
Design for diagnostics and prognostics

Niculita, Ioan-Octavian; Jennions, Ian K.; Irving, Phil

DOI:
10.1109/AERO.2013.6497143

Publication date:
2013

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Niculita, I-O, Jennions, IK & Irving, P 2013, 'Design for diagnostics and prognostics: a physical- functional
approach'. https://doi.org/10.1109/AERO.2013.6497143

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293881193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/AERO.2013.6497143
https://researchonline.gcu.ac.uk/en/publications/07e8b311-e8ec-40ba-a12b-bf340e7b4c82
https://doi.org/10.1109/AERO.2013.6497143


   978-1-4673-1813-6/13/$31.00 ©2013 IEEE 

 1 

Design for Diagnostics and Prognostics: A Physical-

Functional Approach 
Octavian Niculita  

Integrated Vehicle Health 
Management Centre, Cranfield 
University, Cranfield, Bedford  

MK43 0FQ, UK 
o.niculita@cranfield.ac.uk 

Ian K. Jennions  
Integrated Vehicle Health 

Management Centre, Cranfield 
University, Cranfield, Bedford  

MK43 0FQ, UK 
i.jennions@cranfield.ac.uk 

Phil Irving  
Integrated Vehicle Health 

Management Centre, Cranfield 
University, Cranfield, Bedford  

MK43 0FQ, UK 
p.e.irving@cranfield.ac.uk 

 
Abstract— This paper describes an end-to-end Integrated 

Vehicle Health Management (IVHM) development process 

with a strong emphasis on the COTS software tools employed 

for the implementation of this process. A mix of physical 

simulation and functional failure analysis was chosen as a 

route for early assessment of degradation in complex systems 

as capturing system failure modes and their symptoms 

facilitates the assessment of health management solutions for a 

complex asset. The method chosen for the IVHM development 

is closely correlated to the generic engineering cycle. The 

concepts employed by this method are further demonstrated 

on a laboratory fuel system test rig, but they can also be 

applied to both new and legacy hi-tech high-value systems. 

Another objective of the study is to identify the relations 

between the different types of knowledge supporting the health 

management development process when using together 

physical and functional models. The conclusion of this lead is 

that functional modeling and physical simulation should not be 

done in isolation. The functional model requires permanent 

feedback from a physical system simulator in order to be able 

to build a functional model that will accurately represent the 

real system. This paper will therefore also describe the steps 

required to correctly develop a functional model that will 

reflect the physical knowledge inherently known about a given 

system. 
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1. INTRODUCTION 

The identification of component/sub-system failure that can 

lead to the loss of the entire system/platform functionality is 

a crucial activity in designing and commissioning high-tech, 

high-value systems. Early stage design phases have been 

proved to offer the most effective analyses for development 

of integrated vehicle health management (IVHM) solutions 

[1], [2] and [3] . Within the early design stages, various 

design alternatives can be explored, before costly decisions 

are approved [4]. 

In the past decade, a significant amount of research related 

to development of IVHM solutions focused on detection and 

isolation of component failures. 

 

Figure 1- IVHM Development Process at the component 

level  

In this paper, we developed several unique capabilities that 

were consolidated as an end-to end health management 

development process capable of handling the design of the 

IVHM capability at the system/platform level. The new 

process is an extension of the process depicted in Figure 1, 

by integrating design, safety and reliability analysis for the 

identification of optimized sensor set solutions/diagnostic 

rules. This new process is captured in Figure 2 and 

addresses the ‘system of systems’ IVHM design 

perspective.  

The proposed end-to-end analytical framework consists of 

seven different layers: physical simulation, diagnostic 

analysis (functional decomposition and failure-symptom 

relation analysis), symptom measurement, feature extraction 

and reduction, diagnosis (detection and isolation) and 

prognosis. 

Firstly, physical models (at the top of Figure 2) are the 

design system codes that are used by the OEMs to design a 

new components/sub-system/system. Secondly, a functional 

modeling approach was employed to be able to carry out 

functional failure mode effects and criticality analysis.  
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Figure 2 - IVHM Development Process at the system level  

The third layer is represented by the failure mode analysis. 

