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Abstract
The logic programming paradigm provides a flexible setting for representing, manipulating, checking,
and elaborating proof structures. This is particularly true when the logic programming language
allows for bindings in terms and proofs. In this paper, we make use of two recent innovations
at the intersection of logic programming and proof checking. One of these is the foundational
proof certificate (FPC) framework which provides a flexible means of defining the semantics of a
range of proof structures for classical and intuitionistic logic. A second innovation is the recently
released Coq-Elpi plugin for Coq in which the Elpi implementation of λProlog can send and retrieve
information to and from the Coq kernel. We illustrate the use of both this Coq plugin and FPCs
with two example applications. First, we implement an FPC-driven sequent calculus for a fragment
of the Calculus of Inductive Constructions and we package it into a tactic to perform property-based
testing of inductive types corresponding to Horn clauses. Second, we implement in Elpi a proof
checker for first-order intuitionistic logic and demonstrate how proof certificates can be supplied
by external (to Coq) provers and then elaborated into the fully detailed proof terms that can be
checked by the Coq kernel.
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1 Introduction

Recently, Enrico Tassi et al. developed the Elpi implementation [21] of λProlog [47], and more
recently, Tassi has made Elpi available as the Coq-Elpi plugin [62] (https://github.com/
LPCIC/coq-elpi) to the Coq proof assistant. This implementation of λProlog extends earlier
ones in primarily two directions: First, Elpi adds a notion of constraints and constraints
handling rules, which makes it more expressive than the Teyjus implementation [51] of
λProlog. Second, the plugin version of Elpi comes equipped with a quotation and anti-
quotation syntax for mixing Coq expressions with λProlog program elements and an API for
accessing the Coq environment, including its type checker.

The logic programming interpreter that underlies Elpi provides several convenient features
for the kind of meta-programming tasks that can arise within modern proof assistants. For
example, λProlog provides a declarative and direct treatment of abstract syntax that contains
bindings, including capture-avoiding substitution, unification, and recursive programming.
Elpi spares the programmer from dealing with low-level aspects of the representation of
binders (e.g., De Bruijn indexes) while still having clean and effective ways to manipulate
binding structures.
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10:2 Two Applications of Logic Programming to Coq

Since relations (not functions) are central in λProlog, Elpi is capable of providing direct
support for the many relations that have a role in implementation and usage of proof
assistants. Such relations include typing (e.g., Γ ⊢ M : σ), evaluation (e.g., natural semantics
specifications [37, 33]), and interaction (e.g., structured operational semantics [49, 57]).

Felty has also made the point that LCF-style tactics and tacticals can be given an
elegant and natural specification using the higher-order relational specifications provided
by λProlog [23]. Some recent implementations built using Elpi support the usefulness of
higher-order logic programming as a meta-programming language for proof assistants in
general [20, 32] and, in particular, for Coq via the Coq-Elpi plugin [18, 63].

In this paper, we present two applications of Elpi within Coq. With these applications,
we shall illustrate that Elpi is useful not only because of its meta-programming features but
also because it soundly implements a higher-order intuitionistic logic: such implementations
of higher-order logic have long been known to provide powerful and flexible approaches to
implementing many different logics and their proof systems [24, 53]. Following that tradition,
the Elpi system makes it possible to encode the proofs and proof theory of various subsets of
the logic behind Coq (see also [22]).

While other meta-programming frameworks based on functional programming such as
MetaCoq [61] can and have been used for related endeavors, we believe (together with [20])
that they would require much more boilerplate code.

Before we can present these examples, we first highlight the rather striking differences in
notions of computing and reasoning that arise on each side of the Coq-Elpi API. We will
also present a quick summary of the key proof theory concepts that are used by our example
applications.

2 Two cultures

When studying structural proof theory, one learns quickly that many concepts come in pairs:
negative/positive, left/right, bottom-up/top-down, premises/conclusion, introduction/elimi-
nation, etc. When we examine the larger setting of this project of linking a logic programming
engine with Coq and its kernel, we find a large number of new pairings that are valuable to
explicitly discuss.

2.1 Proof theory vs type theory

In many ways, proof theory is more elementary and low-level than most approaches to type
theory. For example, type theories usually answer the question “What is a proof?” with
the response “a (dependently) typed λ-term”. That is, when describing a type theory, one
usually decides that a proof is a certain kind of λ-term within the system. In contrast, proof
theory treats logical propositions and proofs as separate. For example, proof theory does not
assume that there are terms within the logic that describe proofs.

Gentzen’s discovery that the key to treating classical and intuitionistic logics in the same
proof system was identifying the structural rules of the weakening and contraction and placing
them on the right-side of sequents [29]. This discovery led him away from natural deduction
to multiple-conclusion sequent calculus. This same innovation of Gentzen’s also opened the
way to another key proof-theoretic discovery, that of linear logic and linear negation [30].
While sequent calculus provides an elegant presentation of full linear logic, most treatments
of linear logic in type theory have been limited to single-conclusion sequents [5] or restricted,
multiple-conclusion variants [36].
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As is often observed, however, sequent calculus is too low-level to be used explicitly as
capturing the “essence of a proof”. Fortunately, the notion of focused proof systems [1, 42],
makes it possible to collect and join the micro-level inference rules of the sequent calculus into
large-scale, synthetic inference rules. As a result, using such proof systems, it is possible to
extract from sequent calculus not only natural deduction proofs [56], but also proof nets [13],
and Herbrand-style expansion trees [12]. The role of focused proof systems to characterize
classes of proof structures is described in the next section and used in our two example
applications of Elpi with Coq.

