in a CL environment. We propose a hybrid 

model based on an offline pre-trained linear classifier and an online classifier that can 

adapt to real drift (i.e., the emergence of new classes). The offline classifier acts as a 

backup model to the online classifier that is subject to the inevitable issue of CF [French, 

1999]. 

6.3   Proposed Hybrid Online Offline Model (HOOM) 

In this section, we first describe each of the offline and online models separately. Then 

we present our proposed Hybrid Online Offline Model (HOOM), which combines a static 

ML model trained in an offline setting with an online ML model trained in a dynamic 

(real-time) environment.  

6.3.1   The Offline Model 

The offline learning model is based on a hierarchical classifier called (HSVM-RB), 

which is an extension of the algorithm (SVM-RB) proposed in a previous study [Wahba 

et al., 2022a] (Chapter 5). The algorithm (HSVM-RB) extends the capabilities of (SVM-

RB) to support hierarchical classification scenarios.  

 For the hierarchical classification, we utilize HiClass [Miranda et al., 2021]. An open-

source Python library that contains implementations for the most common design patterns 

found in the literature (e.g., local classifier per node, local classifier per level, etc.).  

 For the model (HSVM-RB), we employ a top-down approach called Local Classifier 

Per Parent Node (LCPPN) [Silla and Freitas, 2011]. In this approach, for each parent 

node in the class hierarchy, a multi-class classifier (i.e., SVM) is trained to differentiate 

between its child nodes. This approach avoids the problem of inconsistent predictions 

(i.e., prediction does not satisfy the ancestral relations for some class C) and respects the 

natural class hierarchy memberships. 

 We chose the linear SVM, which proved to be efficient for high-dimensional datasets 

with superior accuracy and low training time [Chauhan et al., 2019]. Furthermore, the 

work of [Wahba et al., 2022c] (Chapter 3) shows that Linear SVM provides comparable 

performance to Pre-trained Language Models (PLMs) (e.g., BERT). Another reason why 

we choose a linear kernel for SVM is that most text classification problems are linearly 
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separable [Joachims, 1998]. This is because text datasets are characterized by a high 

number of features that inaugurate the linear separability of the data.  

Algorithm 1 (HSVM-RB): Hierarchical Support Vector Machine Rule-Based Classifier 

Input: Ticket t  

Output: Class C-1, C-2 (numbers indicate the level in the hierarchy) 

Initialize: C1- score, C2-score, …, Cn-score=0.Where n is the number of overlapped classes 

in the top level only. 

Initialize: LocalClassifierPerParentNode (LCPPN) → Local-classifier = SVM  

Method Calculate-scores (t):  

C1-keywords = [list of words based on domain knowledge from experts + Top k words based 

on eli5] 

       .. 

Cn-keywords = [list of words based on domain knowledge from experts + Top k words based 

on eli5] 

   ## Calculate a score for each class Cn 

C1-score = (foreach word in t present in C1-keywords C1-score++) 

       .. 

Cn-score = (foreach word in t present in Cn-keywords Cn-score++) 

     return C1-score, C2-score, …, Cn-score 

   if (C1-score ≥ C2-score) & (C1-score ≥ C3-score) ... & (C1-score ≥ Cn-score)  

        and C1-score >2: 

           then → C-1 = C1 

            V-text = Vectorize t using TFIDF 

           C-2 = SVM.predict (V-text) 

            return C-1,C-2 

   else if (C2-score ≥ C1-score) & (C2-score ≥ C3-score) ... & (C2-score ≥ Cn-score)  

        and C2-score >2: 

           then → C-1 = C2 

           V-text = Vectorize t using TFIDF 

           C-2 = SVM.predict (V-text) 

     return C-1, C-2 

   else if (Cn-score ≥C1-score) & (Cn-score ≥ C2-score) ... & (Cn-score≥ Cn-1-score)  

       and Cn-score >2: 

            then → C-1 = Cn     

            V-text = Vectorize t using TFIDF 

             C-2 = SVM.predict (V-text) 

            return C-1, C-2 

   else:  Move to Hierarchical SVM classifier  

1. V-text = Vectorize t using TFIDF 

2. C-1, C-2 = LCPPN pipeline predict (V-text) 

              return C-1, C-2 

   end 
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  HSVM-RB (described in Algorithm 1) is a hybrid model that uses rules to classify N 

overlapped classes determined in the Exploratory Data Analysis (EDA) stage (see 

Chapter5).  

