2,353 research outputs found

    Synthesis of neural networks for spatio-temporal spike pattern recognition and processing

    Get PDF
    The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify, arbitrarily, neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.Comment: In submission to Frontiers in Neuromorphic Engineerin

    Evolving spiking neural networks for temporal pattern recognition in the presence of noise

    Get PDF
    Creative Commons - Attribution-NonCommercial-NoDerivs 3.0 United StatesNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseFinal Published versio

    Spike Events Processing for Vision Systems

    Get PDF
    In this paper we briefly summarize the fundamental properties of spike events processing applied to artificial vision systems. This sensing and processing technology is capable of very high speed throughput, because it does not rely on sensing and processing sequences of frames, and because it allows for complex hierarchically structured cortical-like layers for sophisticated processing. The paper includes a few examples that have demonstrated the potential of this technology for highspeed vision processing, such as a multilayer event processing network of 5 sequential cortical-like layers, and a recognition system capable of discriminating propellers of different shape rotating at 5000 revolutions per second (300000 revolutions per minute)

    Spatio-temporal Learning with Arrays of Analog Nanosynapses

    Full text link
    Emerging nanodevices such as resistive memories are being considered for hardware realizations of a variety of artificial neural networks (ANNs), including highly promising online variants of the learning approaches known as reservoir computing (RC) and the extreme learning machine (ELM). We propose an RC/ELM inspired learning system built with nanosynapses that performs both on-chip projection and regression operations. To address time-dynamic tasks, the hidden neurons of our system perform spatio-temporal integration and can be further enhanced with variable sampling or multiple activation windows. We detail the system and show its use in conjunction with a highly analog nanosynapse device on a standard task with intrinsic timing dynamics- the TI-46 battery of spoken digits. The system achieves nearly perfect (99%) accuracy at sufficient hidden layer size, which compares favorably with software results. In addition, the model is extended to a larger dataset, the MNIST database of handwritten digits. By translating the database into the time domain and using variable integration windows, up to 95% classification accuracy is achieved. In addition to an intrinsically low-power programming style, the proposed architecture learns very quickly and can easily be converted into a spiking system with negligible loss in performance- all features that confer significant energy efficiency.Comment: 6 pages, 3 figures. Presented at 2017 IEEE/ACM Symposium on Nanoscale architectures (NANOARCH

    Delay Learning Architectures for Memory and Classification

    Full text link
    We present a neuromorphic spiking neural network, the DELTRON, that can remember and store patterns by changing the delays of every connection as opposed to modifying the weights. The advantage of this architecture over traditional weight based ones is simpler hardware implementation without multipliers or digital-analog converters (DACs) as well as being suited to time-based computing. The name is derived due to similarity in the learning rule with an earlier architecture called Tempotron. The DELTRON can remember more patterns than other delay-based networks by modifying a few delays to remember the most 'salient' or synchronous part of every spike pattern. We present simulations of memory capacity and classification ability of the DELTRON for different random spatio-temporal spike patterns. The memory capacity for noisy spike patterns and missing spikes are also shown. Finally, we present SPICE simulation results of the core circuits involved in a reconfigurable mixed signal implementation of this architecture.Comment: 27 pages, 20 figure

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Investigation of Synapto-dendritic Kernel Adapting Neuron models and their use in spiking neuromorphic architectures

    Get PDF
    The motivation for this thesis is idea that abstract, adaptive, hardware efficient, inter-neuronal transfer functions (or kernels) which carry information in the form of postsynaptic membrane potentials, are the most important (and erstwhile missing) element in neuromorphic implementations of Spiking Neural Networks (SNN). In the absence of such abstract kernels, spiking neuromorphic systems must realize very large numbers of synapses and their associated connectivity. The resultant hardware and bandwidth limitations create difficult tradeoffs which diminish the usefulness of such systems. In this thesis a novel model of spiking neurons is proposed. The proposed Synapto-dendritic Kernel Adapting Neuron (SKAN) uses the adaptation of their synapto-dendritic kernels in conjunction with an adaptive threshold to perform unsupervised learning and inference on spatio-temporal spike patterns. The hardware and connectivity requirements of the neuron model are minimized through the use of simple accumulator-based kernels as well as through the use of timing information to perform a winner take all operation between the neurons. The learning and inference operations of SKAN are characterized and shown to be robust across a range of noise environments. Next, the SKAN model is augmented with a simplified hardware-efficient model of Spike Timing Dependent Plasticity (STDP). In biology STDP is the mechanism which allows neurons to learn spatio-temporal spike patterns. However when the proposed SKAN model is augmented with a simplified STDP rule, where the synaptic kernel is used as a binary flag that enable synaptic potentiation, the result is a synaptic encoding of afferent Signal to Noise Ratio (SNR). In this combined model the neuron not only learns the target spatio-temporal spike patterns but also weighs each channel independently according to its signal to noise ratio. Additionally a novel approach is presented to achieving homeostatic plasticity in digital hardware which reduces hardware cost by eliminating the need for multipliers. Finally the behavior and potential utility of this combined model is investigated in a range of noise conditions and the digital hardware resource utilization of SKAN and SKAN + STDP is detailed using Field Programmable Gate Arrays (FPGA)
    • …
    corecore