The approach adopted here is supported by the functional 

failure. The functional failure mode, effects and criticality 

analysis (FFMECA) helps the identification in a systematic 

manner of various sensor set solutions capable of detecting 

and isolating the failure modes captured in the analysis. 

Trade studies must be carried out in order to identify the 

optimum sensor set solution based on weight, cost, 

reliability and sensitivity until initial health management 

requirements are met (fault detection requirements, fault 

isolation requirements, ambiguity group constraints).  These 

sensor set solutions will be complemented by additional 

signal processing techniques. 

The combination of physical-functional analyses produces 

accurate sensor set identification only if these types of 

analyses are tightly coupled. Both types of analyses 

represent different facets of the same system and must be 

cross validated in order to ensure an accurate representation 

of the real system in a simulation environment. In order to 

demonstrate the proposed end-to-end process, this paper 

analyzes the design of UAV fuel system health management 

solution. The challenges and opportunities of integrating the 

prognostic capability as part of this solution will be 

addressed towards the end of the paper. 

The following sections present the proposed IVHM 

development process at the system level.  

Section 2 summarizes the design related work as the 

foundation of the system design but also the foundation of 

the health management unit design. In Section 3, the details 

of the functional analysis approach are discussed including 

the verification and validation of a functional model.  

The implementation and validation of various sensing 

solutions on a UAV fuel system is presented in Section 4. 

The results of end-to-end IVHM development process 

including an instantiation of this process using dedicated 

COTS software tools are presented in Section 5. Section 6 

collates the concluding remarks and a summary of the future 

direction of this research.      

2. FUEL SYSTEM TEST BED – PHYSICAL ANALYSIS 

We aim to take a relative simple fuel system, to illustrate the 

key steps of the IVHM development process using a mix of 

physical-functional analysis and to implement the output of 

these analyses within an IVHM solution that meets the 

specific fault detection and isolation requirements (100% 

fault detection and 100% fault isolation). A schematic 

diagram of the fuel system is presented in Figure 3. A few 

modifications were added to this initial schematic in order to 

be able to physically simulate the degradation of five 
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components (the filter, the pump, the shut-off valve, the 

pipe connecting the shut-off valve to the sump tank (our 

virtual engine), and the nozzle). These adjustments translate 

into Figure 4. The fuel system contains a motor driven 

external gear pump with internal relief valve, a shut off 

valve, one filter, two tanks (main tank and sump tank, the 

last one emulating the engine), non-return valve, three-way 

valve to switch between recirculation and engine feed mode, 

nozzle to simulate engine injection and back pressure when 

partially closed. Figures 3 and 4a present only the engine 

feed scenario. The fuel system is representative of a small 

UAV engine feed. The design of the IVHM capability will 

focus on the filter, pump, shut-off valve, pipes and nozzle 

failure modes. Five failure modes that are emulated on the 

rig are: filter clogging from foreign matter, pump 

degradation, valve stuck in a midrange position, a leak in 

the main line, and a clogged nozzle. 

 

Figure 3 - IVHM Centre fuel system demonstrator  

The fuel rig can accommodate various faults with different 

degrees of severity. When a filter clogs, the flow through 

the filter reduces and the pressure difference measured 

across the filter increases. The filter failure was emulated by 

replacing the filter component with a Direct-acting 

Proportional Valve (DPV1). Valve position fully open is 

equivalent to a healthy filter; partially closed being 

equivalent to a clogged filter with a particular degree of 

severity. Various degrees of severity of this fault can be 

simulated by varying the DPV position. In this manner, 

incipient, slow progression, cascading and abrupt types of 

faults can be simulated on the rig and the ability of the 

functional approach to model and address such conditions 

can be assessed. The physical implementation of the fuel 

system test bed is depicted in Figure 5. 