  The incoming ticket is first checked against the hand-crafted rules based on the N 

overlapped classes. If true, the class in the first level (level-1) is classified based on the 

rules, and the lower levels are predicted based on SVM classifier trained only on the 

parent node. If false, the incoming ticket is classified using a (LCPPN) approach with 

SVM as the local classifier. 

6.3.2   The Online Model 

In the online learning model, the learning is performed in a dynamic environment as data 

arrives one after another. To accomplish the task of CL in a streaming setting, we utilize 

a recent open-source Python library called River [Montiel et al., 2021]. The library 

provides several machine learning algorithms such as Decision Trees (DT), Naïve Bayes 

(NB), and Logistic Regression (LR). The source code for the library is available on 

Github17. The online ML model is based on a Passive Aggressive Classifier (PAC), that 

is first proposed by Crammer [Crammer et al., 2006]. This classifier belongs to a family 

of margin-based online learning algorithms, that can handle large datasets. 

 In each iteration, PAC takes in a new instance, checks whether it has been correctly 

classified or not, and then updates its weights accordingly. If the instance is correctly 

classified, there is no change in weight. However, if it is misclassified, the classifier 

adjusts its weights to better classify future instances. The degree to which the PAC 

adjusts its weights is based on a regularization parameter C. 

 The PAC is referred to as PAC Pipeline (Figure 6-1). We use ‘pipeline’ to denote a 

two-step task where the text is first vectorized by TFIDF18 technique and then classified 

using the PAC. 

 

17
 https://github.com/online-ml/river 

18
 TFIDF stands for Term Frequency-Inverse Document Frequency, which is a combination of two 

metrics: 1. Term frequency (tf):  a measure of how frequently a term, t, appears in a document, d. 

2. Inverse document frequency(idf): a measure of how important a term is. It is computed by dividing the 

total number of documents in our corpus by the document frequency for each term and then applying 

logarithmic scaling on the result. 
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Figure 6-1: Proposed Hybrid Online Offline Model (HOOM) 

 

 

6.3.3   Hybrid Model: HOOM 

Figure 6-1 shows the proposed hybrid model that combines a pre-trained classifier (i.e., 

offline learning model) and an online classifier (i.e., online learning model). The offline 

model serves as a backup model to the online classifier and is initially trained on a large 

amount of historical data.  

 Input: The input to the hybrid model is a data point x (i.e., a support ticket) fetched 

from an online stream of incoming data. The data point is received by both offline and 

online classifiers and undergoes the step of pre-processing. Then the data point is passed 

to the offline classifier described in Section 6.3.1 and the online classifier described in 

Section 6.3.2.  
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Output: The prediction (i.e., output) of the offline hybrid classifier (HSVM-RB) is a 

class label P(C1, C2)H (where C1 denotes the class in the first level and C2 denotes the 

class in the second level) with a confidence score denoted by CFH. Similarly, the output 

of the online (PAC) is a class label P(C1, C2)P with a confidence score denoted by CFP. 

The higher the confidence score, the more confident the model’s prediction is. The final 

output of HOOM is the model with the highest confidence score (i.e., max (CFH, CFP). 

The calculation of confidence scores is described in Section 6.3.4. 

 Drift Detection: The final step of HOOM is a proactive measure against concept drift 

or what is known as data drift. Concept drift is a serious problem in production where the 

incoming data stream differs from the historical data the ML model was trained and 

evaluated on, leading to performance degradation [Bayram et al., 2022].  

