1,493 research outputs found

    Spatial Keyword Querying: Ranking Evaluation and Efficient Query Processing

    Get PDF

    Crowdsourcing for Engineering Design: Objective Evaluations and Subjective Preferences

    Full text link
    Crowdsourcing enables designers to reach out to large numbers of people who may not have been previously considered when designing a new product, listen to their input by aggregating their preferences and evaluations over potential designs, aiming to improve ``good'' and catch ``bad'' design decisions during the early-stage design process. This approach puts human designers--be they industrial designers, engineers, marketers, or executives--at the forefront, with computational crowdsourcing systems on the backend to aggregate subjective preferences (e.g., which next-generation Brand A design best competes stylistically with next-generation Brand B designs?) or objective evaluations (e.g., which military vehicle design has the best situational awareness?). These crowdsourcing aggregation systems are built using probabilistic approaches that account for the irrationality of human behavior (i.e., violations of reflexivity, symmetry, and transitivity), approximated by modern machine learning algorithms and optimization techniques as necessitated by the scale of data (millions of data points, hundreds of thousands of dimensions). This dissertation presents research findings suggesting the unsuitability of current off-the-shelf crowdsourcing aggregation algorithms for real engineering design tasks due to the sparsity of expertise in the crowd, and methods that mitigate this limitation by incorporating appropriate information for expertise prediction. Next, we introduce and interpret a number of new probabilistic models for crowdsourced design to provide large-scale preference prediction and full design space generation, building on statistical and machine learning techniques such as sampling methods, variational inference, and deep representation learning. Finally, we show how these models and algorithms can advance crowdsourcing systems by abstracting away the underlying appropriate yet unwieldy mathematics, to easier-to-use visual interfaces practical for engineering design companies and governmental agencies engaged in complex engineering systems design.PhDDesign ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133438/1/aburnap_1.pd

    Preference Modeling in Data-Driven Product Design: Application in Visual Aesthetics

    Full text link
    Creating a form that is attractive to the intended market audience is one of the greatest challenges in product development given the subjective nature of preference and heterogeneous market segments with potentially different product preferences. Accordingly, product designers use a variety of qualitative and quantitative research tools to assess product preferences across market segments, such as design theme clinics, focus groups, customer surveys, and design reviews; however, these tools are still limited due to their dependence on subjective judgment, and being time and resource intensive. In this dissertation, we focus on a key research question: how can we understand and predict more reliably the preference for a future product in heterogeneous markets, so that this understanding can inform designers' decision-making? We present a number of data-driven approaches to model product preference. Instead of depending on any subjective judgment from human, the proposed preference models investigate the mathematical patterns behind users’ choice and behavior. This allows a more objective translation of customers' perception and preference into analytical relations that can inform design decision-making. Moreover, these models are scalable in that they have the capacity to analyze large-scale data and model customer heterogeneity accurately across market segments. In particular, we use feature representation as an intermediate step in our preference model, so that we can not only increase the predictive accuracy of the model but also capture in-depth insight into customers' preference. We tested our data-driven approaches with applications in visual aesthetics preference. Our results show that the proposed approaches can obtain an objective measurement of aesthetic perception and preference for a given market segment. This measurement enables designers to reliably evaluate and predict the aesthetic appeal of their designs. We also quantify the relative importance of aesthetic attributes when both aesthetic attributes and functional attributes are considered by customers. This quantification has great utility in helping product designers and executives in design reviews and selection of designs. Moreover, we visualize the possible factors affecting customers' perception of product aesthetics and how these factors differ across different market segments. Those visualizations are incredibly important to designers as they relate physical design details to psychological customer reactions. The main contribution of this dissertation is to present purely data-driven approaches that enable designers to quantify and interpret more reliably the product preference. Methodological contributions include using modern probabilistic approaches and feature learning algorithms to quantitatively model the design process involving product aesthetics. These novel approaches can not only increase the predictive accuracy but also capture insights to inform design decision-making.PHDDesign ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145987/1/yanxinp_1.pd

    Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels.

