320,789 research outputs found

    Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions

    Get PDF
    During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus

    PhenDisco: phenotype discovery system for the database of genotypes and phenotypes.

    Get PDF
    The database of genotypes and phenotypes (dbGaP) developed by the National Center for Biotechnology Information (NCBI) is a resource that contains information on various genome-wide association studies (GWAS) and is currently available via NCBI's dbGaP Entrez interface. The database is an important resource, providing GWAS data that can be used for new exploratory research or cross-study validation by authorized users. However, finding studies relevant to a particular phenotype of interest is challenging, as phenotype information is presented in a non-standardized way. To address this issue, we developed PhenDisco (phenotype discoverer), a new information retrieval system for dbGaP. PhenDisco consists of two main components: (1) text processing tools that standardize phenotype variables and study metadata, and (2) information retrieval tools that support queries from users and return ranked results. In a preliminary comparison involving 18 search scenarios, PhenDisco showed promising performance for both unranked and ranked search comparisons with dbGaP's search engine Entrez. The system can be accessed at http://pfindr.net

    Hypothesis exploration with visualization of variance.

    Get PDF
    BackgroundThe Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an investigation into the biological bases of traits such as memory and response inhibition phenotypes-to explore whether they are linked to syndromes including ADHD, Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from traditional categorical approaches for psychiatric syndromes towards more quantitative approaches based on large-scale analysis of the space of human variation. It represented an application of phenomics-wide-scale, systematic study of phenotypes-to neuropsychiatry research.ResultsThis paper reports on a system for exploration of hypotheses in data obtained from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data analysis using novel mathematical models and methods for visualization of variance. An example of these methods is called VISOVA, a combination of visualization and analysis of variance, with the flavor of exploration associated with ANOVA in biomedical hypothesis generation. It permits visual identification of phenotype profiles-patterns of values across phenotypes-that characterize groups. Visualization enables screening and refinement of hypotheses about variance structure of sets of phenotypes.ConclusionsThe ViVA system was designed for exploration of neuropsychiatric hypotheses by interdisciplinary teams. Automated visualization in ViVA supports 'natural selection' on a pool of hypotheses, and permits deeper understanding of the statistical architecture of the data. Large-scale perspective of this kind could lead to better neuropsychiatric diagnostics

    Restoration of Sp4 in Forebrain GABAergic Neurons Rescues Hypersensitivity to Ketamine in Sp4 Hypomorphic Mice.

    Get PDF
    BackgroundKetamine produces schizophrenia-like behavioral phenotypes in healthy people. Prolonged ketamine effects and exacerbation of symptoms after the administration of ketamine have been observed in patients with schizophrenia. More recently, ketamine has been used as a potent antidepressant to treat patients with major depression. The genes and neurons that regulate behavioral responses to ketamine, however, remain poorly understood. Sp4 is a transcription factor for which gene expression is restricted to neuronal cells in the brain. Our previous studies demonstrated that Sp4 hypomorphic mice display several behavioral phenotypes relevant to psychiatric disorders, consistent with human SP4 gene associations with schizophrenia, bipolar disorder, and major depression. Among those behavioral phenotypes, hypersensitivity to ketamine-induced hyperlocomotion has been observed in Sp4 hypomorphic mice.MethodsIn the present study, we used the Cre-LoxP system to restore Sp4 gene expression, specifically in either forebrain excitatory or GABAergic inhibitory neurons in Sp4 hypomorphic mice. Mouse behavioral phenotypes related to psychiatric disorders were examined in these distinct rescue mice.ResultsRestoration of Sp4 in forebrain excitatory neurons did not rescue deficient sensorimotor gating nor ketamine-induced hyperlocomotion. Restoration of Sp4 in forebrain GABAergic neurons, however, rescued ketamine-induced hyperlocomotion, but did not rescue deficient sensorimotor gating.ConclusionsOur studies suggest that the Sp4 gene in forebrain GABAergic neurons regulates ketamine-induced hyperlocomotion

    CRISPR-TSKO : a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis

    Get PDF
    Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function

    Regulation of Marginal Zone B-Cell Differentiation by MicroRNA-146a.

    Get PDF
    B-cell development in the bone marrow is followed by specification into functional subsets in the spleen, including marginal zone (MZ) B-cells. MZ B-cells are classically characterized by T-independent antigenic responses and require the elaboration of distinct gene expression programs for development. Given their role in gene regulation, it is not surprising that microRNAs are important factors in B-cell development. Recent work demonstrated that deficiency of the NFκB feedback regulator, miR-146a, led to a range of hematopoietic phenotypes, but B-cell phenotypes have not been extensively characterized. Here, we found that miR-146a-deficient mice demonstrate a reduction in MZ B-cells, likely from a developmental block. Utilizing high-throughput sequencing and comparative analysis of developmental stage-specific transcriptomes, we determined that MZ cell differentiation was impaired due to decreases in Notch2 signaling. Our studies reveal miR-146a-dependent B-cell phenotypes and highlight the complex role of miR-146a in the hematopoietic system

    Therapeutic target discovery using Boolean network attractors: improvements of kali

    Full text link
    In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modeling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are i) the possibility to work on asynchronous Boolean networks, ii) a finer assessment of therapeutic targets and iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modeled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but can not replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery

    Elucidating the genotype-phenotype map by automatic enumeration and analysis of the phenotypic repertoire.

    Get PDF
    BackgroundThe gap between genotype and phenotype is filled by complex biochemical systems most of which are poorly understood. Because these systems are complex, it is widely appreciated that quantitative understanding can only be achieved with the aid of mathematical models. However, formulating models and measuring or estimating their numerous rate constants and binding constants is daunting. Here we present a strategy for automating difficult aspects of the process.MethodsThe strategy, based on a system design space methodology, is applied to a class of 16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the basis of experimentally measured and estimated parameters.ResultsOur strategy provides four important innovations by automating: (1) enumeration of the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values for any particular phenotype; (3) simultaneous realization of parameter values for several phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression can be phased to achieve a specific sequence of functions for rationally engineering synthetic constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two additional designs capable of sustained oscillations that were previously missed.ConclusionsStarting with a system's relatively fixed aspects, its architectural features, our method enables automated analysis of nonlinear biochemical systems from a global perspective, without first specifying parameter values. The examples presented demonstrate the efficiency and power of this automated strategy
    corecore