411 research outputs found

    Mobile Broadband Possibilities considering the Arrival of IEEE 802.16m & LTE with an Emphasis on South Asia

    Get PDF
    This paper intends to look deeper into finding an ideal mobile broadband solution. Special stress has been put in the South Asian region through some comparative analysis. Proving their competency in numerous aspects, WiMAX and LTE already have already made a strong position in telecommunication industry. Both WiMAX and LTE are 4G technologies designed to move data rather than voice having IP networks based on OFDM technology. So, they aren't like typical technological rivals as of GSM and CDMA. But still a gesture of hostility seems to outburst long before the stable commercial launch of LTE. In this paper various aspects of WiMAX and LTE for deployment have been analyzed. Again, we tried to make every possible consideration with respect to south Asia i.e. how mass people of this region may be benefited. As a result, it might be regarded as a good source in case of making major BWA deployment decisions in this region. Besides these, it also opens the path for further research and in depth thinking in this issue.Comment: IEEE Publication format, ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    Handover management in mobile WiMAX using adaptive cross-layer technique

    Get PDF
    The protocol type and the base station (BS) technology are the main communication media between the Vehicle to Infrastructure (V2I) communication in vehicular networks. During high speed vehicle movement, the best communication would be with a seamless handover (HO) delay in terms of lower packet loss and throughput. Many studies have focused on how to reduce the HO delay during lower speeds of the vehicle with data link (L2) and network (L3) layers protocol. However, this research studied the Transport Layer (L4) protocol mobile Stream Control Transmission Protocol (mSCTP) used as an optimal protocol in collaboration with the Location Manager (LM) and Domain Name Server (DNS). In addition, the BS technology that performs smooth HO employing an adaptive algorithm in L2 to perform the HO according to current vehicle speed was also included in the research. The methods derived from the combination of L4 and the BS technology methods produced an Adaptive Cross-Layer (ACL) design which is a mobility oriented handover management scheme that adapts the HO procedure among the protocol layers. The optimization has a better performance during HO as it is reduces scanning delay and diversity level as well as support transparent mobility among layers in terms of low packet loss and higher throughput. All of these metrics are capable of offering maximum flexibility and efficiency while allowing applications to refine the behaviour of the HO procedure. Besides that, evaluations were performed in various scenarios including different vehicle speeds and background traffic. The performance evaluation of the proposed ACL had approximately 30% improvement making it better than the other handover solutions

    Handover analysis over mobile WiMAX technology.

    Get PDF
    As new mobile devices and mobile applications continue to growth, so does the data traffic demand for broadband services access and the user needs toward mobility, thereby, wireless application became today the fastest solution and lowest cost implementation unlike traditional wired deployment such as optical fibers and digital lines. WiMAX technology satisfies this gap through its high network performance over the air interface and high data rates based on the IEEE 802.16-2004 standards, this original specification does not support mobility. Therefore, the IEEE introduces a new standard that enables mobility profiles under 802.16e-2005, from which three different types of handovers process are introduced as hard handover (HHO), macro diversity handover (MDHO) and fast base station switching (FBSS) handover. The objective of this master thesis is to analyze how the handover process affects network performance. The analysis propose three scenarios, built over OPNET simulator to measure the most critical wireless parameter and performance indicator such as throughput, handover success rate, packet drop, delay and network usage.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure
    corecore