2.2 Proof search vs proof normalization
Gentzen-style proofs are used to model computation in at least two different ways. The
functional programming paradigm, following the Curry-Howard correspondence, models
computation abstractly as β-reduction within natural deduction proofs: that is, computation
is modeled as proof normalization. On the other hand, the logic programming paradigm,
following the notion of goal-directed proof search, models computation abstractly as a
regimented search for cut-free sequent calculus proofs: that is, computation is modeled as
proof search.

Proof search has features that are hard to capture in the proof normalization setting. In
particular, Gentzen’s eigenvariables are a kind of proof-level binder. In the proof normalization
setting, such eigenvariables are instantiated during proof normalization. However, during the
search for cut-free proofs, eigenvariables do not vary, and they are part of the syntax of terms
and formulas. As a result, they can be used in the treatment of bindings in data structures
more generally. Such eigenvariables can be used by the logic programming paradigm to
provide a natural and powerful approach to computing with bindings within syntax.

It is worth noting that the role of the cut rule and cut-elimination is different in these
two approaches to computing. In the proof normalization paradigm, the cut rule can be used
to model β reduction, especially via the explicit substitution approach [40]. In the proof
search paradigm, since computing involves the search for cut-free proofs, the cut rule plays
no part in the performance of computation. However, cut and cut-elimination can be used to
reason about computation: for example, cut-elimination can be used to prove “substitution
lemmas for free” that arise in the study of operational semantics [28].

2.3 λProlog vs Coq
Given that λProlog and Coq both result from combining the λ-calculus with logic, it is
important to understand some of their differences. The confusion around the term higher-order
abstract syntax (HOAS), is a case in point. In the functional programming setting, including
the Coq system, the HOAS approach leads to encoding binding structures within terms using
functions. The earliest such encodings were unsatisfactory since they would allow for exotic
terms [19] and for structures on which induction was not immediately possible [59]. Later
approaches yielded non-canonical and complex encodings [17, 35], as well as sophisticated
type theories [55]. All of these could support inductive and coinductive reasoning. In the
logic programming setting, particularly λProlog, HOAS is well supported since bindings
are allowed with terms (λ-bindings), formulas (quantifiers), and proofs (eigenvariables). (In
fact, the original paper on HOAS [54] was inspired by λProlog.) For this reason, the term
λ-tree syntax was introduced to name this particular take on HOAS [46]. The Abella proof
assistant [3] was designed, in part, to provide inductive and co-inductive inference involving
specifications using the λ-tree syntax approach.

TYPES 2020



10:4 Two Applications of Logic Programming to Coq

Another difference between λProlog and functional programming can be illustrated by
considering how they are used in the specification of tactics. The origin story for the ML
functional programming language was that it was the meta-language for implementing the
LCF suite of tactics and tacticals [31]. To implement tactics, ML adopted not only novel
features such as polymorphically typed higher-order functional programming but also the
non-functional mechanisms of failure and exception handling. While λProlog is also based on
ML-style polymorphically typed higher-order relational programming, it also comes with a
completely declarative version of failure and backtracking search. Combining those features
along with its support of unification (even in the presence of term-level bindings), λProlog
provides a rather different approach to the specification of tactics [23].

3 Proof theory and proof certificates

In this section, we introduce the main ideas from focused proof systems, foundational proof
certificates, and the Coq-Elpi plugin that we need for this paper.

3.1 Proofs for the Horn fragment
A Horn clause is a formula of the form ∀x̄1.A1 ⊃ ∀x̄2.A2 ⊃ ∀x̄n.An ⊃ A0 where ∀x̄i denote
a list of universal quantifiers (i ∈ {1, . . . , n}) and A0, . . . , An are atomic formulas. It is well
known that the following set of sequent calculus proof rules are complete for both classical
and intuitionistic logic when one is attempting to prove that a given atomic formula A is
provable from a set P of Horn clauses.

D ∈ P P ⇓ D ⊢ A

P ⊢ A
decide P ⇓ A ⊢ A

init

P ⇓ D[t/x] ⊢ A

P ⇓ ∀x.D ⊢ A
∀L

P ⊢ B P ⇓ D ⊢ A

P ⇓ B ⊃ D ⊢ A
⊃ L

Here, we use two different styles of sequents. The sequent P ⊢ A is the usual sequent which
we generally use as the end sequent (the conclusion) of a proof. The sequent P ⇓ D ⊢ A is a
focused sequent in which the formula D is the focus of the sequent. The two left introduction
rules and the initial rule can only be applied to the focused formula. This latter point is in
contrast to Gentzen’s sequent calculus where these rules can involve any formula on the left
of the ⊢. The fact that this proof system is complete for both classical and intuitionistic
logic (when restricted to the Horn clause fragment) follows from rather simple considerations
of Horn clauses [50] and from the completeness of uniform proofs [48] or LJT proofs [34].
The use of the term focus comes from Andreoli’s proof system for linear logic [1].

