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Abstract
In this paper we briefly summarize the fundamental

properties of spike events processing applied to artificial
vision systems. This sensing and processing technology
is capable of very high speed throughput, because it
does not rely on sensing and processing sequences of
frames, and because it allows for complex hierarchically
structured cortical-like layers for sophisticated
processing. The paper includes a few examples that have
demonstrated the potential of this technology for high-
speed vision processing, such as a multilayer event
processing network of 5 sequential cortical-like layers,
and a recognition system capable of discriminating
propellers of different shape rotating at 5000 revolutions
per second (300000 revolutions per minute).

I. Introduction
Artificial man-made machine vision systems operate

in a quite different way to biological brains. Machine
vision systems usually operate by capturing and
processing sequences of frames. For example, a video
camera captures images at about 25-30 frames per
second, which are then processed frame by frame to
extract, enhance and combine features, and perform
operations in feature spaces, until a desired recognition
is achieved. Biological brains do not operate on a frame
by frame basis. In the retina, each pixel sends spikes
(also called events) to the cortex when its activity level
reaches a threshold. This activity level may respond to
different image properties like intensity, contrast, color,
motion, etc. - properties which have been pre-computed
within the retina before generating the spikes to be sent
to the visual cortex. Very active pixels will send more
spikes than less active pixels. When the retina responds
to a stimulus, for example a moving profile, then those
pixels sensing the profile will elicit a simultaneous
collection of spikes which are strongly space-time
correlated. The visual cortex receiving these spikes is
sensitive to the space location where the spikes were
originated and to the relative timing between them. This
way, it can recognize and follow this moving profile. All
these spikes are transmitted as they are being produced,
and do not wait for an artificial “frame time” before
sending them to the next processing layer. This way, in
biological brains, strong features are propagated and
processed from layer to layer as soon as they are
produced, without waiting to finish collecting and
processing data of whole image frames.

As an illustration, consider the setup in Fig. 1. On the
left, a circular solid object (a ball) is observed by a
motion sensing retina in the center. The pixels in this
retina are sensitive to motion (changes in intensity).
Consequently, at a given instant in time only the pixels
on a circumference will become active. This means that
the pixels on the same circumference will
simultaneously fire spikes. Let us assume each pixel
fires just one single spike. We may state that, at a given
instant (or short time interval), the spikes produced by
the retina are highly space-time correlated: in time
because they are simultaneous and in space because they
form a circumference of a certain radius. In Fig. 1, the
output spikes of the retina are sent, through projection
fields, onto the next processing layer. Suppose the
projection fields are tuned to detect circumferences of a
given radius range . Then, each spike produced by
a pixel in the retina will be sent to a circumference (of
radius R) of pixels in the projection-field layer in Fig. 1.
This way, pixel ‘1’ in the retina sends a spike to all
pixels in circumference ‘1’ of the projection-field layer.
The same for pixels ‘2’, ‘3’, ‘4’, and all others in the
retina circumference. If the circumference sensed in the
retina is of the same radius R than the projection-fields,
as is the case in Fig. 1, then the pixel in the projection
field layer that has the same coordinates as the central
pixel of the retina circumference (pixel ‘A’), will receive
spikes from all active projection-fields. Consequently,
this pixel will receive the strongest stimulus. The pixels
in the projection-field layer can be made to fire a spike if
their stimulus reaches a certain threshold. If this
threshold is sufficiently high, only the central pixel ‘A’
in the projection field layer will generate an output,
signaling that this is the center of the moving ball of
radius R sensed by the retina. In general, projection-
fields in biological neuro-cortical layers perform feature
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Fig. 1: Example of high-speed projection-field spike-based
image processing for detecting a moving ball of a specific
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extraction operations, which are dependent on the
“shape” (weights) of the projection-field connections.
Note that projection-field processing is equivalent to
convolution processing, where the kernel of the
convolution is the projection-field shape. In the case of
Fig. 1, the feature to be detected is a circumference of
radius R. In biological neuro-cortical structures there are
several (8-10) sequential projection-field layers (see Fig.
2) that extract features [1]-[4], group them, extract more
elaborate features, and so on, until in the end they
perform complicated recognition tasks, such as
handwritten character recognition [5]-[8] or face
recognition [9]-[13].

