47,748 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Collaborative Engineering Environments. Two Examples of Process Improvement

    Get PDF
    Companies are recognising that innovative processes are determining factors in competitiveness. Two examples from projects in aircraft development describe the introduction of collaborative engineering environments as a way to improve engineering processes. A multi-disciplinary simulation environment integrates models from all disciplines involved in a common functional structure. Quick configuration for specific design problems and powerful feedback / visualisation capabilities enable engineering teams to concentrate on the integrated behaviour of the design. An engineering process management system allows engineering teams to work concurrently in tasks, following a defined flow of activities, applying tools on a shared database. Automated management of workspaces including data consistency enables engineering teams to concentrate on the design activities. The huge amount of experience in companies must be transformed for effective application in engineering processes. Compatible concepts, notations and implementation platforms make tangible knowledge like models and algorithms accessible. Computer-based design management makes knowledge on engineering processes and methods explicit

    Design Creativity: Future Directions for Integrated Visualisation

    Get PDF
    The Architecture, Engineering and Construction (AEC) sectors are facing unprecedented challenges, not just with increased complexity of projects per se, but design-related integration. This requires stakeholders to radically re-think their existing business models (and thinking that underpins them), but also the technological challenges and skills required to deliver these projects. Whilst opponents will no doubt cite that this is nothing new as the sector as a whole has always had to respond to change; the counter to this is that design ‘creativity’ is now much more dependent on integration from day one. Given this, collaborative processes embedded in Building Information Modelling (BIM) models have been proffered as a panacea solution to embrace this change and deliver streamlined integration. The veracity of design teams’ “project data” is increasingly becoming paramount - not only for the coordination of design, processes, engineering services, fabrication, construction, and maintenance; but more importantly, facilitate ‘true’ project integration and interchange – the actualisation of which will require firm consensus and commitment. This Special Issue envisions some of these issues, challenges and opportunities (from a future landscape perspective), by highlighting a raft of concomitant factors, which include: technological challenges, design visualisation and integration, future digital tools, new and anticipated operating environments, and training requirements needed to deliver these aspirations. A fundamental part of this Special Issue’s ‘call’ was to capture best practice in order to demonstrate how design, visualisation and delivery processes (and technologies) affect the finished product viz: design outcome, design procedures, production methodologies and construction implementation. In this respect, the use of virtual environments are now particularly effective at supporting the design and delivery processes. In summary therefore, this Special Issue presents nine papers from leading scholars, industry and contemporaries. These papers provide an eclectic (but cognate) representation of AEC design visualisation and integration; which not only uncovers new insight and understanding of these challenges and solutions, but also provides new theoretical and practice signposts for future research

    Redesigning work organizations and technologies: experiences from European projects

    Get PDF
    Currently distributed business process (re) design (resulting in components of business networks) basically relies on technical criteria. And that are the main purposes of most research projects supported by EC. Through the process of building a European Research Area, this means a strong influence in the national research programmes. However it is generally accepted that it should also take into account social criteria and aspects such as the quality of working life, or participation in decision processes. Those were some of the objectives of projects in de 80s decade, and framed some of the main concepts and scientific approaches to work organisation. The democratic participation of network and organisations members in the design process is a critical success factor. This is not accepted by everyone, but is based in sufficient case studies. Nevertheless, in order to achieve an optimization that can satisfying the requirements of agility of a network of enterprises, more complex design methods must be developed. Thus, the support to the collaborative design of distributed work in a network of enterprises, through a concurrent approaching business processes, work organisation and task content is a key factor to achieve such purposes. Increasing needs in terms of amounts of information, agility, and support for collaboration without time and space constrains, imposes the use of a computer-based model.business process; networks; decision processes; collaborative design;

    GARTEUR Helicopter Cooperative Research

    Get PDF
    This paper starts with an overview about the general structure of the Group for Aeronautical Research and Technology in EURope (GARTEUR). The focus is on the activities related to rotorcraft which are managed in the GARTEUR Helicopter Group of Responsables (HC GoR). The research activities are carried out in so-called Action Groups. Out of the 5 Action Groups which ended within the last four years results generated in the Helicopter Action Groups HC(AG14) “Methods for Refinement of Structural Dynamic Finite Element Models”, HC(AG15) “Improvement of SPH methods for application to helicopter ditching” and HC(AG16) “Rigid Body and Aeroelastic Rotorcraft-Pilot Coupling” are briefly summarized

    Contested modelling

    Get PDF
    We suggest that the role and function of expert computational modelling in real-world decision-making needs scrutiny and practices need to change. We discuss some empirical and theory-based improvements to the coupling of the modelling process and the real world, including social and behavioural processes, which we have expressed as a set of questions that we believe need to be answered by all projects engaged in such modelling.  These are based on a systems analysis of four research initiatives, covering different scales and timeframes, and addressing the complexity of intervention in a sustainability context. Our proposed improvements require new approaches for analysing the relationship between a project’s models and its publics.  They reflect what we believe is a necessary and beneficial dialogue between the realms of expert scientific modelling and systems thinking.  This paper is an attempt to start that process, itself reflecting a robust dialogue between two practitioners sat within differing traditions, puzzling how to integrate perspectives and achieve wider participation in researching this problem space.&nbsp
    • 

    corecore