Figure 1 contains an annotated version of these proof rules: the annotations help us
connect to elements of the Coq proof system.
1. Instead of having separate connectives for ∀ and ⊃, we have the dependent product

connective (x : A)D.
2. We account for computation inside atoms by generalizing the init rule to allow type-level

conversion.
3. We have incorporated proof certificates [16] (using the schematic variable Ξ) along with

expert predicates (predicates with the e subscript). We explain these in Section 3.2.
4. The inference rules are annotated by terms structures that can be given directly to the

Coq kernel for checking.
5. We have added various premises which are responsible for interacting with Coq.
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Ind[p] (ΓI := ΓC) ∈ E (head A) : T ∈ ΓI k : D ∈ ΓC Ξ1 ⇓ l : D ⊢ A decidee(Ξ, Ξ1)
Ξ ⊢ k l : A

E[] ⊢CIC A : s sorte(Ξ,)
Ξ ⊢ A : s

E[] ⊢CIC A =βδιξ A′ initiale(Ξ)
Ξ ⇓ [] : A ⊢ A′

Ξ1 ⊢ t : B Ξ2 ⇓ l : D[t/x] ⊢ A prode(Ξ, Ξ1, Ξ2, t)
Ξ ⇓ (t :: l) : (x : B)D ⊢ A

Figure 1 Specification of a core calculus.

The proof system described in Figure 1 (and implemented in Figure 2) corresponds to a
subset of the Calculus of Inductive Constructions in which inductive definitions are limited to
Horn clauses. This system is inspired by the calculus for proof search in Pure Type Systems
introduced in [41], based in turn on ideas stemming from focusing (in particular, uniform
proofs [48] and the LJT calculus [34]). Similar to that calculus, we have a term language
that includes terms and lists of terms, and two typing judgments for the two categories. This
style of proof terms coincides with the idea behind the spine calculus [11]. The main novelty
of our proof system here is that proof terms and proof certificates are used simultaneously in
all inference rules.

The proof system is parameterized by Coq’s global environment E, here a set of constant
and inductive definitions; following Coq’s reference manual, inductive definition are denoted
by Ind[p](ΓI := ΓC), where ΓI determines the names and types of the (possibly mutually)
inductive type and ΓC the names and types of its constructors; finally p denotes the number
of parameters and plays here no role. The local context is empty, since we are only dealing
with types that correspond to Horn clauses, and atomic types are inductively defined. In fact,
we do not have a ∀ rule on the right, although the proof theory would gladly allow it. This
means that there are no bound variables in our grammar of terms. Terms are always applied
to a (possibly empty) list of arguments. We delegate to Coq’s type checking the enforcement
of the well-sortedness of inductive types. The decide rule, as in the previous proof system
for Horn logic, given an atom, selects a clause on which to backchain on: we lookup the
constructors of an inductive definition from the global environment, one that matches the
head symbol of the atom we aim to backchain on, and then call the latter judgment that
will find a correct instantiation, if any. The rules for backchaining include the (conflation of
the) left introduction rules for ∀ and ⊃, as well as the init rule, which incorporates Coq’s
conversion.

It may be at first surprising that there are no introduction rules for propositional
connectives, nor equality for that matter. However, one of the beauties of the Calculus of
Inductive Construction is that they are, in fact, defined inductively and therefore the decide
rule will handle those. Thus, the syntax of proof-terms is rather simple.

3.2 Proof certificate checking

Figure 2 contains the Elpi implementation of the inference rules in Figure 1: Ξ ⊢ t : A corre-
sponds to check Cert (go A T) and Ξ ⇓ l : D ⊢ A corresponds to check Cert (bc D A L),
The code in that figure mixes both Coq-specific and FPC-specific items. We describe both
of these separately.

TYPES 2020
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kind goal type.
type go term → term → goal.
type bc term → term → list term → goal.
type check cert → goal → o.

check Cert (go (sort S) A):−
sortE Cert,
coq.typecheck A (sort S) ok.

check Cert (go A Tm) :−
coq.safe-dest-app A (global (indt Prog)) _,
coq.env.indt Prog _ _ _ _ Kn KTypes,
decideE Kn Cert Cert’ K,
std.zip Kn KTypes Clauses,
std.lookup Clauses K D,
check Cert’ (bc D A L),
Tm = (app [global (indc K)|L]).

check Cert (bc (prod _ B D) A [Tm|L]) :−
prodE Cert Cert1 Cert2 Tm,
check Cert1 (bc (D Tm) A L),
check Cert2 (go B Tm).

check Cert (bc A A’ []) :−
initialE Cert,
coq.unify-eq A A’ ok.

Figure 2 Implementation of the core calculus.

3.2.1 Coq-specific code
Coq terms are accessed through the Coq-Elpi API, and their representation in λProlog takes
advantage of native λProlog constructs such as lists and binders. The following is part of the
Coq-Elpi API signature of constants that we use.

kind term type. % reification of Coq terms
kind gref type. % reification of refs to globals
type global gref → term. % coercion to term
type indt inductive → gref. % reification of inductive types
type indc constructor → gref. % reification of their constructors
type app list term → term. % reification of nary application
type prod name → term → (term → term) → term. % reification of dependent product

Note that prod encodes dependent products by taking a name for pretty printing, a
term and a λProlog abstraction from terms to terms: i.e., (x : B)D is encoded by
prod ‘‘x’’ B (x\ D x); when, in the implementation of the product-left rule, we ap-
ply D to the variable Tm, we get a new term that can be used to continue backchaining.
This application is obtained via meta-level substitution, in the style of HOAS. In this
sense, our calculus uses implicit substitutions, rather than explicit ones as in the LJT and
PTSC’s tradition; this is consistent with proof search in our application being cut-free,
whereas explicit substitutions are linked to cuts. The decide rule makes use of the Coq-Elpi
primitives coq.safe-dest-app to obtain the head term of a (possibly nested) application,
and coq.env.indt to access the global environment of inductive definitions and query for
information about them. The decideE predicate, has, among others, the role of selecting
which constructor to focus on from the inductive type. The kernel will successively obtain the
type of the selected constructor, and initiate the backchaining phase. The latter is terminated
when the focused atom unifies with the current goal, via Elpi’s primitive coq.unify-eq.
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3.2.2 FPC-specific code

