144 research outputs found

    Digital communications over fading channels

    Get PDF
    In this report, the probabilities of bit error for the most commonly used digital modulation techniques are analyzed. Analytic solutions are developed for the probability of bit error when the signal is affected by the most commonly encountered impairment to system performance for a wireless channel, the transmission of the signal over a fading channel. In this report, the effect of a slow, flat Ricean fading channel on communications systems performance is examined. Since channel fading significantly degrades the performance of a communication system, the performance of digital communication systems that also use forward error correction channel coding is analyzed for hard decision decoding and, where appropriate, for soft decision decoding. Diversity, another technique to mitigate the effect of fading channels on digital communication systems performance, is also discussed. Also included is a discussion of the effect of narrowband noise interference, both continuous and pulsed, on digital communication systems. We then discuss the analysis of the probability of bit error for the combination of error correction coding and diversity. Following this, we briefly discuss spread spectrum systems. Next, we examine the link budget analysis and various models for channel loss. Finally, we examine in detail the second generation digital wireless standard Global System for Mobile (GSM).Approved for public release; distribution is unlimited

    Analytical and empirical evaluation of the impact of Gaussian noise on the modulations employed by Bluetooth Enhanced Data Rates

    Get PDF
    Bluetooth (BT) is a leading technology for the deployment of wireless Personal Area Networks and Body Area Networks. Versions 2.0 and 2.1 of the standard, which are massively implemented in commercial devices, improve the throughput of the BT technology by enabling the so-called Enhanced Data Rates (EDR). EDRs are achieved by utilizing new modulation techniques (π/4-DQPSK and 8-DPSK), apart from the typical Gaussian Frequency Shift Keying modulation supported by previous versions of BT. This manuscript presents and validates a model to characterize the impact of white noise on the performance of these modulations. The validation is systematically accomplished in a testbed with actual BT interfaces and a calibrated white noise generator.Ministerio de Educación y Ciencia TEC2009-13763-C02-0

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Mobile underwater acoustic communications with multicarrier modulation in very shallow waters

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Channel Related Optimization of Wireless Communication Systems

    Get PDF
    This thesis deals with different optimization problems in the design of wireless communication systems. It is mainly directed to the design of systems based on multicarrier techniques and orthogonal frequency division multiplex, OFDM, but some of the problems apply to single carrier systems as well. The influence of different pilot patterns is analyzed when pilot symbol assisted modulation, PSAM, is used in OFDM systems. It is desirable to decrease the number of required pilot symbols and it is shown that the pilot pattern used plays a major role to enable reliable channel estimates from a small amount of pilot symbols. Rearrangement of the pilot pattern enables a reduction in the number of needed pilot symbols up to a factor 10, still retaining the same bit error performance. The effect of the number of sub-channels used in an OFDM system is analyzed with respect to resulting bit error rate. An analytical expression for the bit error rate on Rayleigh fading channels when interchannel interference, ICI, caused by channel changes during a symbol and energy loss due to the cyclic prefix are regarded. This expression is used to optimize the number of sub-channels, and thereby the sub-channel bandwidth (sub-channel spacing) in the system. It is argued that the system can be optimized neglecting the effect of imperfect channel estimation and on a worst case assumption for the Doppler frequency and signal to noise ratio. The benefits of using pre-compensation (precoding) in wireless time division duplex, TDD, systems are also investigated. The uplink channel estimate is used to compensate the channel impact on the downlink symbols. This enables less complex receiver structures in the mobile terminal since channel equalization is performed in the base station. Three different methods where amplitude and/or phase are adjusted are analyzed in terms of performance limits. Closed-form expressions for the QPSK bit error rate are given assuming a fully known channel. It is shown that pre-compensation is an attractive alternative to differential decoding. Phase-only compensation is preferred at low signal to noise ratios, while at high signal to noise ratios an order of magnitude improvement in the bit error rate can be obtained by including amplitude pre-compensation. All the analyses and optimizations are general and can be applied to any OFDM system
    corecore