 

 

Figure 4 - Fuel delivery system demonstrator including 

degradation mechanisms 

 

Figure 5 - Fuel system test bed 

The physical system allows the testing and validation of 

various IVHM models and the assessment of the analyses 

carried out using such models that will be employed for the 

implementation of the proposed end-to-end IVHM 

development process. Prior the construction of the physical 

system, a physical simulation model was developed during 

the fuel system design phase using a CAE COTS software 

tool: SimulationX™ from ITI [9] (Figure 6). This modelling 

phase encompasses basically the sensibility studies carried 

out during the fuel system design phase in order to specify 

in a correct manner the components/system performance in 

order to meet the specified system requirements.  
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Figure 6 - SimulationX™ model of the fuel system test bed 

Pipes’ length and diameter, pump characteristics, loss 

coefficient versus valve opening characteristics, shut-off 

valve pressure drop when fully opened, tank’s capacity have 

been identified within the design phase by carrying out 

various scenarios in a controlled simulation environment. 

Volumetric flow rates in the mail line and pressure rates at 

five different locations were calculated using the physical 

model. The results produced using the SimulationX™ 

physical model are presented against the test rig data for 

both: normal and abnormal conditions (one of the five faulty 

cases). 

 

For the healthy state of the fuel system, the direct acting 

proportional valves were set as follows: DPV1 – fully open, 

DPV2 – fully closed, DPV3 – fully open, DPV4 – fully 

closed and DPV5 – fully open. Pressure and flow rates for 

the healthy condition were recorded for a period of 10 

minutes in order to have a good estimation and pump 

rotational speed was set at 400rpm. A series of 11 samples 

were taken using the conditions mentioned above. The 

feedback loop of the pump control unit was active, so the 

pump speed was constant for the entire testing session.  

 

The volumetric flow rates obtained by running both the rig 

and the simulation model for healthy conditions are 

presented in Figure 7. This shows a small discrepancy 

between the mean of the measured data and the 

SimulationX™ predictions of less than 1%. Pressure rates 

calculated using SimulationX™ at locations 1, 3 and 4 

follow exactly the profile offered by the pressure sensors 

fitted on the rig at the same locations (having less than 3% 

error difference) (Figure 8).  

For the locations 2 and 5 the error is less than 6.5%, being 

also a clear indication that pressure drop across the DPV 

valve is greater in reality than in the model when valve is 

fully opened. 

The SimulationX™ fuel system model returned results very 

close to those obtained on the rig when using the same 

configuration for almost the same pump speed under 

different operating conditions (difference between the 

averaged pump speed on the test rig and the set value of the 

pump speed in the model being less than 0.01%). 

Figures 9 and 10 quantify the error between the model 

output and test rig readings for pressure at five different 

locations and volumetric flow rates at different pump speeds 

for steady state conditions (100 rpm, 200rpm, 300 rpm, 400 

rpm and 500 rpm). 

Volumetric flow rates were simulated by the model with an 

error less than 1.75% (errors values are labeled with V in 

Figure 9). Pressure values calculated by the model at 

locations P1, P3 and P4 are less than 3.5% error compared 

with the values from the rig. A slightly bigger difference is 

observed in two of the pressure rates (measured at location 

P2 and P5), the test rig sensors returning values with less 

than 6.2% different than the model output (errors values are 

labeled with P1, P2, P3, P4, P5 in Figure 10).  
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The model was calibrated using data obtained on the rig 

since the majority of the components are low cost type of 

components and hence the manufacturers’ data is not 

available.

 

Figure 7 - Model results vs. test rig data for the fuel 

system – volumetric flow rate 

 
Figure 8 - SimulationX™ results vs. test rig data for the 

fuel system – pressure rates 

 

 

 

 
 
Figure 9 - Error between the simulated volumetric flow 

rates vs. test rig readings in % 

 

 
 
Figure 10 - Error between the simulated pressure rates 

vs. test rig readings in % 

 

The same assessment (Model vs. Physical system) was done 

for each individual faulty case. This allows the system 

designers to provide the correct information to the IVHM 

designers regarding the behavior of the system outside the 

normality envelope. 

 

The IVHM design process must be considered as part of the 

system design if the business models of OEMs are changing 

from supplying products to service offerings (e.g. 

