5 research outputs found

    A simple and novel method to monitor breathing and heart rate in awake and urethane-anesthetized newborn rodents

    Get PDF
    Rodents are most useful models to study physiological and pathophysiological processes in early development, because they are born in a relatively immature state. However, only few techniques are available to monitor non-invasively heart frequency and respiratory rate in neonatal rodents without restraining or hindering access to the animal. Here we describe experimental procedures that allow monitoring of heart frequency by electrocardiography (ECG) and breathing rate with a piezoelectric transducer (PZT) element without hindering access to the animal. These techniques can be easily installed and are used in the present study in unrestrained awake and anesthetized neonatal C57/Bl6 mice and Wistar rats between postnatal day 0 and 7. In line with previous reports from awake rodents we demonstrate that heart rate in rats and mice increases during the first postnatal week. Respiratory frequency did not differ between both species, but heart rate was significantly higher in mice than in rats. Further our data indicate that urethane, an agent that is widely used for anesthesia, induces a hypoventilation in neonates whilst heart rate remains unaffected at a dose of 1 g per kg body weight. Of note, hypoventilation induced by urethane was not detected in rats at postnatal 0/1. To verify the detected hypoventilation we performed blood gas analyses. We detected a respiratory acidosis reflected by a lower pH and elevated level in CO2 tension (pCO2) in both species upon urethane treatment. Furthermore we found that metabolism of urethane is different in P0/1 mice and rats and between P0/1 and P6/7 in both species. Our findings underline the usefulness of monitoring basic cardio-respiratory parameters in neonates during anesthesia. In addition our study gives information on developmental changes in heart and breathing frequency in newborn mice and rats and the effects of urethane in both species during the first postnatal week

    Monitoring System for Laboratory Mice Transportation: A Novel Concept for the Measurement of Physiological and Environmental Parameters

    Get PDF
    Laboratory mice are used in biomedical research as “models” for studying human disease. These mice may be subject to significant levels of stress during transportation that can cause alterations that could negatively affect the results of the performed investigation. Here, we present the design and realization of a prototypical transportation container for laboratory mice, which may contribute to improved laboratory animal welfare. This prototype incorporates electric potential integrated circuit (EPIC) sensors, which have been shown to allow the recording of physiological parameters (heart rate and breathing rate) and other sensors for recording environmental parameters during mouse transportation. This allows for the estimation of the stress levels suffered by mice. First experimental results for capturing physiological and environmental parameters are shown and discussed

    Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice

    Get PDF
    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC) sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram). First experimental results are shown

    Spatiotemporal Structure and Dynamics of Spontaneous Oscillatory Synchrony in the Vagal Complex

    Get PDF
    Fundamental structure and dynamics of spontaneous neuronal activities without apparent peripheral inputs were analyzed in the vagal complex (VC), whose activities had been generally thought to be produced almost passively to peripheral cues. The analysis included the caudal nucleus of the tractus solitarius—a main gateway for viscerosensory peripheral afferents and involved dynamically and critically in cardiorespiratory brainstem networks. In the present study, a possibility of self-organized brain activity was addressed in the VC. While VC neurons exhibited sparse firing in anesthetized rats and in in vitro preparations, we identified peculiar features of the emergent electrical population activity: (1) Spontaneous neuronal activity, in most cases, comprised both respiration and cardiac cycle components. (2) Population potentials of polyphasic high amplitudes reaching several millivolts emerged in synchrony with the inspiratory phase of respiratory cycles and exhibited several other characteristic temporal dynamics. (3) The spatiotemporal dynamics of local field potentials (LFPs), recorded simultaneously over multiple sites, were characterized by a stochastic emergence of high-amplitude synchrony. By adjusting amplitude and frequency (phase) over both space and time, the traveling synchrony exhibited varied degrees of coherence and power with a fluctuating balance between mutual oscillators of respiratory and cardiac frequency ranges. Full-fledged large-scale oscillatory synchrony over a wide region of the VC emerged after achieving a maximal stable balance between the two oscillators. Distinct somatic (respiratory; ~1 Hz) and visceral (autonomic; ~5 Hz) oscillators seemed to exist and communicate co-operatively in the brainstem network. Fluctuating oscillatory coupling may reflect varied degrees of synchrony influenced by the varied amplitude and frequency of neuronal activity in the VC. Intranuclear micro-, intrabulbar meso-, and wide-ranging macro-circuits involving the VC are likely to form nested networks and strategically interact to maintain a malleable whole-body homeostasis. These two brainstem oscillators could orchestrate neuronal activities of the VC, and other neuronal groups, through a phase-phase coupling mechanism to perform specific physiological functions
    corecore