955 research outputs found

    Recursive Program Optimization Through Inductive Synthesis Proof Transformation

    Get PDF
    The research described in this paper involved developing transformation techniques which increase the efficiency of the noriginal program, the source, by transforming its synthesis proof into one, the target, which yields a computationally more efficient algorithm. We describe a working proof transformation system which, by exploiting the duality between mathematical induction and recursion, employs the novel strategy of optimizing recursive programs by transforming inductive proofs. We compare and contrast this approach with the more traditional approaches to program transformation, and highlight the benefits of proof transformation with regards to search, correctness, automatability and generality

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Elaboration in Dependent Type Theory

    Full text link
    To be usable in practice, interactive theorem provers need to provide convenient and efficient means of writing expressions, definitions, and proofs. This involves inferring information that is often left implicit in an ordinary mathematical text, and resolving ambiguities in mathematical expressions. We refer to the process of passing from a quasi-formal and partially-specified expression to a completely precise formal one as elaboration. We describe an elaboration algorithm for dependent type theory that has been implemented in the Lean theorem prover. Lean's elaborator supports higher-order unification, type class inference, ad hoc overloading, insertion of coercions, the use of tactics, and the computational reduction of terms. The interactions between these components are subtle and complex, and the elaboration algorithm has been carefully designed to balance efficiency and usability. We describe the central design goals, and the means by which they are achieved

    Two Applications of Logic Programming to Coq

    Get PDF
    The logic programming paradigm provides a flexible setting for representing, manipulating, checking, and elaborating proof structures. This is particularly true when the logic programming language allows for bindings in terms and proofs. In this paper, we make use of two recent innovations at the intersection of logic programming and proof checking. One of these is the foundational proof certificate (FPC) framework which provides a flexible means of defining the semantics of a range of proof structures for classical and intuitionistic logic. A second innovation is the recently released Coq-Elpi plugin for Coq in which the Elpi implementation of ?Prolog can send and retrieve information to and from the Coq kernel. We illustrate the use of both this Coq plugin and FPCs with two example applications. First, we implement an FPC-driven sequent calculus for a fragment of the Calculus of Inductive Constructions and we package it into a tactic to perform property-based testing of inductive types corresponding to Horn clauses. Second, we implement in Elpi a proof checker for first-order intuitionistic logic and demonstrate how proof certificates can be supplied by external (to Coq) provers and then elaborated into the fully detailed proof terms that can be checked by the Coq kernel

    Automated program transformation through proof transformation

    Get PDF

    Trocq: Proof Transfer for Free, With or Without Univalence

    Full text link
    Libraries of formalized mathematics use a possibly broad range of different representations for a same mathematical concept. Yet light to major manual input from users remains most often required for obtaining the corresponding variants of theorems, when such obvious replacements are typically left implicit on paper. This article presents Trocq, a new proof transfer framework for dependent type theory. Trocq is based on a novel formulation of type equivalence, used to generalize the univalent parametricity translation. This framework takes care of avoiding dependency on the axiom of univalence when possible, and may be used with more relations than just equivalences. We have implemented a corresponding plugin for the Coq proof assistant, in the CoqElpi meta-language. We use this plugin on a gallery of representative examples of proof transfer issues in interactive theorem proving, and illustrate how Trocq covers the spectrum of several existing tools, used in program verification as well as in formalized mathematics in the broad sense

    Generating event logics with higher-order processes as realizers

    Full text link
    Our topic is broadening a practical ”proofs-as-programs” method of program development to “proofs-as-processes”. We extend our previous results that implement proofs-as-processes for the standard model of asynchronous message passing computation to a much wider class of process models including the ¼-calculus and other process algebras. Our first result is a general process model whose definition in type theory is interesting in itself both technically and foundationally. Process terms are type free lambda-terms. Typed processes are elements of a co-inductive type. They are higher-order in that they can take processes as inputs and produce them as outputs. A second new result is a procedure to generate event structures over the general process model and then define event logics and event classes over these structures. Processes are abstract realizers for assertions in the event logics over them, and they extend the class of primitively realizable propositions built on the propositions-as-types principle. They also provide a basis for the third new result, showing when programmable event classes generate strong realizers that prevent logical interference as processes are synthesized
    • …
    corecore