GoldCare™ from Boeing, TotalCare™ from Rolls-Royce, 

Trucknology™ from MAN, etc.). The proposed IVHM 

development process will reveal the fact that the IVHM 

design process has the roots in the system design and the 

physical models will be used as a baseline throughout the 

entire process for verification and validation of other models 

and analyses [3].  

The initial system design phase described in this section that 

is supported by physical models covers the top layer of the 

end-to-end IVHM development framework.  

3. FUNCTIONAL ANALYSIS 

The second step of the proposed approach is based on the 

concept that a failure happens when the function of a 

specific component/sub-system/system is not fulfilled. This 

translates automatically into a malfunction at the 

component/sub-system/system level. 

The use of system functional analysis as part of the system 

design can enhance the confidence of safety analysis at the 

early stages and aid throughout the development of system 

health management capability. Health management design is 

generally undertaken in order to support fault detection 

strategies, fault isolation strategies and design of testability 

solutions. Fault detection analysis calculates the percentage 

of system faults that can be detected by defined tests. Fault 

isolation analysis determines the failure ambiguity groups 

that will result from exercising the defined tests over the 
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fault universe. Testability analysis sometimes associated 

with sensor set definition and optimization will determine 

the optimal sequence of tests to be implemented based on 

the fault space, defined tests, and other optimization criteria 

(practicality, cost, weight, reliability). As designs become 

more complex, defining and implementing a testability 

solution becomes more challenging. Ideally, health 

management capability must be developed concurrent with 

the design itself. Current practice does not facilitate an 

automatic feedback loop between test engineers and system 

design engineers. This feedback can be achieved through the 

incorporation of health management development process in 

the early design stage of the asset.   

The functional modelling approach uses functions and flows 

to describe the system. Clear ontology should be provided 

with each functional model in order to ensure others can 

read it, as they might represent a blueprint of the system 

using a different ontology. 

Functional modelling makes use of a system model which 

decomposes the main system function(s) into smaller 

functions which are well defined for each component. This 

enables the assessment of the correct functionality of the 

system, but also allows the investigation down to the 

component/part level. 

MADe™, a COTS software tool produced by PHM 

Technology, was employed to deal with functional analysis 

as part of the IVHM development process, leveraging also 

the conceptual design, safety, reliability and initial sensor 

set optimization phases within the development of a new 

product [10]. A primary element of any functional 

modelling approach is the representation of real world 

information corresponding to the input and output elements 

for the previously defined functions.  These elements are 

represented by flows: material, signal and energy [5] 

Figures 11 and 12 are two snapshots of the fuel delivery 

system functional model. Figure 11 describes the 

functionality of the pump motor underpinned by input and 

output flows: to convert the electric energy and a specific 

analogue value into mechanical rotational energy. 

Components can be fully described following this functional 

approach by a single function (e.g. gear pump motor) or a 

combination of function (see the shut-off valve functions) as 

described in Figure 12 (to channel and to regulate the fluid 

from inlet to outlet). 

 

To convert – to change from one form of energy (electrical 

energy) or material to another form of energy (mechanical – 

angular velocity) 

Figure 11 - Functional model schematic for gear pump 

motor component 

 

Figure 12- Functional model schematic for gear 

pump motor, gear pump, pipe and shut-off 

valve components 

 

Figure 13 presents the full functional model at the system 

level and also presents the exchange of information between 

components using specific types of flow.  

 

The reticence in using this tool is the fact that requires a 

change in failure addressing approach from physical to 

functional. Therefore it requires a fully adoption of its 

functional taxonomy in order to be able to emulate the real 

system into viable models and to complete the second step of 

the proposed IVHM development process. It was mentioned 

that functional analysis can liaise various type of analysis 

carried out during the initial design stages (conceptual design, 

safety analysis and reliability analysis). Using MADe™ tool, 

these type of analyses are performed using the same 

functional model (similar to the one defined in Figure 13) [3], 

[6]. Fault tree analyses (FTA) and functional failure effects 

and criticality analyses (FFMECA) can be carried out once 

failure mode diagrams are defined. Failure mode diagrams 

represent the connection between cause(s)-mechanism(s)-

fault(s)-symptoms(s) and functional failures. 