 The topic of concept drift is extensively researched and there exist different 

categorizations for the term ‘concept drift’. We follow the work of [Straat et al., 2022] 

and [Gama et al., 2014] where concept drift is categorized into two major types: Virtual 

drift and Real drift. A virtual drift refers to changes in the distribution (i.e., statistical 

properties) of the incoming data without affecting the target data. Real drift refers to a 

change in the target data (i.e., classification scheme) over time. The focus of this work is 

real drift, where similar data points are labeled differently over time. 

 There are several drift detection methods proposed in the literature categorized 

according to the test statistics they apply (e.g., error rate-based methods, data 

distribution-based methods, and multiple hypothesis tests) [Lu et al., 2018]. We employ a 

data-distribution-based method that is the Chi-square test [Maaradji et al., 2017]. 

 

6.3.4   Confidence Scores 

For a given classification task, a confidence score is considered an evaluation metric for 

the classifier to indicate how confident the classifier’s prediction is correct. It calculates 

the probability of the predicted class label by the classifier given as a percentage. 

Below, we describe how the confidence scores are calculated for the proposed model 

HOOM. 
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Offline model: The offline model is based on a hybrid classifier (i.e., HSVM-RB), 

hence, our confidence score is calculated in two different ways: (1) If the incoming data 

point x is classified by the Rule-Based classifier, the metric we use to estimate the 

confidence of the match is called coverage. 

 The calculation of the coverage score takes into account how many words are 

matched (i.e., Cn-score; where n is the number of overlapped classes in the top level 

only) (See Algorithm 1). The coverage score is calculated as follows: 

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐶𝑛−𝑠𝑐𝑜𝑟𝑒)
× 100                   (1) 

 

This implies that predictions by the rule-based classifier would always have a 100% 

confidence score unless two or more classes have the same Cn-score (i.e., the number of 

words matched), then the confidence score for our model decreases. 

For example: Assume n=3: 

 If (C1-score > C2-score) and (C1-score>C3-score) THEN coverage = 100% 

 If (C1-score=C2-score) and (C1-score>C3-score) THEN coverage =50% 

 

 (2) if the incoming data point x is classified by the Support Vector Machine classifier 

(i.e., did not match any of the rules), the confidence score is the calibrated probability 

[Rüping, 2006] of the data point x belonging to class C. For the calibration function, we 

use Platt’s method (i.e., a method for transforming SV  outputs from [−∞, +∞] to 

posterior probabilities) [Platt, 1999] which is shown to work well with maximum margin 

classifiers such as SVM [Niculescu-Mizil and Caruana, 2005]. 

Online model: Similar to SVM calibrated probabilities for the offline model, the 

confidence scores for the online PA  are calculated based on Platt’s method and given as 

a percentage score. 

 

6.4   The Dataset 

We use a private dataset of IT support tickets, that is obtained from a large industrial 

partner with real customer issues concerning a cloud-based system. The dataset is a 
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Figure 6-2: Accuracies of the hierarchical SV  on ‘level-1’ of dataset  1 

hierarchical dataset that is composed of 194,488 documents categorized into 12 classes 

on the first level of the hierarchy and 110 classes on the second level.  

 This dataset is used to train and evaluate the offline model and will be referred to as 

D1. However, for the sake of testing (HOOM), we use a recent dump of support tickets, 

that was collected by pulling the tickets from the server and passing them as a stream 

(i.e., one by one) to the hybrid model. This recent dump is composed of 200,000 

instances of support tickets and will be referred to as D2. 

  

6.5   Results 

In this section, we present the accuracies of the offline and the online model separately. 

Then we describe how we detect concept drift. Finally, we present the performance of the 

hybrid model (HOOM).  

 Offline model: First, to evaluate the effectiveness of the rule-based model (HSVM-RB), 

we present the accuracies of a hierarchical SVM on ‘level-1’ of the hierarchy (see Figure 

6-2), then we present the accuracies of the offline classifier (HSVM- B) on ‘level-1’ of 

the hierarchy (see Figure 6-3).  

