3 research outputs found

    Design, Optimization and Characterization of Metal Oxide Nanowire Sensors

    Get PDF
    En aquesta tesi, he estudiat i desenvolupat un mĂštode de deposiciĂł quĂ­mica en fase vapor assistit per aerosol (AACVD), per al creixement directe de nanoagulles d'ĂČxid de tungstĂš funcionalitzades o intrĂ­nseques. Els dipĂČsits s'han realitzat sobre diferents substrats trasndcutors per a la seva aplicaciĂł a la detecciĂł de gasos. Aquesta tĂšcnica ofereix la possibilitat de co-dipositar els metalls amb els ĂČxids metĂ l‱lics emprant una sola etapa de deposiciĂł. La sĂ­ntesi del material nanoestructurat, la fabricaciĂł del dispositiu, la caracteritzaciĂł dels materials i la detecciĂł de gasos han estat investigades. El mĂštode AACVD es va emprar per al creixement i la integraciĂł directa de la pel‱lĂ­cula sensible sobre substrats cerĂ mics (alĂșmina), MEMS (micro hotplates) i polimĂšrics flexibles, el que demostra la seva compatibilitat i idoneĂŻtat per al creixement de nanoestructures d'ĂČxid metĂ l‱lics sobre una Ă mplia gamma de substrats transductors. A mĂ©s, el mĂštode AACVD s'ha implementat tambĂ© en un reactor de paret freda per crĂ©ixer les nanoestructures de WO3, emprant l'escalfament localitzat que permeten aconseguir les microresistencias calefactores integrades en alguns dels transdcutors emprats. Totes les pel‱lĂ­cules sintetitzades en aquesta tesi doctoral es componien de nanoagulles de WO3 pur o de WO3 funcionalitzat amb nanopartĂ­cules d'or (Au), platĂ­ (Pt), ĂČxid de coure (Cu2O) o pal‱ladi (Pd). Es van utilitzar diverses tecnologies d'anĂ lisi per caracteritzar la morfologia, l'estructura i la composiciĂł de les pel‱lĂ­cules produĂŻdes. Els resultats van mostrar que el nostre mĂštode Ă©s eficaç per al creixement de nanoagulles cristal‱lines de WO3 decorades amb nanopartĂ­cules de metalls / ĂČxids metĂ l‱lics, a temperatures moderades (Ă©s a dir, 380 ° C), amb eficĂ cia en els seus costos i amb temps de fabricaciĂł curts, directament sobre l'element transdcutor amb vista a obtenir sensors de gasos. Els estudis de detecciĂł de gasos han mostrat que aquest nanomaterial hĂ­brid tĂ© una excel‱lent sensibilitat i selectivitat en comparaciĂł amb mostres de WO3 pur. A mĂ©s, els nanocompostos Cu2O / WO3 i Pd / WO3 han demostrat posseir una excel‱lent sensibilitat i selectivitat cap als gasos H2S i H2, respectivament.En esta tesis, he estudiado y desarrollado un mĂ©todo de deposiciĂłn quĂ­mica en fase vapor asistido por aerosol (AACVD), para el crecimiento directo de nanoagujas de Ăłxido de tungsteno funcionalizadas o intrĂ­nsecas. Los depĂłsitos se han realizado sobre distintos sustratos transdcutores para su aplicaciĂłn a la detecciĂłn de gases. Esta tĂ©cnica ofrece la posibilidad de co-depositar los metales con los Ăłxidos metĂĄlicos empleando una sola etapa de deposiciĂłn. La sĂ­ntesis del material nanoestructurado, la fabricaciĂłn del dispositivo, la caracterizaciĂłn de los materiales y la detecciĂłn de gases han sido investigadas. El mĂ©todo AACVD se empleĂł para el crecimiento y la integraciĂłn directa de la pelĂ­cula de sensible sobre sustratos cerĂĄmicos (alĂșmina), MEMS (micro hotplates) y polimĂ©ricos flexibles, lo que demuestra su compatibilidad e idoneidad para el crecimiento de nanoestructuras de Ăłxido metĂĄlicos sobre una amplia gama de sustratos transductores. AdemĂĄs, el mĂ©todo AACVD se ha implementado tambiĂ©n en un reactor de pared frĂ­a para crecer las nanoestructuras de WO3, empleando el calentamiento localizado que permiten conseguir las microresistencias calefactoras integradas en algunos de los transductores empleados. Todas las pelĂ­culas sintetizadas en esta tesis doctoral se componĂ­an de nanoagujas de WO3 puro o de WO3 funcionalizado con nanopartĂ­culas de oro (Au), platino (Pt), Ăłxido de cobre (Cu2O) o paladio (Pd). Se utilizaron diversas tecnologĂ­as de anĂĄlisis para caracterizar la morfologĂ­a, la estructura y la composiciĂłn de las pelĂ­culas producidas. Los resultados mostraron que nuestro mĂ©todo es eficaz para el crecimiento de nanoagujas cristalinas de WO3 decoradas con nanopartĂ­culas de metales / Ăłxidos metĂĄlicos, a temperaturas moderadas (es decir, 380 ° C), con eficacia en sus costes y con tiempos de fabricaciĂłn cortos, directamente sobre el elemento trasndcutor con vistas a obtener sensores de gases. Los estudios de detecciĂłn de gases han mostrado que este nanomaterial hĂ­brido tiene una excelente sensibilidad y selectividad en comparaciĂłn con muestras de WO3 puro. AdemĂĄs, los nanocompuestos Cu2O / WO3 y Pd / WO3 han demostrado poseer una excelente sensibilidad y selectividad hacia los gases H2S y H2, respectivamente.In this thesis, I have studied and developed aerosol assisted chemical vapour deposition (AACVD) methods for the direct growth of non-functionalized and functionalized tungsten oxide nanoneedles, onto different transducer substrates, for gas sensing applications. This technique gives the possibility to co-deposit metals with metal oxides nanostructures within a single step deposition. The nanostructured material synthesis, device fabrication, material characterization and gas sensing performance have been investigated. AACVD method was employed for the direct growth and integration of the sensing film onto ceramic (alumina), MEMS (silicon micro hotplates) and flexible polymeric substrates, demonstrating its compatibility and suitability for growing metal oxide nanostructures onto a wide spectrum of sensor substrates. Furthermore, AACVD based on the localized heating of substrates employing their embedded resistive microheaters has been also performed and developed for the growth of WO3 nanostructures, using a cold wall reactor. All the synthesized films used in this doctoral thesis were composed of pure WO3 nanoneedles or WO3 nanoneedles functionalized with either gold (Au), platinum (Pt), cuprous oxide (Cu2O) or palladium (Pd) nanoparticles. Various analytical techniques were used to characterize the morphology, the structure and the composition of the produced films. The results showed that our method is effective for growing single crystalline WO3 nanoneedles decorated with metals/metal oxides nanoparticles at moderate temperatures (i.e., 380 °C), with cost effectiveness and short fabrication times, directly onto transducers in view of obtaining gas sensors. The gas sensing studies performed showed that these hybrid nanomaterials have excellent sensitivity and selectivity compared to pristine WO3 samples. Cu2O/WO3 and Pd/WO3 nanocomposites have shown excellent sensitivity and selectivity toward H2S and H2 gases respectively