The foundational proof certificates (FPC) framework was proposed in [16] as a flexible
approach to specifying a range of proof structures in first-order classical and intuitionistic
logics. Such specifications are also executable using a simple logic programming interpreter.
As a result of using logic programming, proof certificates in this framework are allowed to
lack details that can be reconstructed during the checking phase. For example, substitution
instances of quantifiers do not need to be explicitly described within a certificate since
unification within the logic programming checker is often capable of reconstructing such
substitutions.

In this and the next section, we shall only use a much reduced subset of the FPC
framework: in essence, an FPC will be used as a simple mechanism for bounding the search
for proofs. In our examples, a proof certificate, denoted by the schematic variable Ξ, is a
particular term that is threaded throughout a logic programming interpreter. For example,
the inference rules in Figure 1 are augmented with an additional premise that invokes an expert
predicate with is responsible for extracting relevant information from a proof certificate Ξ as
well as constructing continuation certificates, such as, Ξ1 and Ξ2. For example, the premise
prode(Ξ, Ξ1, Ξ2, t) calls the expert for products which should extract from the certificate Ξ a
substitution term t and two continuation certificates Ξ1 and Ξ2 for the two premises of this
rule. If the certificate Ξ does not contain an explicit substitution term, the expert predicate
can simply return a logic variable which would denote any term that satisfies subsequent
unification problems arising in completing the check of this certificate.

In our case here, an FPC is a collection of λProlog clauses that provide the remaining
details not supplied in Figures 1 and 2: that is, the exact set of constructors for the type
of certificates cert as well as the specification of the expert predicates listed ibidem. The
top of Figure 3 displays two FPCs, both of which can be used to describe proofs where
we bound the dimension of a proof. For example, the first FPC dictates that the query
(check (qheight 5) A) is provable in the kernel using the clauses in Figures 2 and 3 if
and only if the height of that proof is 5 or less. Similarly, the second FPC can be used to
bound the total number of instances of the decide rule in a proof. (Obviously, such proof
certificates do not contain, for example, substitution terms.)

As it has been described in [6], it is also possible to pair together two different proof
certificates, defined by two different FPC definitions, and do the proof checking in par-
allel. This means that we can build an FPC that restricts proofs satisfying two FPCs
simultaneously. In particular, the infix constructor <c> in Figure 3 forms the pair of two
proof certificates and the pairing experts for the certificate Cert1 <c> Cert2 simply request
that the corresponding experts also succeed for both Cert1 and Cert2. Thus, the query
check ((qheight 4) <c> (qsize 10)) A will succeed if there is a proof of A that has a
height less than or equal to 4 while also being of size less than or equal to 10.

3.3 A Prolog-like tactic

Thanks to the Coq-Elpi interface, in particular to the “main” procedure solve, we can
package the λProlog code for the checker as a tactic that can be called as any other tactic in
a Coq script.

TYPES 2020



10:8 Two Applications of Logic Programming to Coq

type qheight int → cert.
type qsize int → int → cert.
type <c> cert → cert → cert. infixr <c> 5.

ttE (qheight _).
sortE (qheight _).
prodE (qheight H) (qheight H) (qheight H) T.
decideE Kn (qheight H) (qheight H’) K :− std.mem Kn K, H > 0, H’ is H - 1.
%
ttE (qsize In In).
sortE (qsize In In).
prodE (qsize In Out) (qsize In Mid) (qsize Mid Out) T.
decideE Kn (qsize In Out) (qsize In’ Out) K :− std.mem Kn K, In > 0, In’ is In - 1.
%
ttE (A <c> B) :− ttE A, ttE B.
sortE (A <c> B) :− sortE A, sortE B.
prodE (C1 <c> C2) (D1 <c> D2) (E1 <c> E2) T :− prodE C1 D1 E1 T, prodE C2 D2 E2 T.
decideE Kn (A <c> B) (C <c> D) K :− decideE Kn A C K, decideE Kn B D K.

Figure 3 Sample FPCs.

Elpi Tactic dprolog.
Elpi Accumulate lp:{{

solve [str ’’ height’’, int N] [ goal _ Ev G _] _ :−
coq.say "Goal:" {coq.term→ string G},
check (qheight N) (go G Term),
Ev = Term,
coq.say "Proof:" {coq.term→ string Ev}.

... (* Other clauses for different fpc omitted *)
}}.

The glue code between Coq-Elpi and the implementation of our calculus is straightforward:
the goal consists of a quadruple of a (here inactive) context, an evar, a type (goal) and a list
of extra information, also inactive. In addition, we supply the certificate: it consists of an
integer (or two in the case of pairing) and a string to identify the “resource” FPC that we
will use in this case. We just need to call check on the goal G, together with the certificate,
in order to obtain a reconstructed proof term. We do not call the reconstruction directly on
the evar because Coq-Elpi ensures that evars manipulated by λProlog are well-typed at all
times; since we cannot guarantee that, as we work with partially reconstructed term, we get
around this by an explicit unification.

