1,230 research outputs found

    Design for diagnostics and prognostics:a physical- functional approach

    Get PDF

    NASA Space Flight Vehicle Fault Isolation Challenges

    Get PDF
    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk.

    No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research

    Get PDF
    This is the second half of a two paper series covering aspects of the no fault found (NFF) phenomenon, which is highly challenging and is becoming even more important due to increasing complexity and criticality of technical systems. Part 1 introduced the fundamental concept of unknown failures from an organizational, behavioral and cultural stand point. It also reported an industrial outlook to the problem, recent procedural standards, whilst discussing the financial implications and safety concerns. In this issue, the authors examine the technical aspects, reviewing the common causes of NFF failures in electronic, software and mechanical systems. This is followed by a survey on technological techniques actively being used to reduce the consequence of such instances. After discussing improvements in testability, the article identifies gaps in literature and points out the core areas that should be focused in the future. Special attention is paid to the recent trends on knowledge sharing and troubleshooting tools; with potential research on technical diagnosis being enumerated

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis

    Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 2: Ground Operations evaluation

    Get PDF
    The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented

    The New NASA Approach to Reliability and Maintainability

    Get PDF
    In 2017, after 20 years, NASA issued a major revision of its reliability and maintainability (R&M) policy, NASA-STD- 8729.1A. Formerly NASA required certain specific R&M activities during each succeeding phase of project development. Now NASA requires a project to start by including the initial development of R&M requirements and the devising of strategies to implement and verify them. Rather than resolving all the requirements first and then designing the system, as has been usual in systems design, the design process now is to work top down by layers. It begins by first identifying the top level requirements and suggesting top level design strategies for those, then making these higher strategies the basis for a lower level set of requirements, and so on down to the lowest components. This approach is intended to ensure that R&M is designed in from the beginning rather than added later with difficulty to a completed design concept. The new R&M standard uses an innovative and effective top-down system design approach intended to effectively implement R&M

    Space station advanced automation

    Get PDF
    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software

    Towards standardisation of no fault found taxonomy

    No full text
    There is a phenomenon which exists in complex engineered systems, most notably those which are electrical or electronic which is the inability to diagnose faults reported during operation. This includes difficulties in detecting the same reported symptoms with standard testing, the inability to correctly localise the suspected fault and the failure to diagnose the problem which has resulted in maintenance work. However an inconsistent terminology is used in connection with this phenomenon within both scientific communities and industry. It has become evident that ambiguity, misuse and misunderstanding have directly compounded the issue. The purpose of this paper is to work towards standardisation of the taxonomy surrounding the phenomena popularly termed No Fault Found, Retest Okay, Cannot Duplicate or Fault Not Found amongst many others. This includes discussion on how consistent terminology is essential to the experts within organisation committees and, to the larger group of users, who do not have specialised knowledge of the field

    Interactive 3D Mars Visualization

    Get PDF
    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope
    • …
    corecore