 

For example: a pipe component can leak or be clogged. These 

two failure modes are captured by the behavioural taxonomy 

as shown in Figure 14. Causes are linked to mechanisms, 

which then lead into faults that are ultimately connected to 

functional failures.  

 

Mechanisms and faults can present particular symptoms and 

these are captured accordingly in the failure diagram. These 

symptoms are the expression of unintended/emerging 

behaviour of a faulty system. Due to the restrictions of the 

physics for this failure mode, the output flow indicating the 

normality of the pipe’s function can display either OK or too 

low, hence the negative causality between the fault concepts 

and the functional failure concept. 



 

 7 

 

 

Figure 13 - Fuel system functional model 

 

Figure 14 - Failure mode diagram, pipe example 

 

Failure diagrams can be defined only for specific 

components for which it is required to implement IVHM 

capabilities, or for all components of the systems. The 

selection of the most critical components will be then be 

made by adding criticality indicators to all components 

(detectability, severity and occurrence) and by filtering only 

the components with a risk priority number above a specific 

threshold. 

Using the functional approach, sensor set solutions can be 

identified (selection of sensors that monitor the functional 

flows for the components selected for IVHM analysis).  The 

qualitative characteristics of each individual failure 

contained in the propagation table (a collection of the effects 

of a functional failure on the other components of the 

system) are processed by an optimization algorithm in order 

to identify the combination of elements which allow 

discriminating between them. The elements mentioned 

above are in fact the flows captured in the functional 

analysis and the type of flows will determine the type of 

sensors to be used to identify a particular fault. A detailed 

description of the sensor set discrimination analysis using 

this software is presented by Rudov-Clark (Rudov-Clark, 

2009). 

Functional analysis is a qualitative analysis. This type of 

qualitative analysis identifies the foundation of an IVHM 

solution for a given system for a known fault universe. As 

mentioned in the previous section, for this particular 

scenario of the fuel system, the fault universe is composed 

by five distinct faults. The optimization algorithm generates 

6 sensor set solutions, with maximum coverage and no 

ambiguity groups. One of the solutions contains four 

sensors and is presented in Figure 15 and it comprises of: 

 

S1 - one sensor measuring the static pressure after the Filter, 

S2 - one sensor measuring the flow rate after the Gear 

pump, 

S3 - one sensor measuring the flow rate after the Shut-off 

valve 

S4 - one sensor measuring the pressure in the Pipe 04. 

 

It is important to understand the system behavior and the 

failure mechanism of different abnormal conditions at the 

initial stage of the health management design. Initially, the 

test bed was fully populated with sensors in order to get as 

clear as possible image of the signature of each individual 

type of fault. This supplemented the system designer 

knowledge regarding the system behavior under faulty 

conditions. 

  

Fault signatures were obtained by running the rig and the 

simulation model under five faulty scenarios: i) clogged 

filter, ii) degraded gear pump, iii) shut-off valve stuck in 

various interim positions, iv) leaking pipe, v) clogged 

nozzle. A propagation table containing the symptom vectors 

corresponding to each type of fault injected in the system is 

described Table 1. 
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Each vector contains the system deviation from the healthy 

condition in terms of pressure in various points and 

volumetric flow rate in the main line. Each fault is 

characterized under low (marked with orange) and high 

(marked with red) degrees of severity. Each line in Table 1 

represents a qualitative expression of the quantitative 

simulation output for a scenario describing a particular 

failure mode of the system.  

 

The analysis was carried out during the initial design phase 

of the fuel system for all five faults taking in account 

various severities of the fault. The first line of the Table 1 

reflects the scenario of normality. Each sequential two lines 

reflect the system behavior under an abnormality scenario 

(line 2 - clogged filter, low to medium severity, line 3 – 

clogged filter, high severity).  It is widely accepted that 

simulation models are a good starting point for the 

identification of the barrier between normal and abnormal 

behavior of a system under known operating conditions.  