The following example shows how we can use the above tactic to do FPC-driven logic
programming modulo conversion in Coq and return a Coq proof-term:

Inductive insert (x:nat) : list nat → list nat → Prop :=
| i_n : insert x [] [ x]
| i_s : ∀ y: nat, ∀ ys, x <= y → insert x (y :: ys) (x :: y :: ys)
| i_c : ∀ y: nat, ∀ ys rs, y <= x → insert x ys rs → insert x (y :: ys) (x :: rs).
Lemma i1: ∃ R, insert 2 ([0] ++ [1]) R.
elpi dprolog height 10.
Qed.
Print i1.
ex_intro (fun R : list nat ⇒ insert 2 ([0] ++ [1]) R) [0; 1; 2]

(i_c 2 0 [1] [1; 2] (le_S 0 1 (le_S 0 0 (le_n 0)))
(i_c 2 1 [] [2] (le_S 1 1 (le_n 1)) (i_n 2)))
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The dprolog tactic implements some of the features of Coq’s eauto; it is programmable
and as such not restricted to depth-first search, since it follows the dictates of the given FPC;
for example we could easily add iterative-deepening search. Furthermore, FPCs can provide
a trace that may be more customizable than the one offered by (e)auto’s hard-wired Debug
facility.

4 Revisiting property-based testing for Coq

We have presented in a previous paper [9] a proof-theoretical reconstruction of property-based
testing (PBT) [26] of relational specifications, adopting techniques from foundational proof
certificates to account for several features of this testing paradigm: from various generation
strategies, to shrinking and fault localization.

Given the connection that Coq-Elpi offers between logic programming and the internals
of Coq, it is natural to extend the FPC-driven logic programming interpreter of the previous
section to perform PBT over Inductive types.

While nothing prevents us from porting all the PBT features that we have accounted
for in [9], for the sake of this paper we will implement only FPC corresponding to different
flavors of exhaustive generation, as adopted, e.g., in SmallCheck [60] and αCheck [14, 15],
and their combination. Note however that it would take no more than two lines of code in the
decideE expert to implement a form of random data generation in the sense of randomized
backtracking [25].

Of course, Coq already features QuickChick [52] (https://softwarefoundations.cis.
upenn.edu/qc-current), which is a sophisticated and well-supported PBT tool, based on a
different perspective: being a clone of Haskell’s QuickCheck, it emphasizes testing executable
(read decidable) specifications with random generators. While current research [39] aims to
increase automation, it is fair to say that testing with QuickChick, in particular relational
specifications, is still very labor intensive. We do not intend to compete with QuickChick
at this stage, but we shall see that we can test immediately Inductive definitions that
corresponds to pure Horn programs, without having to provide a decidability proof for those
definitions. Furthermore, we are not committed to a fixed random generation strategy, which,
in general, requires additional work in the configuration of generators and shrinkers.

4.1 PBT as proof reconstruction
If we view a Horn property (in uncurried form) as a many-sorted logical formula

∀x1 : τ1 . . . xn : τm, A1 ∧ · · · ∧ Am ⊃ B (*)

where the Ai and B are predicates defined using Horn clause specifications, a counter-example
to this conjecture consists of a witness of the negated formula

∃x1 : τ1 . . . xn : τn, A1 ∧ · · · ∧ Am ∧ ¬B (**)

In our Coq setting Ai and B will be propositions, while the τj are honest-to-goodness
datatypes. We will treat the two quite differently, in so far as elements of those datatypes
will be generated, while predicates will only be checked. This distinction is reminiscent of
bi-directional type-checking and plays also a part in interpreting the negation sign. In a
proof system for intuitionistic logic extended with fixed points [2], negation corresponds to
the usual intuitionistic interpretation, which is what Coq supports. However, for the sake of
PBT and as we argued in [9] , we can identify a proof certificate for (∗∗) simply with a proof
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certificate for ∃x1 : τ1 . . . xn : τn, A1 ∧ · · · ∧ Am and we can resort to negation-as-failure to
check that the conclusion does not hold without caring for any evidence for the latter. This
also means that we do not produce a Coq proof term for the refutation of our property –
and neither does QuickChick, which runs at the OCaml level – although we can return the
witness for the existential.

4.2 An Elpi tactic for PBT
We will invoke the tactic in a proof environment where the overall goal is the property that
the system-under-test (SUT) should meet. This means that, after intro has been used to
introduce the relevant hypotheses, the user specifies which variables of the environment
should be used for generating data and which for executing the specification. In addition to
this, the user should specify all the certificate information that will guide the data generation
phase. Concretely, for the property (∗) and the specification of a FPC, the call to the tactic
will be:

elpi dep_pbt <fpc> (A1 ∧ · · · ∧ Am) (x1) . . . (xn).

The tactic calls check with the given FPC on the dependent variables and delegates to a
vanilla meta-interpreter (see Section A.1 in the appendix) the test of the hypotheses and of
the negation of the goal:
interp (A1 ∧ · · · ∧ Am), not (interp B)

where not is λProlog’s negation-as-failure operator.
To exemplify, let us add to the previous specification of list insertion a definition of

ordered list:
Inductive ordered : list nat → Prop :=
| o_n : ordered []
| o_s : ∀ x : nat, ordered [x]
| o_c : ∀ (x y : nat), ∀ xs, ordered xs → x <= y → ordered (x :: y :: xs).

A property we may wish to check before embarking on a formal proof is whether insertion
preserves ordered-ness:
Conjecture ins_ord: ∀ (x : nat) xs rs, ordered xs → insert x xs rs → ordered rs.
intros x xs rs Ho Hi.
elpi dep_pbt (height 5) (Ho ∧ Hi) (x) (xs).
Abort.

