55,826 research outputs found

    Learning Representations from Persian Handwriting for Offline Signature Verification, a Deep Transfer Learning Approach

    Full text link
    Offline Signature Verification (OSV) is a challenging pattern recognition task, especially when it is expected to generalize well on the skilled forgeries that are not available during the training. Its challenges also include small training sample and large intra-class variations. Considering the limitations, we suggest a novel transfer learning approach from Persian handwriting domain to multi-language OSV domain. We train two Residual CNNs on the source domain separately based on two different tasks of word classification and writer identification. Since identifying a person signature resembles identifying ones handwriting, it seems perfectly convenient to use handwriting for the feature learning phase. The learned representation on the more varied and plentiful handwriting dataset can compensate for the lack of training data in the original task, i.e. OSV, without sacrificing the generalizability. Our proposed OSV system includes two steps: learning representation and verification of the input signature. For the first step, the signature images are fed into the trained Residual CNNs. The output representations are then used to train SVMs for the verification. We test our OSV system on three different signature datasets, including MCYT (a Spanish signature dataset), UTSig (a Persian one) and GPDS-Synthetic (an artificial dataset). On UT-SIG, we achieved 9.80% Equal Error Rate (EER) which showed substantial improvement over the best EER in the literature, 17.45%. Our proposed method surpassed state-of-the-arts by 6% on GPDS-Synthetic, achieving 6.81%. On MCYT, EER of 3.98% was obtained which is comparable to the best previously reported results

    Offline Handwritten Signature Verification - Literature Review

    Full text link
    The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory, Tools and Applications (IPTA 2017

    Feature Representation for Online Signature Verification

    Full text link
    Biometrics systems have been used in a wide range of applications and have improved people authentication. Signature verification is one of the most common biometric methods with techniques that employ various specifications of a signature. Recently, deep learning has achieved great success in many fields, such as image, sounds and text processing. In this paper, deep learning method has been used for feature extraction and feature selection.Comment: 10 pages, 10 figures, Submitted to IEEE Transactions on Information Forensics and Securit

    Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data

    Full text link
    Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them, angular differential imaging (ADI) permits potential planetary signals with a known rotation rate to be separated from instrumental speckles that are either statics or slowly variable. The method presented in this paper, called ANDROMEDA for ANgular Differential OptiMal Exoplanet Detection Algorithm is based on a maximum likelihood approach to ADI and is used to estimate the position and the flux of any point source present in the field of view. Aims. In order to optimize and experimentally validate this previously proposed method, we applied ANDROMEDA to real VLT/NaCo data. In addition to its pure detection capability, we investigated the possibility of defining simple and efficient criteria for automatic point source extraction able to support the processing of large surveys. Methods. To assess the performance of the method, we applied ANDROMEDA on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright stars and on which we added synthetic planets of known position and flux in the field. In order to accommodate the real data properties, it was necessary to develop additional pre-processing and post-processing steps to the initially proposed algorithm. We then investigated its skill in the challenging case of a well-known target, β\beta Pictoris, whose companion is close to the detection limit and we compared our results to those obtained by another method based on principal component analysis (PCA). Results. Application on VLT/NaCo data demonstrates the ability of ANDROMEDA to automatically detect and characterize point sources present in the image field. We end up with a robust method bringing consistent results with a sensitivity similar to the recently published algorithms, with only two parameters to be fine tuned. Moreover, the companion flux estimates are not biased by the algorithm parameters and do not require a posteriori corrections. Conclusions. ANDROMEDA is an attractive alternative to current standard image processing methods that can be readily applied to on-sky data

    Planet transit and stellar granulation detection with interferometry

    Full text link
    Aims. We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger-grid and synthetic images computed with the radiative transfer code Optim3D to provide interferometric observables to extract the signature of stellar granulation and transiting planets. Methods. We computed intensity maps from RHD simulations for twelve interferometric instruments covering wavelengths ranging from optical to infrared. The stellar surface asymmetries in the brightness distribution mostly affect closure phases. We compared the closure phases of the system star with a transiting planet and the star alone and considered the impact of magnetic spots constructing a hypothetical starspots image. Results. All the simulations show departure from the axisymmetric case at all wavelengths. We presented two possible targets (Beta Com and Procyon) and found that departures up to 16 deg can be detected on the 3rd lobe and higher. In particular, MIRC is the most appropriate instrument because it combines good UV coverage and long baselines. Moreover, we explored the impact of convection on interferometric planet signature for three prototypes of planets. It is possible to disentangle the signature of the planet at particular wavelengths (either in the infrared or in the optical) by comparing the closure phases of the star at difference phases of the planetary transit. Conclusions. The detection and characterisation of planets must be based on a comprehensive knowledge of the host star; this includes the detailed study of the stellar surface convection with interferometric techniques. In this context, RHD simulations are crucial to reach this aim. We emphasize that interferometric observations should be pushed at high spatial frequencies by accumulating observations on closure phases at short and long baselines.Comment: accepted in Astronomy and Astrophysics, 13 pages. Some figures have reduced resolution to decrease the size of the output file. Please contact [email protected] to have the high resolution version of the pape

    On-line signature recognition through the combination of real dynamic data and synthetically generated static data

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition , 48, 9 (2005) DOI: 10.1016/j.patcog.2015.03.019On-line signature verification still remains a challenging task within biometrics. Due to their behavioral nature (opposed to anatomic biometric traits), signatures present a notable variability even between successive realizations. This leads to higher error rates than other largely used modalities such as iris or fingerprints and is one of the main reasons for the relatively slow deployment of this technology. As a step towards the improvement of signature recognition accuracy, the present paper explores and evaluates a novel approach that takes advantage of the performance boost that can be reached through the fusion of on-line and off-line signatures. In order to exploit the complementarity of the two modalities, we propose a method for the generation of enhanced synthetic static samples from on-line data. Such synthetic off-line signatures are used on a new on-line signature recognition architecture based on the combination of both types of data: real on-line samples and artificial off-line signatures synthesized from the real data. The new on-line recognition approach is evaluated on a public benchmark containing both real versions (on-line and off-line) of the exact same signatures. Different findings and conclusions are drawn regarding the discriminative power of on-line and off-line signatures and of their potential combination both in the random and skilled impostors scenarios.M. D.-C. is supported by a PhD fellowship from the ULPGC and M.G.-B. is supported by a FPU fellowship from the Spanish MECD. This work has been partially supported by projects: MCINN TEC2012-38630- C04-02, Bio-Shield (TEC2012-34881) from Spanish MINECO, BEAT (FP7-SEC-284989) from EU, CECABANK and Cátedra UAM-Telefónic

    Generation of enhanced synthetic off-line signatures based on real on-line data

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. M. Díaz-Cabrera, M. Gómez-Barrero, A. Morales, M. A. Ferrer, J. Galbally, "Generation of Enhanced Synthetic Off-Line Signatures Based on Real On-Line Data" in 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), Heraklion (Greece), 2014, 482 - 487One of the main challenges of off-line signature verification is the absence of large databases. A possible alternative to overcome this problem is the generation of fully synthetic signature databases, not subject to legal or privacy concerns. In this paper we propose several approaches to the synthesis of off-line enhanced signatures from real dynamic information. These synthetic samples show a performance very similar to the one offered by real signatures, even increasing their discriminative power under the skilled forgeries scenario, one of the biggest challenges of handwriting recognition. Furthermore, the feasibility of synthetically increasing the enrolment sets is analysed, showing promising results.This work has been partially supported by projects: MICINN TEC2012-38630-C04-02, Contexts (S2009/TIC-1485) from CAM, Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica
    corecore