 

The information forming Table 1 has been extracted from 

the translation of the quantitative type of information 

offered by the physical simulations into a qualitative 

domain. The translation of the qualitative layer into 

quantitative means for the degradation phenomena of a 

clogged filter is represented by the probability density 

functions for the data offered by pressure sensors at various 

locations. Compared to the discrete values, offered by the 

SimulationX™ model, the data provided by the real system 

in real conditions are generally scattered around the 

simulated values.  

 

The histograms of the data sets obtained on the test rig 

represent the sum of the effects of the environmental 

conditions, manufacturing tolerances, sensor accuracy and 

resolution, system noise levels, etc. The assessment of the 

system behavior under faulty conditions was initiated during 

the first layer of the proposed IVHM development process. 

The profile of each row corresponding to a unique type of 

fault was matched by the qualitative information offered by 

the functional models developed in the second layer of the 

proposed process. 

 

Table 1. Fault signatures – qualitative propagation table 
 

 Q P1 P2 P3 P4 P5 
Healthy 

Configuration 
      

Clogged filter 

Low/Medium 

severity 

 

 

    

Clogged filter 

High severity 
      

Degraded 

pump 

Low/Medium 

severity 

      

Degraded 

pump 

High severity 

      

Degraded valve 

Low/Medium 

severity 

 

   

  

Degraded valve 

High severity 
      

Leaking pipe 

Low/Medium 

severity 

      

Leaking pipe 

High severity 
      

Clogged nozzle 

Low/Medium 

severity 

 

    

 

Clogged nozzle 

High severity 
      

 

A translation in the real world of rows 2 and 3 (including 

other two different degrees of fault severity – low severity 

and medium to high severity) from Table 1 for pressure 

parameters P1 to P5 is captured by Figure 16. 

 

 

 

 

 

 

Figure 15 - Optimized sensor set identified using MADe™ functional analysis 
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Figure 16 - Simulation vs. test rig results: Pressure rates 

at five different locations for different fault severities 
The functional analysis described so far allowed the 

implementation of the second and the third layer of the 

proposed process, but it also enabled the analyses 

supporting the fourth layer of the process: identification of 

the symptom vectors (the combination of measurements that 

allow the identification and isolation of the faulty 

components). This type of analysis must support trade-off 

investigations that allow the IVHM designer to approximate 

the initial costs weight, reliability of the health management 

capability (Figure 17). 

 

Figure 17 - Sensor set query – MADe analysis 

4. DIAGNOSTICS AND PROGNOSTICS - 

IMPLEMENTATION AND VALIDATION 

Based on the analyses described in the previous sections, the 

IVHM designer has information about the location of these 

sensors contained in each sensor set, but also about the 

information regarding the type of flow monitored. All 

sensor set solutions are complemented by fault detection, 

fault isolation and ambiguity group indicators. Also, each 

sensor set contains the diagnostic rules which will need to 

be implemented on the asset. A snapshot of the diagnostic 

rules associated to the sensor set solution from Figure 15 is 

captured in Figure 18. The qualitative diagnostic layer 

produced by MADe will have to be complemented by the 

quantitative layer obtained in the physical simulation of the 

system. Most of the time, the diagnostic rules are 

associated with the tests that need to be carried out during 

the diagnostic phase. 

 

 

IF Sensor [Shut-off Valve] Flow rate is Low AND Sensor 

[Pipe03] Pressure is Low AND Sensor [Filter] Pressure is 

Nominal THEN failure mode on [Gear Pump] Flow rate 

Decrease  

 

 IF Sensor [Filter] Static pressure is Low, THEN failure 

mode is Filter - Static Pressure- Decrease  

Figure 18 - Diagnostic rules for the optimized sensor set 

solution 

The information generated by MADe™ software can be 

used in this manner by the IVHM designer in developing the 

IVHM solution but also by the system designer as well, the 

last one having the opportunity to analyze the impact on the 

overall design once this solution is integrated on the asset. 