A very interesting and powerful property of the
projection-field processing illustrated in Fig. 1 and Fig.
2, is its high speed. In Fig. 1, note that the spikes
produced at the retina are sent simultaneously to the
projection field layer. The central pixel ‘A’ produces its
output spike almost instantly. Consequently, this spike
based projection-field processing approach is
structurally much faster than a conventional frame-
based processing approach. In a frame-based approach
all pixels in a retina (or camera) are sensed and
transmitted to the next layer (or processing stage),
where all pixels of the frame are processed, usually with
convolution operations, and so on. This frame
convolution processing is slow, specially if several
convolutions need to be computed in sequence for each
input image frame. Artificial spike based processing
hardware systems usually exploit the AER (Address-
Event-Representation) technology.

II. Address-Event-Representation
AER was originally proposed by Mahowald and

Sivilotti [14]-[16] as an inter-chip communication
protocol to reproduce the state of a 2D array of neurons
from one emitter chip onto another receiver chip,
continuously and in real time. A growing community of
researchers is using the scheme for bio-inspired vision
[18]-[23] and audition [24] systems. Since then, the

scheme has been evolving in efficiency and processing
power.

Fig. 3 shows the essence behind the AER protocol.
The emitter chip contains an array of cells or pixels
whose intensity or activity changes in time with slow
time constants. This happens, for example, in
commercial cameras or artificial retinae where the
bandwidth of the signal sensed by an individual pixel is
in the order of hundreds of Hertz at the most. Each pixel
contains an oscillator whose frequency is proportional
to pixel intensity. The oscillator produces spikes of very
short duration (in the order of nano seconds, for
example 15ns [17]) but with much longer spike intervals
(in the order of mili seconds). These spikes are called
“events”. Every time a pixel sends a spike, its
coordinate is written on an inter-chip high speed digital
bus and sent to one or more receiver chips. Events are
generated asynchronously. Therefore, additional
handshaking signals are required for the proper
transmission of events from chip to chip. Also, since
events are generated asynchronously, “collisions” of
events generated simultaneously by different pixels may
occur. Several ways of handling collisions have been
reported in the literature. One way is to detect and
discard events that collide [18]-[20], while another is to
introduce arbitration [26], [28], [29] and enforce
sequencing of colliding events. The latter is more
sophisticated but can handle much higher event traffic
loads, although it will introduce small event delays (in
the order of nano or maybe micro seconds). A channel
will saturate when it has to handle a sustained event rate
close to its physical bandwidth, or above. At that point,
one can either (a) put more channels in parallel, or (b)
decrease pixel maximum frequency and readjust system
level parameters at subsequent stages to adapt to this.
Solution (b) will slow down overall system speed.

In Fig. 3 each event produced by the emitter chip is
received by one receiver chip. The receiver chip decodes
the address of the event and sends it to the pixel with the
same coordinate. This pixel contains some type of
integration mechanism that reconstructs the original low
frequency time waveform of the same coordinate pixel
in the transmitter chip. The delay between events
produced in the emitter pixel until they are received by
the receiver pixel is in the order of nano seconds. One
can say the signals at the receiver pixels are identical
and simultaneous to those in the emitter pixels, as if
there were wires between pixels of the same coordinate.

Fig. 2: Illustration of projection field concept in the brain.
Each neuron in one layer connects to a projection field of
neurons in the following layer. The weights of the
connections follow a pattern which is independent of
neuron position within a sending layer. Consequently, this
is like applying a convolution from layer to layer.

 Fig. 3: Illustration of Address-Event-Representation
(AER) Point-to-Point Communication
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However, the only physical wires between chips are the
ones forming the high-speed digital bus, which has a
relatively small number of pins compared to the number
of pixels of the images1.

III. Event Coding Schemes
When AER was first proposed, the information

coding scheme considered was ‘rate coding’. This
means that pixel activity level was represented directly
as pixel event frequency. Therefore, to recover pixel
activity one would need to integrate the events during a
certain time interval. This ‘rate coding’ principle has
been also considered as biologically realistic by many
neuroscientists during many years. However, because of
recent discoveries, there are reasons to believe that
biology not only codes information by ‘rate coding’, but
there might be also other plausible schemes that allow
for more rapid information processing. For example,
‘rank order coding’ [25] is an alternative scheme that
exploits the ordering in time of set of simultaneous
events. Or simply coding the ‘synchronicity’ of pixels
could be meaningful [27]. More simple solutions could
be just to code the derivative of pixel activity [26] to
detect changes. In principle, AER is not restricted to
‘rate coding’, since AER consists only of sending events
that code pixel addresses. The way those events are
processed at the receivers (for example, by integration)
is what puts restrictions on the coding schemes.