In this query the tactic tests the hypotheses Ho and Hi against data x,xs generated ex-
haustively up to a height at most 5 from the library Inductive definitions of nat and
list. We do not generate values for rs, since by (informal) mode information we know that
it will be computed. Since we did slip in an error, our tactic reports a counter-example,
namely Proof Term: [0, [0; 1; 0]], which unpacks to x = 0 and xs = [0; 1; 0]. As
the latter is definitely not an ordered list, this points to a quite evident bug in the definition
of ordered. We leave the fix to the reader.

In order to generate the PBT query, some pre-processing is needed. In particular, we
turn variables inhabiting datatypes into λProlog logic variables when they appear inside a
specification, and generate queries for each of these logic variables in association with the
type of the data variable it corresponds to. In order to realize this pre-processing step, we
leverage extensively λProlog’s higher order programming features. The substitutions are
handled with the technique of copy clauses [44].
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Note that testing the above conjecture with QuickChick would have required much more
setup: if we wished to proceed relationally as above, we would have had to provide a proof
of decidability of the relevant notions. Were we to use functions, then we would have to
implement a generator and shrinker for ordered lists, since automatic derivation of the former
does not (yet) work for this kind of specification.

For a more significant case study, let us turn to the semantics of programming languages,
where PBT has been used extensively and successfully [38]. Here we will consider a far
simpler example, a typed arithmetic language featuring numerals with predecessor and
test-for-zero, and Booleans with if-then-else, which comes from the Software Foundations
book series (https://softwarefoundations.cis.upenn.edu/plf-current/Types.html).
Whereas this example is admittedly quite simple-minded, it has, among others, been used as
a benchmark for evaluating QuickChick’s automation of generators under invariants [39], and
to be amenable to the tool, the specification had to be massaged non-insignificantly.
Inductive tm : Type :=
| ttrue : tm | tfalse : tm | tif : tm → tm → tm → tm | tzero : tm | tsucc : tm → tm
| tpred : tm → tm | tiszero : tm → tm.
Inductive typ : Type := | TBool : typ | TNat : typ.

The completely standard static and small step dynamic semantics rules are reported in
appendix A.2.

While it is obvious that subject expansion fails for this calculus, it is gratifying to have it
confirmed by our tactic, with counterexample e = tif ttrue tzero ttrue:
Conjecture subexp: ∀ e e’ t, step e e’ → has_type e’ t → has_type e t.
intros e e’ t HS HT.
elpi dep_pbt (height 2) (HS ∧ HT) (e).
Abort.

Another way to asses the fault detection capability of a PBT setup is via mutation
analysis [10], whereby localized bugs are purposely inserted, with the view that they should
be caught (“killed”) by a “good enough” testing suite. Following on an exercise in the afore-
mentioned chapter of SF, we modify the typing relation by adding the following (nonsensical)
clause:
Module M1.
Inductive has_type : tm → typ → Prop :=
. . .

| T_SuccBool : ∀ t, has_type t TBool → has_type (tsucc t) TBool.
end M1.

Some of the desired properties for our SUT now fails: not only type uniqueness, but also
progress with counterexample e = tsucc ttrue:
Definition progress (e : tm) (Has_type : tm → typ → Prop) (Step : tm → tm → Prop):=

∀ t, Has_type e t → notstuck e Step.
Conjecture progress_m1: ∀ e, progress e M1.has_type step.
unfold progress.
intros e t Ht.
elpi dep_pbt (height 2) (Ht) (e).
Abort.

To make the example slightly more interesting, we now move to an intrinsically-typed
representation [4] of our object language, where by indexing terms with object types, we
internalize the typing judgment into the syntax:
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Inductive tm : typ → Type :=
| ttrue : tm TBool | tfalse : tm TBool | tzero : tm TNat | tsucc : tm TNat → tm TNat
| tpred : tm TNat→ tm TNat | tiszero : tm TNat→ tm TBool
| tif: ∀ (T : typ), tm TBool→ tm T → tm T → tm T.

Now, the operational semantics is by construction type-preserving, but bugs can still
occur, see variations 3 in the same chapter that falsifies determinism of evaluation:

Module M3.
Inductive step : ∀ {T: typ}, tm T → tm T → Prop :=
. . .

| ST_Funny2 : ∀ T t1 t2 t2’ t3, (*bug*)
t2 =⇒ t2’ → (tif T t1 t2 t3) =⇒ (tif T t1 t2’ t3)

End M3.
Goal ∀ (T : typ) (x y1 y2 : tm T ), M3.step x y1 → M3.step x y2 → y1 = y2.
intros T x y1 y2 H1 H2.
elpi dep_pbt pair 3 5 (H1 ∧ H2) (x).
Abort.
Counterexample:
x = (tif TBool ttrue (tiszero tzero) ttrue

While we can deal with this encodings seamlessly, QuickChick’s automatic derivation of
generators is not applicable to dependent types, forcing us again either to provide decidability
proofs for all judgments affected by the mutation or to embark in some non-trivial dependent
functional programming, possibly based on monad transformers.

5 Elaboration of external proof certificates for the Coq kernel

The trusted base of Coq is its kernel, which is a type-checking program that certifies that
a dependently typed λ-term has a given type. If type checking succeeds, the formula
corresponding to that type is, in fact, accepted by Coq users as a theorem of intuitionistic
logic (along with any axioms that have been asserted). The rest of the Coq system, especially
its tactic language, is designed to help a human user build proofs-as-λ-terms that can be
checked by the kernel.