 Figure 6-2 shows the overall accuracy of a linear SVM in predicting the accuracies of 

the first level of the hierarchy using the (LCPPN) approach. The red highlight indicates 

the classes that suffer from poor accuracies due to overlap (see Chapter 5). The model 

achieves an overall F1-score (i.e., weighted avg) of 78%. 
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Figure 6-3: Accuracies of (HSVM- B) on ‘level-1’ of dataset  1 

Figure 6-4: Truncated accuracies of (HSVM-RB) on level-2 of dataset D1 

 

Figure 6-3 shows that the hierarchical rule-based model (HSVM-RB) provides a 

significant improvement for almost all classes of the first level. For instance, an increase 

of 15% is achieved for the ‘Apps’ class, while for ‘Project Office (internal)’, the model 

shows a substantial increase of ‘70%’. Also, an increase of ‘16%’ is achieved for 

‘Platform/ onsole’, and an increase of ‘49%’  for the ‘Security and Identity’ class.  

  

  

 For the second level of the hierarchy (102 classes), Figure 6-4 shows a portion of ‘level-2’ classes with an F1-score of 77%. This brings the overall F1-score of the (HSVM-RB) on our hierarchical dataset to 78%, which is an increase of 9% over the hierarchical SVM model with no rules. 
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Online model: The online PAC implemented in River [Montiel et al., 2021] does not 

support hierarchical classification. Therefore, unlike the ‘top-down’ approach (i.e., 

LCPPN) used for the offline classifier, we use a ‘flat’ classification approach for the PA  

[Silla and Freitas, 2011]. This approach implies implicit assignment of the ancestor 

classes (i.e., level-1) to the leaf classes (i.e., level-2) that are predicted by the PAC.   

 Figure 6-5 shows two different performance measures (i.e., accuracy and weighted 

F1-score) of the online PAC that takes a data stream as input (i.e., continuous flow of 

instances). We tested the PAC on the 200k instances of D2.    

 It is clear from the figure that the performance of the online classifier is affected by 

the number of iterations (i.e., instances). The more data streams, the better the 

performance. The accuracy score for the first iteration is zero as the model is predicting 

with no prior knowledge (i.e., training). Then the performance of the model starts to 

improve as more streams arrive. The highest accuracy achieved on 200k iterations is 

around 65%. 

 

                  Figure 6-5: The accuracy of PAC on the 200k instances of D2 

  

 Concept Drift: Checking for concept drifts can be performed manually or can be 

embedded in the online ML model where an alarm is triggered upon the detection of a 

drift.  
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For the purpose of this paper, we perform a manual target drift detection after N iterations 

where N=200k (i.e., the number of instances of D2) using the Chi-square test [Maaradji 

et al., 2017]. We use two distributions of the same size: the first distribution is the one the 

model is trained and evaluated on (i.e., D1) and we call that a reference distribution. The 

other distribution is built from the most recent runs pulled from the incoming data 

streams and we call that a current distribution (i.e., D2).  

 Figure 6-6 shows the drift in category distributions and the emergence of new classes 

(e.g., Infrastructure, Sales, and Sales Office). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid model (HOOM): To assess the performance of the proposed hybrid model 

(HOOM), we use the recent dump (i.e., D2) of our support tickets. As mentioned earlier, 

the offline model is re-trained on D2 after N=200k iterations. The model with the highest 

confidence score (see Section 6.3.4) is the model that determines the class label. 

Figure 6-6: Detecting target drifts using two data distributions (i.e., D1 and D2) 
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Figure 6-7: Accuracy of HOOM on the 200k instances of D2 

 Figure 6-7 shows the accuracy of (HOOM) on D2. We note that the accuracy score of 

the first iteration is not zero as the model is getting predictions from the offline classifier. 

The highest accuracy achieved on 200k iterations is around 87%. 

The performance of the model shows a significant increase of 20% over the online model 

(PAC) (Figure 6-8). We note that we cannot compare HOOM to the offline model 

(HSVM-RB) as it is not possible to train a batch model (i.e., offline model) on a data 

stream. Overall, HOOM has demonstrated promising results in classifying IT support 

tickets in a simulated real-time environment.   

