1,100 research outputs found

    System Identification of a Micro Aerial Vehicle

    Get PDF
    The purpose of this thesis was to implement an Model Predictive Control based system identification method on a micro-aerial vehicle (DJI Matrice 100) as outlined in a study performed by ETH Zurich. Through limited test flights, data was obtained that allowed for the generation of first and second order system models. The first order models were robust, but the second order model fell short due to the fact that the data used for the model was not sufficient

    Quadcopter Trajectory Prediction and Wind Estimation Using Machine Learning

    Get PDF
    Small unmanned aerial systems are heavily impacted by wind disturbances. Wind causes deviations from desired trajectories, potentially leading to crashes. In this thesis, we consider two inherently related problems: predicting quadcopter trajectory deviations due to wind disturbances and estimating wind velocity based on quadcopter trajectory deviations. The former is addressed using linear difference equation identification as well as neural network (NN) modeling. Simulations validate the use of linear difference equation identification as a tool to predict trajectory deviations in crosswinds and machine learning (specifically, long short-term memory (LSTM) NNs) as an approach to predict trajectory deviations in multidimensional wind. We approach the wind estimation problem from a machine learning perspective due to easier generalization of the NN to multidimensional winds. As in the trajectory prediction case, we use LSTM NNs to identify a model. The trained NN is deployed to estimate the turbulent winds as generated by the Dryden gust model as well as a realistic large eddy simulation of a near-neutral atmospheric boundary layer over flat terrain. The resulting NN predictions are compared to a wind triangle approach that uses tilt angle as an approximation of airspeed. Results from this study indicate that the LSTM NN based approach results in lower errors in both the mean and variance of the local wind field as compared to the wind triangle approach

    Vision - based self - guided Quadcopter landing on moving platform during fault detection

    Get PDF
    Fault occurrence in the quadcopter is very common during operation in the air. This paper presents a real-time implementation to detect the fault and then the system is guaranteeing to safely land on the surface, even the moving landing platform. Primarily, PixHawk auto-pilot was used to verify in real-time, with platform detection and various environmental conditions. The method is ensuring the quadcopter operates in the landing area zone with the help of a GPS feature. Then the precise landing on the astable-landing platform is calibrated automatically using the vision-based learning feedback technique. The proposed objective is developed using reconfigurable Raspberry Pi-3 with a Pi camera. The full decision on an efficient landing algorithm is deployed into the quadcopter. The system is self-guided and automatically returns to home-based whenever the fault detects. The study is conducted with the situation of low battery operation and the trigger of auto-pilot helps to land the device safely before any mal-function. The system is featured with predetermined speed and altitude while navigating the home base, thus improves the detection process. Finally, the experiment study provided successful trials to track usable platform, landing on a restricted area, and disarm the motors autonomously

    Design, Development and Implementation of Intelligent Algorithms to Increase Autonomy of Quadrotor Unmanned Missions

    Get PDF
    This thesis presents the development and implementation of intelligent algorithms to increase autonomy of unmanned missions for quadrotor type UAVs. A six-degree-of freedom dynamic model of a quadrotor is developed in Matlab/Simulink in order to support the design of control algorithms previous to real-time implementation. A dynamic inversion based control architecture is developed to minimize nonlinearities and improve robustness when the system is driven outside bounds of nominal design. The design and the implementation of the control laws are described. An immunity-based architecture is introduced for monitoring quadrotor health and its capabilities for detecting abnormal conditions are successfully demonstrated through flight testing. A vision-based navigation scheme is developed to enhance the quadrotor autonomy under GPS denied environments. An optical flow sensor and a laser range finder are used within an Extended Kalman Filter for position estimation and its estimation performance is analyzed by comparing against measurements from a GPS module. Flight testing results are presented where the performances are analyzed, showing a substantial increase of controllability and tracking when the developed algorithms are used under dynamically changing environments. Healthy flights, flights with failures, flight with GPS-denied navigation and post-failure recovery are presented
    • …
    corecore