There are many theorem provers for intuitionistic logic [58] for which a successful proof
is not the kind of detailed λ-term required by the Coq kernel. Often, such provers provide
no information about the proofs they discover. To the extent that some evidence is output
after a successful run, such evidence is usually just a trace of some key aspects of a proof,
where some details are often not included. For example:
1. Substitution instances of quantifiers might not be recorded in a proof since such instances

can, in principle, be reconstructed using unification.
2. Detailed typing information might not need to be stored within a proof since types can

often be reconstructed during proof checking [45].
3. Some simplifications steps might be applied within a proof without recording which

rewrites were used. A simple non-deterministic proof-search engine might be expected to
reconstruct an equivalent simplification.

A majority of the external and automatic theorem provers for intuitionistic logic do not
involve induction. Instead, they go beyond Horn clause by permitting formulas with no
restriction on occurrences of ∀ and ⊃. In that case, we need to modify the focused proof
rules that we have seen in Section 3.1 by adding the following rules.
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kind deb type.
type lambda deb → deb.
type apply int → list deb → deb.
type idx int → index.
type lc int → deb → cert.
type args int → list deb → cert.

impC (lc C (lambda D)) (lc C D).
impE (args C (A:: As)) (lc C A) (args C As).
initialE (args C []) .
decideE (lc C (apply H A)) (args C A) (idx V) :− V is C - H - 1.
storeC (lc C D) (x\ lc C’ D) (x\ idx C) :− C’ is C + 1.

Figure 4 The FPC definition of De Bruijn notation as proof evidence.

P, B ⊢ D

P ⊢ B ⊃ D
⊃ R

P ⊢ D[y/x]
P ⊢ ∀x.D

∀R

As usual, the ∀R rule has the restriction that the eigenvariable y is not free in its conclusion.
As has been detailed in earlier work on foundational proof certificates, this richer notion

of proof system can provide for richer proof certificates. The main differences with what
we have seen before is that the left-hand sides of sequents can now grow during the proof
checking process. When reading the right introduction rule for ⊃ from conclusion to premise,
we shall say that the antecedent of the implication is stored in the left side of the context.
When this store action occurs, an index is used by the store command to name that new,
left-hand formula occurrence. In this extended situation, the decide expert uses the index of
an assumption in order to enter a focus phase of inference. A full proof checking kernel for
first-order intuitionistic logic has been given in [16] so we do not reproduce it here.

To give an example, consider using untyped λ-terms encoded using De Bruijn’s notation
as proof certificates for propositional intuitionistic logic over just ⊃. The fact that such
terms can be used as proof certificates for such formulas (denoting simple types) can be
formally defined using the FPC description in Figure 4. Using the constants provided in that
figure, the untyped λ-term λx(x(λy(y(λz(x(λu z)))))) can be encoded as the following Elpi
term of type deb.

(lambda (apply 0 [lambda (apply 0 [lambda (apply 2 [lambda (apply 1 [])])]) ]) )

Using the constructor lc and args, terms in De Bruijn syntax (terms of type deb) are
incorporated into proof certificates (terms of type cert) along with other integer arguments
that are needed to compute offsets to address bound variables.

We describe here briefly how to use the technology behind FPCs and logic programming in
order to provide a flexible approach to connecting external provers of first-order intuitionistic
logic to Coq. Following the general outline that has been described in [6, 7], we assume that
the following steps are taken.
1. Modify an external prover to output some form of proof evidence (proof certificate) for

formulas it claims are theorems.
2. Develop a formal definition of the semantics behind such proof certificates using the FPC

framework. The FPC for De Bruijn expressions given in Figure 4 is an example of this
step.

3. Check proofs by executing the logic programming checker that is parameterized by the
particular FPC definition.
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As we have mentioned in Section 3.2.2, the logic programming setting allows parallel checking
and synthesizing of a pair of certificates. That is, during the checking of one certificate, it
is possible to synthesize, for example, a fully detailed term that is appropriate for handing
to the Coq kernel. If one is interested only in building Coq kernel proof structures, we
can bypass the use of an explicit pairing operation and build the synthesis of such proof
structures directly into the FPC proof checker. We took exactly this step in Figure 1 where
proof checking involved both proof certificates as well as Coq terms. If one is interested in
checking only one kind of external proof structure, then the FPC for that structure could
also be built into the checker (via, say, partial evaluation of logic programs [43]).

Continuing with the previous example, consider an external theorem prover for proposi-
tional intuitionistic logic which returns proof structures as untyped λ-terms using De Bruijn’s
notation. Using the FPC provided in Figure 4 and the proof certificate checker in the file
ljf-dep.mod, of the repository https://github.com/proofcert/fpc-elpi, the De Bruijn
term displayed above can be elaborated into a proper proof for the following Coq theorem.

Theorem dneg_peirce_mid : ∀ P Q: Prop, (((((P → Q) → P) → P) → Q) → Q).

We note that this proof certificate checker and Coq proof synthesizer is rather compact,
comprising less than 90 lines of Elpi code.

6 Conclusion and future work

This paper follows a line of research starting in the late 1980s and gaining more steam in
the last five years, which advocates the usefulness of proof theory and higher-order logic
programming for the many tasks concerning the development, enrichment, and even formal
verification of proof assistants. The development of the Coq-Elpi plug-in has made this
connection tighter.