 

 

 

Figure 6-8: Performance of HOOM on D2 showing 20% increase in accuracy 
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6.6   Conclusions and Future Work  

Classifying customer support tickets is fundamental to any help desk system. Automation 

of the tickets’ classification help improve the resolution time significantly and minimize 

errors in the escalation process. However, a problem that appears when deploying a 

classification ML model into production (i.e., real-time environment) is the emergence of 

new classes. This is known as concept drift (or real drift).  

 In this paper, we propose a hybrid Online Offline Model (HOOM) that is based on the 

combined predictions of a pre-trained offline model and an online model. The offline 

model is based on a hierarchical rule-based model that can handle class overlaps. The 

purpose of the offline model is to serve as a backup model to the online classifier which 

is subject to the issue of catastrophic forgetting. 

 Results showed that the proposed hybrid model (HOOM) is promising if deployed in 

a real-time environment. The model achieves good classification accuracy and would 

exhibit a fast inference time due to the underlying linear models (i.e., SVM and PAC). 

For future work, we plan to study the virtual concept drift and include more evaluation 

metrics. 
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Chapter 7: Reflection 

In this chapter, we reflect upon the issues found in Chapters (2,4, and 5) published as 

research papers. Then we describe a theory that is emerging from this work. 

 

7.1   Introduction 

This thesis presents an efficient solution to address a Natural Language Processing (NLP) 

problem, that of Text Classification (TC).  

 At the beginning of this research, we were curious to evaluate different methods for 

vectorizing text (i.e., the first step in TC). This is reflected in Chapters 2 and 3 where we 

evaluate both static and dynamic word vectorization techniques against a traditional 

TFIDF method. 

  In Chapter 2, despite the comparable performance of TFIDF against the three static 

word embeddings [Wahba et al., 2020], we feel that we need to experiment with more 

static words embeddings such as fastText [Bojanowski et al., 2017] and include more 

datasets to give more ground truth to our claim. 

 In Chapter 4, we utilized stacking (i.e., blending) of machine learning models based 

on different feature subsets as a way to overcome the problem of overlapping classes. 

Although the technique proposed shows improvements in terms of the accuracy score of 

the overlapped classes, the following issues during the testing stage rendered the 

technique not suitable for a real-world setting (i.e., productization): 

1. Understanding the logic behind the predictions of the stacked model was not 

straightforward. Thus, the algorithm did not meet the explainability/interpretability 

criteria. 

2.  The computational complexity (i.e., time and resources) required to re-train the 

algorithm with more base models (i.e., classifiers) was high. Thus, the algorithm did not 

meet the efficiency criteria from the point of view of our industrial partner. 

 Hence, with the above criteria in mind, we propose an algorithm ‘SV - B’ in 

Chapter 5. However, when evaluating the model on more datasets, we realized the need 

for a threshold for the scores. For instance, a score of 1 indicates the presence of only one 

word in the incoming ticket that appears in one of the N keywords lists, which is not 
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enough to classify the incoming ticket to a certain category. Hence, we consider this 

threshold in the hierarchical version of our algorithm that we call ‘HSV - B’ described 

in Chapter 6. 

 

7.2   Emerging Theory 

In this section, we develop a theory (that we prefer to call at this stage, “an emerging 

theory” because it is borne out of the results of one thesis and we believe that it requires a 

community’s concurrence in results in order to solidify the emergence into a concrete 

theory over time) that postulates the following:  

  

1. Text classification tasks, especially domain-specific tasks, do not benefit from the 

rich linguistic knowledge of state-of-the-art language models (i.e., PLMs) such as 

BERT [Wahba et al., 2022] (Chapter 3). 

2. Domain-specific text classification tasks such as IT Support tickets can be tackled 

efficiently using a traditional ML model such as SVM that provides a cheap, 

interpretable, and efficient alternative to a complex DL model [Wahba et al., 2022]. 

 

 We note that the emerging theory statement is not underestimating the power of DL 

models for classification tasks. It is simply arguing against the use of such complex 

models for classifying specialized text where words have precise meanings (i.e., 

monosemy) [Aronoff and Rees-Miller, 2020].  