IV. AER Processing Capabilities
The AER protocol not only allows for a “virtual

wiring” between pixels of emitter and receiver chips, but
allows for extra processing on the addresses while they
travel between chips. For example, image translation
can be performed by inserting digital adders between
chips, that would add fixed offsets to the travelling

coordinates. Image rotations could be performed
by inserting properly coded look-up tables, as well as
any arbitrary transformations and distortions. Even
sophisticated micro-controller based approaches have
been reported that generate “bubbles” of events for each
original event [30]. In 1999 Serrano et al. introduced an
architecture for performing AER based real-time
programmable convolutions [23]. However, these
convolution operations were limited to kernels
which are decomposable into x and y components

. More recent versions [31] do not
suffer from this restriction and can be programmed to
perform convolutions with arbitrary kernels. Other
researchers presented in the past AER circuits for
convolution processing. For example, Vernier et al.
presented a chip with a fixed hardwired kernel, whose
spatial shape could be slightly fine tuned through analog
biases [20].

V. Multi-Chip-AER
A potentially huge advantage of AER systems is its

capability for assembling many modules, while keeping
its high speed processing. Fig. 4 describes a set of AER
building blocks and how they were assembled into a
prototype vision system that learns to classify
trajectories of a moving object [32]. All modules
communicate asynchronously using AER. The building
blocks consist of: (1) a retina loosely modeled on the
magnocellular pathway that responds to brightness
changes [33], (2) a convolution chip with programmable
convolution kernel of arbitrary shape and size [31], (3) a
multi-neuron 2D competition chip [34], (4) a spatio-
temporal pattern classification learning module [35],
and (5) a set of FPGA-based PCBs for address
remapping and computer interfaces [36]-[37].

Using these AER building blocks and tools we built
the demonstration vision system shown schematically in
Fig. 4, that detects a moving object and learns to classify
its trajectories. It has a front end retina, followed by an
array of convolution chips, each programmed to detect a
specific feature with a given spatial scale. The
competition or ‘object’ chip selects the most salient
feature and scale. A spatio-temporal pattern
classification module categorizes trajectories of the
object chip outputs [32].

VI. High-Speed Convolutions
Recently, important advances of high speed

processing for convolution based recognition have been
reported [31]. For example, an experiment that
demonstrates the high speed processing capabilities of
AER based systems is the recognition of high speed
rotating propellers. For this, a convolution chip is fed
with a stimulus consisting of two rotating propellers.
Each propeller has a different shape, as shown in Fig. 5.
One is rectilinear, and the other has an S-like shape.
When the propellers rotate at high speed one only sees a
solid circle that moves slowly across the screen.
Therefore, a human observer would not be able to
discriminate between the two propellers. In this
experiment an artificial sequence of events representing
the rotating propellers is generated. This sequence of
events was generated numerically and physically
provided in real-time by an AER emitter PCB controlled
by a host computer [36]-[37]. This PCB connects to the
input AER port of a convolution chip2 [31]. The input
and output AER ports of the convolution chip were
recorded simultaneously using a monitor PCB. All input1. If there are pixels, only physical wires are required. If
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Fig. 4: Demonstration AER vision system



and output events, conveniently time-stamped, can be
recorded in computer memory.

In this experiment it was possible to provide
propellers rotating at up to 5000 revolutions per second
(300K revolutions per minute). The input stimulus is
either the rectilinear propeller or the S-shape propeller.
As shown in Fig. 5, the chip correctly discriminates
between the two propellers.
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Fig. 5: Response of convolution Chip to two rotating
propellers of different shape. Top row corresponds to an S-
shaped propeller, while bottom row corresponds to a
rectilinear propeller. The kernel programmed onto the chip
is for recognizing the S-shaped propeller when it is in
horizontal position. The left-hand columns show the input
stimuli. Since the propellers are rotating at high speeds,
only solid circles moving across the screen are seen. The
right-hand columns show the output of the convolution
processing. The top output detects the center of the S-
shaped propeller. Consequently, in the top output a dot
would be seen moving along the screen, which means that
the S-shaped propeller is being followed. The bottom
output is empty, since the convolution chip input is not an
S-shape propeller.
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