22 research outputs found

    Needs Elicitation for Complex Systems Engineering

    Get PDF
    This practice builds on the sound systems engineering practice for needs elicitation. It extends the practice to emphasize important considerations, strategies, and key questions to consider. The practice ensures needs elicitation is conducted throughout the evolving system’s lifecycle, involving a large set of stakeholders, who may have changing needs as the system evolves

    XXI Century Global Challenges: Engineering, Education and Complexity

    Get PDF
    Esta presentación contiene: -Desafíos para el Siglo XXI en Ciencia, Tecnología y Educación -Proyecto Millenium -Investigación y Sistemas Complejos -Educación, Investigación e Innovación -SCED e Impacto Social -Aplicaciones de Investigación, Innovación y EducaciónIbero-American Science and Technology Education Consortiu

    XXI Century Global Challenges: Engineering, Education and Complexity

    Get PDF
    Esta presentación contiene: -Desafíos para el Siglo XXI en Ciencia, Tecnología y Educación -Proyecto Millenium -Investigación y Sistemas Complejos -Educación, Investigación e Innovación -SCED e Impacto Social -Aplicaciones de Investigación, Innovación y EducaciónIbero-American Science and Technology Education Consortiu

    Towards Modelling and Analysing Non-Functional Properties of Systems of Systems

    Get PDF
    International audienceSystems of systems (SoS) are large-scale systems composed of complex systems with difficult to predict emergent properties. One of the most significant challenges in the engineering of such systems if how to predict their Non-Functional Properties (NFP) such as performance and security, and more specifically, how to model NFP when the overall system functionality is not available. In this paper, we identify, describe and analyse challenges to modelling and analysing the performance and security NFP of SoS. We define an architectural framework to SoS NFP prediction based on the modelling of system interactions and their impacts. We adopt an Event Driven Architecture to support this modelling, as it allows for more realistic and flexible NFP simulation, which enables more accurate NFP prediction. A framework integrating the analysis of several NFP allows for exploring the impacts of changes made to accommodate issues on one NFP on other NFPs

    Artificial Intelligence and Machine Learning: A Perspective on Integrated Systems Opportunities and Challenges for Multi-Domain Operations

    Get PDF
    This paper provides a perspective on historical background, innovation and applications of Artificial Intelligence (AI) and Machine Learning (ML), data successes and systems challenges, national security interests, and mission opportunities for system problems. AI and ML today are used interchangeably, or together as AI/ML, and are ubiquitous among many industries and applications. The recent explosion, based on a confluence of new ML algorithms, large data sets, and fast and cheap computing, has demonstrated impressive results in classification and regression and used for prediction, and decision-making. Yet, AI/ML today lacks a precise definition, and as a technical discipline, it has grown beyond its origins in computer science. Even though there are impressive feats, primarily of ML, there still is much work needed in order to see the systems benefits of AI, such as perception, reasoning, planning, acting, learning, communicating, and abstraction. Recent national security interests in AI/ML have focused on problems including multidomain operations (MDO), and this has renewed the focus on a systems view of AI/ML. This paper will address the solutions for systems from an AI/ML perspective and that these solutions will draw from methods in AI and ML, as well as computational methods in control, estimation, communication, and information theory, as in the early days of cybernetics. Along with the focus on developing technology, this paper will also address the challenges of integrating these AI/ML systems for warfare

    Ecosystem-Driven Design of In-Home Terminals Based on Open Platform for the

    Get PDF
    Abstract—In-home healthcare services based on the Internet-of-Things (IoT) have great business potentials. To turn it into reality, a business ecosystem should be established first. Technical solutions should therefore aim for a cooperative ecosystem by meeting the interoperability, security, and system integration requirements. In this paper, we propose an ecosystem-driven design strategy and apply it in the design of an open-platform-based in-home healthcare terminal. A cooperative business ecosystem is formulated by merging the traditiona

    Evaluating platform architectures within ecosystems: modeling the relation to indirect value