 For instance, sentiment analysis (or sentiment classification) is one use-case of text 

classification; however, words that express sentiment have fuzzy meanings (i.e., 

polysemy). An example of how the word ‘funny’ could be classified as ‘happy’ or 

‘suspicious’ is found in [Song et al., 2020]. 
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7.3   Evaluation of Emerging Theory 

To evaluate the goodness of the proposed emerging theory, we first describe the 

evaluation criteria used according to [Boehm and Jain, 2006] and [Sjøberg et al., 2008], 

then we evaluate the emerging theory in Section 7.3.2. 

7.3.1   Evaluation Criteria 

1. Generality: Does the theory cover a wide range of situations and concerns (e.g., 

procedural, technical, economic, and human)? 

2. Parsimony (i.e., simplicity): Does the theory avoid excess complexity? Is it simple 

to understand, learn, and apply? 

3. Explanatory power: The degree to which a theory accounts for and predicts all 

known observations within its scope, is simple in that it has few ad hoc 

assumptions, and relates to that which is already well understood. 

4. Empirical support: The degree to which a theory is supported by empirical studies 

that confirm its validity. 

5. Utility: The degree to which a theory supports the relevant areas of the software 

industry. 

6. Testability: The degree to which a theory is constructed such that empirical 

refutation is possible. 

 

7.3.2  Theory Evaluation 

Generality. The scope of the emerging theory covers specialized text classification such 

as IT Support tickets. Hence, it is deemed generalizable to other domains characterized 

by specialized vocabularies such as health care, mathematics, and law. 

However, the empirical evidence from which the emerging theory is derived is based 

solely on experiments on datasets related to IT and news and does not consider other 

domains. 

Therefore, the generality of the emerging theory is considered low to moderate. 
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Parsimony. The emerging theory is inspired by ‘Occam’s razor’ in the sense of 

promoting the use of simple ML models over complex DL models for domain-specific 

text classification tasks.  

Therefore, the parsimony of the emerging theory is considered high. 

 

Explanatory power. The analogy (i.e., the degree to which a theory is supported by 

analogy to well-established theories) is low. The emerging theory’s ability to provide 

explanations of why the theory is true is based on observations and experiments 

conducted in the thesis and not on well-established theories. With increased 

experimentation and consistent positive observations, there may be a gain in the 

confidence in the proposed theory.  

Therefore, the explanatory power of the emerging theory is considered low to moderate. 

 

Empirical support. The emerging theory is derived from empirical research [Wahba et 

al., 2022]. However, the number of testing benchmarks is considered low. If more 

empirical studies are conducted on other domain-specific benchmarks, it would enhance 

the empirical support of the theory.  

Therefore, the empirical support of the emerging theory is considered moderate. 

 

Utility. The propositions of the emerging theory can be used in decision-making in 

industrial contexts such as IT support ticketing systems. For example, employing a 

traditional/linear ML model instead of a black-box model (given the comparable 

performance) implies better interpretability of the model predictions and relatively less 

use of computational resources. 

Therefore, the utility of the emerging theory is considered high. 

 

Testability. The domain or situation in which the theory should be confirmed or 

disconfirmed is clear. Furthermore, the propositions of the emerging theory are testable 

and empirical refutation is possible.  

Therefore, the testability of the emerging theory is considered high. 
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7.4   Conclusion  

In summary, this chapter reflects upon the issues found in Chapters (2,4, and 5) and 

postulates an emerging theory based on the observations from the six studies reported in 

earlier chapters of this thesis. The emerging theory was evaluated based on the criteria 

list from [Boehm and Jain, 2006] and [Sjøberg et al., 2008]. The emerging theory is 

assessed logically, based on a set of criteria from [Boehm and Jain, 2006] and [Sjøberg et 

al., 2008] yielding the following assessments: Generality – low to moderate; Parsimony – 

high; Explanatory power – low to moderate; Empirical support – moderate; Utility – 

high; and Testability - high.  Further and wider experimentation over time would no 

doubt lead to more insightful results for these criteria and, in turn, improved decision-

making in practice. 
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Chapter 8: Conclusion and Future Work 

In this section, we present the conclusions and future work of this thesis. In Section 8.1, 

we revisit the research problem and the emerging theory from Chapter 7. Then, we 

discuss future work in Section 8.2. 