The integration of the HM solution on the asset might 

require additional updates to the original design, therefore 

safety and reliability analyses will have to take into 

consideration the IVHM sub-system characteristics. 

As described in Figure 18, the diagnostic rules evaluate 

specific parameters by quantifying their deviation from 

normality (Very Low, Low, High or Very High). When 

specific conditions are met, the corresponding alarm for a 

particular failure is triggered. The sequence of diagnostic 

rules acts as a diagnostic engine shaped as an expert system. 

Alternatively to an expert system, the optimized sensor set 

can be linked with a dedicated model-based reasoner. 

 In general, expert systems perform extremely well in 

specific conditions, mainly in the case of high severity 

cases. Let’s take the example of the clogged filter. 

According to the second rule in Figure 18, high severity 

cases and medium severity cases can be easily detected 

without any risks of false alarms (Figures 19 and 20).  

In both, Figure 19 and Figure 20, for the data obtained under 

normal conditions (marked with blue), average, 

average±2*σ and average±3*σ thresholds have been 

highlighted. These statistical thresholds ensure a 95% and 

respectively 99.7% of the normal data is positioned within 

these limits. The diagnostic rule associated with the case of 

a clogged filter will offer maximum efficiency for these two 

types of scenarios (or any other scenarios with a degree of 

severity between mid severity and high severity). 
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Figure 19 - Clogged filter – Example of high severity 

scenarios 

 

Figure 20 - Clogged filter – Example of medium severity 

scenarios 

The situation is changing when IVHM requirements 

mandate the detection of lower severity cases. For these 

cases, there is a clear overlap between the data obtained 

under faulty conditions and the data obtained under healthy 

conditions. Figure 21 show a degraded scenario 

characterized by a medium to low level severity while 

Figure 22 depicts a very low level of severity for the same 

clogged filter case.  

These particular cases are characterized by a high risk of 

false positives and false negatives, and therefore additional 

signal processing techniques are required. These techniques 

are formerly known as feature extraction techniques and 

will form the base of the fifth layer of the proposed IVHM 

development process. 

Unsupervised learning techniques like K-means, K-medians, 

Fuzzy C-means, Gaussian Mixture Models (GMM), 

Hierarchical Clustering, Spectral clustering, Vector 

Quantization, Self-Organizing Maps (SOM) can be applied 

for the identification of faulty data. For the lowest severity 

faulty case that can be simulated on the test rig for a clogged 

filter scenario (data presented in Figure 22), a two-

component Gaussian Mixture Model (GMM) was fitted. As 

input data for this model, the average and standard deviation 

values (calculated for every second) were used. A basic 

clustering technique has been used to separate the faulty 

from the healthy data.  

 

Figure 21 - Clogged filter – Example of medium to low 

severity scenarios 

 

Figure 22 - Clogged filter – Example of very low severity 

scenarios 

As a verification technique, the posterior probability was 

computed. This correlation was calculated for these two 

components in order to ensure a clear separation between 

the healthy/faulty clusters (Figure 23). The probability 

density functions associated to the Gaussian Mixture 

Models are depicted in Figure 24. 

Supervised learning techniques can also be implemented 

when additional data characterizing the ‘normality’ is 

obtained from service. 

 

Diagnostics can be performed using the sensors identified 

through the physical-functional analysis by making use of 

the diagnostic rules previously described. These diagnostic 
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rules will use as thresholds the values indicated by the 

physical ‘models of normality’ (developed within the design 

phase) in combination with additional signal processing 

techniques (as described in the previous paragraphs). At this 

point there is no exact information regarding the transition 

time from normal state to faulty conditions). This transition 

has to be determined through physical simulations of the 

asset under faulty conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Various studies focused on simulation of the degradation for 

specific components and not for the entire platform (Daigle 

and Goebel, 2011). To predict the Remaining Useful Life 

(RUL) prognostic techniques are needed. This layer of the 

proposed approach is still in its early days but the prognostic 

algorithms will have to rely on the simulations performed 

within the design phase (physical layer of this framework) 

completing the picture.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 - Clogged filter – Feature extraction techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 - Clogged filter – PDFs for the Gaussian Mixture distributions
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5. END-TO-END IVHM DEVELOPMENT PROCESS – A 

