17,089 research outputs found

    Including All the Lines

    Full text link
    I present a progress report on including all the lines in the linelists, including all the lines in the opacities, including all the lines in the model atmosphere and spectrum synthesis calculations, producing high-resolution, high-signal-to-noise atlases that show (not quite) all the lines, so that finally we can determine the properties of stars from a few of the lines.Comment: 9 pages, no figures. Presented at "Dimitrifest" conference in Boulder, Colorado, March 30 - April 3, 200

    Program Synthesis using Natural Language

    Get PDF
    Interacting with computers is a ubiquitous activity for millions of people. Repetitive or specialized tasks often require creation of small, often one-off, programs. End-users struggle with learning and using the myriad of domain-specific languages (DSLs) to effectively accomplish these tasks. We present a general framework for constructing program synthesizers that take natural language (NL) inputs and produce expressions in a target DSL. The framework takes as input a DSL definition and training data consisting of NL/DSL pairs. From these it constructs a synthesizer by learning optimal weights and classifiers (using NLP features) that rank the outputs of a keyword-programming based translation. We applied our framework to three domains: repetitive text editing, an intelligent tutoring system, and flight information queries. On 1200+ English descriptions, the respective synthesizers rank the desired program as the top-1 and top-3 for 80% and 90% descriptions respectively

    Lucid Data Dreaming for Video Object Segmentation

    Full text link
    Convolutional networks reach top quality in pixel-level video object segmentation but require a large amount of training data (1k~100k) to deliver such results. We propose a new training strategy which achieves state-of-the-art results across three evaluation datasets while using 20x~1000x less annotated data than competing methods. Our approach is suitable for both single and multiple object segmentation. Instead of using large training sets hoping to generalize across domains, we generate in-domain training data using the provided annotation on the first frame of each video to synthesize ("lucid dream") plausible future video frames. In-domain per-video training data allows us to train high quality appearance- and motion-based models, as well as tune the post-processing stage. This approach allows to reach competitive results even when training from only a single annotated frame, without ImageNet pre-training. Our results indicate that using a larger training set is not automatically better, and that for the video object segmentation task a smaller training set that is closer to the target domain is more effective. This changes the mindset regarding how many training samples and general "objectness" knowledge are required for the video object segmentation task.Comment: Accepted in International Journal of Computer Vision (IJCV

    A comparative study of the AHP and TOPSIS methods for implementing load shedding scheme in a pulp mill system

    Get PDF
    The advancement of technology had encouraged mankind to design and create useful equipment and devices. These equipment enable users to fully utilize them in various applications. Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. Due to this, any malfunction of the equipment might cause mass losses to the company. In particular, the breakdown of the generator would cause other generators to be overloaded. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. Once the fault had been fixed, the load shedding scheme can be deactivated. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. Multi Criteria Decision Making (MCDM) can be applied in determination of the load shedding scheme in the electric power system. In this thesis two methods which are Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were introduced and applied. From this thesis, a series of analyses are conducted and the results are determined. Among these two methods which are AHP and TOPSIS, the results shown that TOPSIS is the best Multi criteria Decision Making (MCDM) for load shedding scheme in the pulp mill system. TOPSIS is the most effective solution because of the highest percentage effectiveness of load shedding between these two methods. The results of the AHP and TOPSIS analysis to the pulp mill system are very promising

    Managing contextual information in semantically-driven temporal information systems

    Get PDF
    Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the user’s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the user’s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to users‘ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information

    Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling

    Full text link
    We study 3D shape modeling from a single image and make contributions to it in three aspects. First, we present Pix3D, a large-scale benchmark of diverse image-shape pairs with pixel-level 2D-3D alignment. Pix3D has wide applications in shape-related tasks including reconstruction, retrieval, viewpoint estimation, etc. Building such a large-scale dataset, however, is highly challenging; existing datasets either contain only synthetic data, or lack precise alignment between 2D images and 3D shapes, or only have a small number of images. Second, we calibrate the evaluation criteria for 3D shape reconstruction through behavioral studies, and use them to objectively and systematically benchmark cutting-edge reconstruction algorithms on Pix3D. Third, we design a novel model that simultaneously performs 3D reconstruction and pose estimation; our multi-task learning approach achieves state-of-the-art performance on both tasks.Comment: CVPR 2018. The first two authors contributed equally to this work. Project page: http://pix3d.csail.mit.ed

    Creating a Relational Distributed Object Store

    Full text link
    In and of itself, data storage has apparent business utility. But when we can convert data to information, the utility of stored data increases dramatically. It is the layering of relation atop the data mass that is the engine for such conversion. Frank relation amongst discrete objects sporadically ingested is rare, making the process of synthesizing such relation all the more challenging, but the challenge must be met if we are ever to see an equivalent business value for unstructured data as we already have with structured data. This paper describes a novel construct, referred to as a relational distributed object store (RDOS), that seeks to solve the twin problems of how to persistently and reliably store petabytes of unstructured data while simultaneously creating and persisting relations amongst billions of objects.Comment: 12 pages, 5 figure
    • …
    corecore