 

8.1   Conclusions 

In today’s world, support ticketing systems are employed by a wide range of businesses. 

A support ticket describes an issue faced by the customer that is submitted as a bug report 

to the IT support team. Service agents spend a large amount of time manually classifying 

the incoming tickets. Unfortunately, this process is complicated, and the support agents 

have no reference to best practices based on historical data. Ticket classification is an 

important process that ensures that tickets get routed to the right support agent. 

Otherwise, there can be delays, customer dissatisfaction, escalation to management, and 

reactionary fixes at high costs [Sheng et al., 2014]. 

 The task of text classification is challenging; due to the complexity of the 

unstructured nature of human language. Recently, pre-trained language models (PLMs) 

such as BERT [Devlin et al., 2018] and ELMO [Neumann et al., 2018] have shown 

promising results in several NLP tasks, including spam filtering, sentiment analysis, and 

question answering. In comparison to traditional models, PLMs require less feature 

engineering and minimal effort in data cleaning, thus becoming the consensus for many 

NLP tasks [Han et al, 2021]. 

 Despite the widespread use of attention-based models (i.e., PLMs) and their 

impressive performance in a broad range of NLP tasks, there is a lack of a clear and well-

justified need to as why these models are being employed for domain-specific text 

classification tasks [Chalkidis et al., 2020; Blinov et al., 2020; Zhao et al., 2021] given 

the linearly separable nature of most text classification tasks [Joachims, 1998; Tong and 

Koller, 2001]. Thus, the key research question is: Are PLMs the most cost-efficient 

solution for domain-specific TC tasks? 

 Using the gap in the literature and our experience with industry as our motivation, we 

propose a novel Hybrid Online Offline Model (HOOM) to classify hierarchical domain-
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specific text with overlapping classes (Chapter 6). The model aims to satisfy the needs of 

the support agents in practice by providing them with an interpretable, high-accuracy, and 

less-expensive model that could be easily reproduced. 

 The contribution of this thesis is a combination of five empirical studies that were 

conducted over the last four years. Based on the observations from these studies, an 

emerging theory is proposed in Chapter 7 (Section 7.2). The emerging theory stimulates 

the use of traditional ML models over transformer-based DL models (i.e., PLMs) for 

solving domain-specific text classification tasks. The proposition of the emerging theory 

is  based on the following reasons: 

1. Most text classification problems are linearly separable [Joachims, 1998; Tong 

and Koller, 2001], thus, a traditional model such as linear SVM would perform 

well.  

2. The gap between the way PLMs were trained (i.e., cloze-style) to predict target words as 

the objective and the downstream objectives (e.g., classification) limit the ability to 

exploit the knowledge encoded in PLMs [Han et al., 2021]. 

3. The degree of polysemy in domain-specific (i.e., specialized) text is low. This is 

because scientific terms need a precise meaning in order to function and be easily 

recognized [Wielgosz, 2017], thus, defeating the purpose of contextualized 

embeddings that aim to capture word polysemy and provide several embeddings 

for a single word. 

4. Domain-specific words (i.e., OOV) are challenging for PLMs since these models 

are trained on generic corpora [Bollegala et al., 2015; Pilehvar and Collier, 2016]. 

 

8.2   Future Work 

The opportunities for future work are centered in three directions: 

• The integration (i.e., merge) of HiClass [Miranda et al., 2021] with the online 

River library [Montiel et al., 2021] to employ hierarchical classification for the 

online learning algorithms implemented in River.  
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• Automation of the drift detection module of HOOM. This entails integrating an 

automatic drift detector that triggers (i.e., signals) an alarm every time the model 

detects a drift in the incoming data stream. 

• Investigating more evaluation metrics for the online learning model such as how 

fast the model learns and how much the model forgets [Mai et al., 2022]. 

 

A closing remark:  we are now working with our IT industrial partner to deploy the 

proposed hybrid model (HOOM) into production. 
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