COTS SOFTWARE VIEW  

 

This section discusses the previously described end-to end 

IVHM development process by emphasizing the COTS 

software tools used during the implementation and also 

highlighting the connections with various stages of the 

generic engineering cycle. A different view of the IVHM 

development process from Figure 2 is presented in Figure 

25.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The central circle is the usual engineering design cycle, 

from design through realization and into service and 

maintenance. The outside cycle is populated with the tools 

and the models that were employed for the parallel design of 

an IVHM system. The physical simulations are developed 

during the engineering design of the component/sub-system 

and system level. In our case the physical models have been 

developed using SimulationX™.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 - COTS software tools used for the implementation of the IVHM development process 

 

The development of the physical modeling phase is 

complemented by a functional analysis which aids safety, 

reliability and testability analyses (sensor set identification 

and diagnostic logic associated with a specific sensing 

solution). For these purposes, MADe™ software was used 

and six sensor set solutions that provide 100% fault 

detection and isolation were generated.  

 

The integration of the sensing capability on the real asset is 

performed in the next phase (prototyping/production) using 

tools like Labview™ [11]. This integration phase employed 

the interrogation of the dll file associated to the physical 

model in order to obtain an IVHM solution that works under 

various operating conditions. Sensitivity and calibration 

studies are carried out in order to identify the thresholds that 

ensure a good separation of the faulty cases, with a reduce 

number of false positives and false negatives alarms.  

 

 

Once the system is deployed in service, the MADe™ 

diagnostic rules or dedicated model-based reasoners can 

work on real-time or can be packaged for the maintainer for 

troubleshooting purposes.  

 

Data collected by the maintainer should be also used for the 

maturation of the existent systems/development of the new 

systems’ generation.  

 

Further research will investigate means to capture the 

IVHM legacy information and knowledge into future 

engineering designs.  
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6. CONCLUDING REMARKS 

We presented a process for development of a health 

management capability for high-tech, high-value assets. The 

process was demonstrated on a UAV fuel delivery system 

test bed and is considered to be generic enough to be applied 

to other types of complex systems. We defined a set of 

layers and the specific analysis that has to be carried out 

within each of these layers.  

 

The baseline for the system design and also for the health 

management design is represented by the physical analysis. 

A very good understanding of the physics is required to run 

both design activities. Physical analysis was complemented 

by the functional analysis in order to represent a different 

dimension of the same system. This allowed us to approach 

the failure mode analysis phase from a functional 

perspective. This approach makes the assumption that a 

component/system fails when its function doesn’t meet the 

design specifications. Functional FMECAs were carried out 

using specific tools and the output of this analysis created 

the premises for sensor set identification.  

 

The mix of physical and functional analysis is generally 

employed during the conceptual/initial design stages 

allowing space for various re-design/re-configuration 

decisions before the beginning of the detailed design phase. 

The most suitable sensor set candidate (based on cost, 

reliability, weight, accuracy) was integrated on the asset and 

calibration procedures were carried out to quantify the 

effectiveness of the diagnostics capability. After being fully 

prototyped/deployed in service, the health ready system will 

be further used to obtain data that will enhance the 

diagnostics/prognostics and will provide an accurate 

representation of the degradation phenomenon under 

various operating conditions. The initial attempt to describe 

the degradation curves associated to the critical 

components/sub-systems will have to be based on the same 

engineering knowledge collated in the physical models 

developed during the design phase.  

 

For the demonstration task of this project, only commercial-

of-the-shelf software tools were employed (SimulationX™ 

for multi-domain simulations, MADe™ for functional 

analysis, sensor set identification and optimisation and 

diagnostic rule generation and Labview™ for the 

implementation stage). 

 

As future work, models of the degradation phenomenon for 

the five fuel delivery type of faults will be developed and 

integrated in the physical layer of the proposed framework. 
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