We have presented two applications of this synergy: one supporting an out-of-the-box
way to do property-based testing for inductive relations; the other geared towards providing
a flexible approach to connecting external provers of first-order intuitionistic logic to Coq

The code reported in Fig. 1 is a simplification for exposition purposes of the real
implementation of the kernel. Following ideas from bidirectional type checking, we have
factored out the product left rule in ∀ − L and ⊃ −L, where the former delegates to Coq the
check that the instantiation term t is well-typed w.r.t. B, while in the latter, proof search
will generate such a term, given the type B. There are also other minor tweaks, such as a
rule performing weak-head reduction, allowing us to handle directly existential goals.

There are many avenues of development for this line of research. We would like to exploit
one of the distinguishing features of Elpi: the delay mechanism. The use of constraints for
data generation is well developed [27] and we could try to leverage it to improve our PBT
tactic to generate partially instantiated terms, without recurring to needed narrowing as
in LazySmallCheck [60]. On the more practical side, it would be worthwhile to investigate
random generation, following the ideas in [25, 9].

Finally, it makes sense to tie together the two threads of this paper and provide a way of
checking and elaborating proof evidence for intuitionistic logic over (inductively) defined
atoms using previously proved lemmata, that is capturing most of the features of eauto.
This can be pushed further up to FPC for (co)inductive proofs [8].

The source files mentioned in this paper are available at https://github.com/proofcert/
fpc-elpi.

https://github.com/proofcert/fpc-elpi
https://github.com/proofcert/fpc-elpi
https://github.com/proofcert/fpc-elpi
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A Appendix

In this appendix we list some definitions and pieces of code that we have mentioned in the
main paper.

A.1 The vanilla meta-interpreter
We report below the encoding of the vanilla meta-interpreter used in the testing phase of
the dep_pbt tactic. Differently from Fig. 2 we appeal, via quotations, to Coq’s defined
connectives. An atomic proposition is one defined Inductively.

type interp term → o.
type backchain term → term → o.

interp {{True}}.
interp (sort _).
interp {{lp:G1 ∧ lp:G2}} :− interp G1, interp G2.
interp {{lp:G1 ∨ lp:G2}} :− interp G1; interp G2.
interp {{lp:T1 = lp:T2}} :− coq.unify-eq T1 T2 ok.
interp {{ex (lp:G)}} :− interp (G X).
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interp Atom :−
atomic Atom,
coq.safe-dest-app Atom (global (indt Prog)) _,
coq.env.indt Prog _ _ _ _ _ KTypes,
std.mem KTypes D, backchain D Atom.

backchain A A’ :− atomic A, coq.unify-eq A A’ ok.
backchain D A :− is_imp D A D’, !, backchain D’ A, interp Ty.
backchain D A :− is_uni D D’, backchain (D’ X) A.

A.2 Semantics of the typed arithmetic language
We list the rules for static and dynamic semantics of the language mentioned in Section 4.2
and related notions:

Inductive has_type : tm → typ → Prop :=
| T_Tru : has_type ttrue TBool
| T_Fls : has_type tfalse TBool
| T_Test : ∀ t1 t2 t3 T,

has_type t1 TBool → has_type t2 T → has_type t3 T → has_type (tif t1 t2 t3) T
| T_Zro : has_type tzero TNat
| T_Scc : ∀ t1, has_type t1 TNat → has_type (tsucc t1) TNat
| T_Prd : ∀ t1, has_type t1 TNat → has_type (tpred t1 ) TNat
| T_Iszro : ∀ t1, has_type t1 TNat → has_type (tiszero t1) TBool.

Inductive nvalue : tm → Prop :=
| nv_zero : nvalue tzero
| nv_succ : ∀ t, nvalue t → nvalue (tsucc t).

Inductive bvalue : tm → Prop :=
| bv_t : bvalue ttrue
| bv_f : bvalue tfalse.

Reserved Notation "t1 ’=⇒ ’ t2" (at level 40).
Inductive step : tm → tm → Prop :=

| ST_IfTrue : ∀ t1 t2, (tif ttrue t1 t2) =⇒ t1
| ST_IfFalse : ∀ t1 t2, (tif tfalse t1 t2) =⇒ t2
| ST_If : ∀ t1 t1’ t2 t3,

t1 =⇒ t1’ → (tif t1 t2 t3) =⇒ (tif t1’ t2 t3)
| ST_Succ : ∀ t1 t1’,

t1 =⇒ t1’ → (tsucc t1) =⇒ (tsucc t1’)
| ST_PredZero : (tpred tzero) =⇒ tzero
| ST_PredSucc : ∀ t1,

nvalue t1 → (tpred (tsucc t1)) =⇒ t1
| ST_Pred : ∀ t1 t1’,

t1 =⇒ t1’ → (tpred t1) =⇒ (tpred t1’)
| ST_IszeroZero : (tiszero tzero) =⇒ ttrue
| ST_IszeroSucc : ∀ t1,

nvalue t1 → (tiszero (tsucc t1)) =⇒ tfalse
| ST_Iszero : ∀ t1 t1’,

t1 =⇒ t1’ → (tiszero t1) =⇒ (tiszero t1’)
where "t1 ’=⇒ ’ t2" := (step t1 t2).

Inductive notstuck (e : tm) (Step : tm → tm → Prop) : Prop :=
| pn : nvalue e → notstuck e Step
| pb : bvalue e → notstuck e Step
| ps e’ : Step e e’ → notstuck e Step.
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