    Get PDF
    This thesis establishes a framework for understanding the role of a supplier within the context of a business ecosystem. Suppliers typically define their business in terms of capturing value by meeting the demands of direct customers. However, the framework recognises the importance of understanding how a supplier captures indirect value by meeting the demands of indirect customers. These indirect customers increasingly use a supplier’s products and services over time in combination with those of other suppliers. This type of indirect demand is difficult for the supplier to anticipate because it is asymmetric to their own definition of demand. Customers pay the costs of aligning products and services to their particular needs by expending time and effort, for example, to link disparate social technologies or to coordinate healthcare services to address their particular condition. The accelerating tempo of variation in individual needs increases the costs of aligning products and services for customers. A supplier’s ability to reduce its indirect customers’ costs of alignment represents an opportunity to capture indirect value. The hypothesis is that modelling the supplier's relationship to indirect demands improves the supplier’s ability to identify opportunities for capturing indirect value. The framework supports the construction and analysis of such models. It enables the description of the distinct forms of competitive advantage that satisfy a given variety of indirect demands, and of the agility of business platforms supporting that variety of indirect demands. Models constructed using this framework are ‘triply-articulated’ in that they articulate the relationships among three sub-models: (i) the technical behaviours generating products and services, (ii) the social entities managing their supply, and (iii) the organisation of value defined by indirect customers’ demands. The framework enables the derivation from such a model of a layered analysis of the risks to which the capture of indirect value exposes the supplier, and provides the basis for an economic valuation of the agility of the supporting platform architectures. The interdisciplinary research underlying the thesis is based on the use of tools and methods developed by the author in support of his consulting practice within large and complex organisations. The hypothesis is tested by an implementation of the modeling approach applied to suppliers within their ecosystems in three cases: (a) UK Unmanned Airborne Systems, (b) NATO Airborne Warning and Control Systems, both within their respective theatres of operation, and (c) Orthotics Services within the UK's National Health Service. These cases use this implementation of the modeling approach to analyse the value of platforms, their architectural design choices, and the risks suppliers face in their use. The thesis has implications for the forms of leadership involved in managing such platform-based strategies, and for the economic impact such strategies can have on their larger ecosystem. It informs the design of suppliers’ platforms as system-of-system infrastructures supporting collaborations within larger ecosystems. And the ‘triple-articulation’ of the modelling approach makes new demands on the mathematics of systems modeling

    A semantically-enriched goal-oriented requirements engineering framework for systems of systems using the i* framework applied to cancer care

    Get PDF
    In recent years, monolithic systems are being composed into bigger systems as Systems of Systems (SoSs). This evolution of SoS raises several software engineering key challenges, such as the management of emerging inconsistent goals and requirements, which may occur among the various Constituent Systems (CSs) themselves, as well as between the entire SoS and the participating CSs. Another significant challenge is that Systems of Systems Engineering (SoSE) involves more stakeholders than traditional systems engineering, i.e. stakeholders at the SoS-level and the CS-level, where each CS has its own needs and objectives which establish a complex stakeholder environment. To respond to these challenges, this research is aimed at investigating the implications of applying a goal-oriented requirements engineering approach in identifying, modelling and managing emerging goals and their conflicts in SoS context. The key artefact of this research is the development of a Semantically-Enriched Goal-Oriented Requirements Engineering Framework for Systems of Systems using the i* framework, namely the OntoSoS.GORE framework.The OntoSoS.GORE is a three-layered framework designed, developed, demonstrated and then evaluated through following multiple iterations of the Design Science Research Methodology (DSRM) phases, to accomplish the following main objectives: (1) identifying and modelling the SoS global goals and the CSs local goals at different levels of an SoS using the i* framework, in which a new process to extract i* modelling elements from existing user documentation is proposed; (2) maintaining the consistency and integrity of SoS goals at multiple levels through developing a semantic Goals Referential Integrity (sGRI) model in SoS context which consists of an SoSGRI model and an ontology-based model; and (3) managing any conflicts that may occur amongst goals at both the SoS-level and the CS-level, by developing and applying a new goal conflict management approach in SoS context, which consists of two main processes: goal conflict detection and goal conflict resolution.The research framework has been instantiated and validated by applying a real Cancer Care case study at King Hussein Cancer Center (KHCC), Amman, Jordan. Results revealed the effectiveness of applying the framework compared to the current approach applied at KHCC, in terms of addressing higher consistency, completeness and correctness with regard to goal management and conflict management in SoS context. Moreover, the framework provides automation of the processes of following the satisfaction of goals and goals’ conflict management at multiple SoS levels, instead of the manual approach applied currently at KHCC. This automation is accomplished through developing a strategic goal-oriented management tool that is anticipated to be delivered and utilised at KHCC, as well as applying it to other SoS organisations as a proposed solution for goal and conflict management. Another contribution to the Cancer Care and SoS domains is developing a reference i* goal-oriented model for access to Cancer Care which provides a wider system engineering perspective and offers an accessible level of abstraction about Cancer Care goals and their dependencies for stakeholders and domain experts. The reference model provides standardisation of common generic concepts about the domain, in which other Cancer Care organisations can considerably reuse to facilitate the process of capturing and specifying goals and requirements for their practice and validating choices among alternative designs

    Air Force Institute of Technology Research Report 2009

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    corecore