    Get PDF
    The problem of estimating subjective visual properties from image and video has attracted increasing interest. A subjective visual property is useful either on its own (e.g. image and video interestingness) or as an intermediate representation for visual recognition (e.g. a relative attribute). Due to its ambiguous nature, annotating the value of a subjective visual property for learning a prediction model is challenging. To make the annotation more reliable, recent studies employ crowdsourcing tools to collect pairwise comparison labels because human annotators are much better at ranking two images/videos (e.g. which one is more interesting) than giving an absolute value to each of them separately. However, using crowdsourced data also introduces outliers. Existing methods rely on majority voting to prune the annotation outliers/errors. They thus require large amount of pairwise labels to be collected. More importantly as a local outlier detection method, majority voting is ineffective in identifying outliers that can cause global ranking inconsistencies. In this paper, we propose a more principled way to identify annotation outliers by formulating the subjective visual property prediction task as a unified robust learning to rank problem, tackling both the outlier detection and learning to rank jointly. Differing from existing methods, the proposed method integrates local pairwise comparison labels together to minimise a cost that corresponds to global inconsistency of ranking order. This not only leads to better detection of annotation outliers but also enables learning with extremely sparse annotations. Extensive experiments on various benchmark datasets demonstrate that our new approach significantly outperforms state-of-the-arts alternatives.Comment: 14 pages, accepted by IEEE TPAM

    Development Paths Towards Open Government. An Empirical Analysis Among Heritage Institutions

    Get PDF
    In the face of the growing digitization of society, a series of transformations are taking place in the public sector that have been described as the second generation of e-government development. The present article traces how these transformations have been anticipated by successive generations of e-government maturity models and critically assesses existing stage models. Based on a survey among 1560 heritage institutions in 11 countries, an empirically validated maturity model for the implementation of open government is presented. The model uses innovation diffusion theory as a theoretical backdrop. While the model is at odds with the unidimensional nature of the Lee & Kwak Open Government Maturity Model (Lee & Kwak, 2012), the findings suggest that the transformative processes predicted by various e-government maturity models are well at work. They result in increasingly integrated services, participative approaches and an emerging collaborative culture, accompanied by a break-up of proprietary data silos and their replacement by a commonly shared data infrastructure, allowing data to be freely shared, inter-linked and re-used. In order to put our findings into perspective, we take stock of earlier discussions and criticisms of e-government maturity models and offer a new take on the issue of stages-of-growth models in the field of e-government. The proposed approach rests on the assumption of an evolutionary model that is empirically grounded and allows for varying development paths

    TRACE: A Stigmergic Crowdsourcing Platform for Intelligence Analysis

    Get PDF
    Crowdsourcing has become a frequently adopted approach to solving various tasks from conducting surveys to designing products. In the field of reasoning-support, however, crowdsourcing-related research and application have not been extensively implemented. Reasoning-support is essential in intelligence analysis to help analysts mitigate various cognitive biases, enhance deliberation, and improve report writing. In this paper, we propose a novel approach to designing a crowdsourcing platform that facilitates stigmergic coordination, awareness, and communication for intelligence analysis. We have partly materialized our proposal in the form of a crowdsourcing system which supports intelligence analysis: TRACE (Trackable Reasoning and Analysis for Collaboration and Evaluation). We introduce several stigmergic approaches integrated into TRACE and discuss the potential experimentation of these approaches. We also explain the design implications for further development of TRACE and similar crowdsourcing systems to support reasoning

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    ChatGPT and Persuasive Technologies for the Management and Delivery of Personalized Recommendations in Hotel Hospitality

    Full text link
    Recommender systems have become indispensable tools in the hotel hospitality industry, enabling personalized and tailored experiences for guests. Recent advancements in large language models (LLMs), such as ChatGPT, and persuasive technologies, have opened new avenues for enhancing the effectiveness of those systems. This paper explores the potential of integrating ChatGPT and persuasive technologies for automating and improving hotel hospitality recommender systems. First, we delve into the capabilities of ChatGPT, which can understand and generate human-like text, enabling more accurate and context-aware recommendations. We discuss the integration of ChatGPT into recommender systems, highlighting the ability to analyze user preferences, extract valuable insights from online reviews, and generate personalized recommendations based on guest profiles. Second, we investigate the role of persuasive technology in influencing user behavior and enhancing the persuasive impact of hotel recommendations. By incorporating persuasive techniques, such as social proof, scarcity and personalization, recommender systems can effectively influence user decision-making and encourage desired actions, such as booking a specific hotel or upgrading their room. To investigate the efficacy of ChatGPT and persuasive technologies, we present a pilot experi-ment with a case study involving a hotel recommender system. We aim to study the impact of integrating ChatGPT and persua-sive techniques on user engagement, satisfaction, and conversion rates. The preliminary results demonstrate the potential of these technologies in enhancing the overall guest experience and business performance. Overall, this paper contributes to the field of hotel hospitality by exploring the synergistic relationship between LLMs and persuasive technology in recommender systems, ultimately influencing guest satisfaction and hotel revenue.Comment: 17 pages, 12 figure

    Assessing emphysema in CT scans of the lungs:Using machine learning, crowdsourcing and visual similarity

    Get PDF
    corecore