    Deposition and Characterisation of SnS Thin Films for Application in Photovoltaic Solar Cell Devices

    Get PDF
    Thin films of SnS have been deposited onto heated glass substrates using the thermal evaporation method and the chemical and physical properties of the layers determined and correlated to the deposition conditions and to post-deposition heat treatments. In particular scanning electron microscopy, energy dispersive X-ray analysis, X-ray di.ractrometry and Raman studies were used to determine the material properties, transmittance and reflectance spectroscopy to determine the optical constants and 4-probe and van der Pauw measurements to determine the electrical properties. The results indicate that for a wide range of deposition conditions it is possible to produce high quality layers of SnS that are free from pin-holes and cracks, that are made of densely packed grains, and that adhere strongly to the substrate. For substrate temperatures between 280°C to 360°C it is possible to produce single phase SnS layers. The energy bandgap of these layers was in the range 1.3eV to 1.35eV, was direct, and had an optical absorption coefficient α > 105 cm-1 for photons with energies greater than the energy bandgap. The electrical properties indicate that all the layers are p-conductivity type with resistivities in the range 40℩cm to 100℩cm. Solar cell devices were fabricated in the superstrate and substrate configurations using n-type cadmium sulphide (CdS) and zinc indium diselenide (ZIS) buffer layers to partner the p-type SnS. The devices were investigated by measuring the I-V characteristics in the dark, to determine the predominant conduction mechanisms, the I-V characteristics under illumination to determine the open-circuit voltage V, the short circuit current density Jsc, the fill factor FF and solar conversion efficiency of the devices, C-V studies to determine the doping profile in the SnS and the built-in voltage at the junction and spectral response measurements to determine the minority carrier diffusion length in the p-SnS. Devices made with CdS as the n-type partner had a high density of interface states (1.36 x 1011 F C-1cm-2) with low photovoltaic parameters and a negative band offset of -0.36 eV obtained (as measured using x-ray photoelectron spectroscopy). The best devices made were substrate configuration solar cells in which the back contact on glass was molybdenum and the bu.er layer was ZIS. These devices have Voc = 472 mV, Jsc = 16.1 mA/cm2 , FF = 0.38 and a solar conversion efficiency of 2.9%. This is a world record efficiency for SnS-based solar cells at the time of submission of this PhD thesis

    Process and Post-annealing Optimisation of SnS Thin Films with Alternative Buffer layers

    Get PDF
    Tin sulphide (SnS) is an environmentally friendly, Earth abundant and easy to fabricate thin film solar absorber for photovoltaic solar cell application. This work examines the properties of thermally evaporated SnS thin films, as a function of deposition parameters. Films were also subjected to a range of post-deposition treatments in vacuum, atmospheric pressure, chlorine and selenium ambient. SnS solar absorber layers were successfully deposited at low temperature (100 oC) to a thickness range from 100 to 3500 nm using thermal evaporation. Grain growth was partly dependent on the layer thickness where a progressive increase in grain size was noticed with increasing film thickness from 100 to 1500 nm; above 1500 nm thickness no further visible increase in the grains could be seen. Films grown to a thickness of 800 nm are found to be near stoichiometry with optimum energy bandgap compared to the thinner or thicker films. However, the SnS thin films showed strong dependence on substrate temperature. The temperature dependent study reveals that higher substrate temperatures lead to an increase in adatoms mobility, thereby promoting coalescences of smaller grains to form bigger grains. The increase in grain size with substrate temperature however stagnates after 350 oC such that further increasing the temperature does not induce further grain growth. Samples deposited at 350 oC substrate temperature were stoichiometric (Sn/S = 1.00) and with energy bandgap of 1.37 eV. Texture coefficient calculations showed that (111) orientation is more likely associated with the substrate temperatures 300 oC while, the (040) diffraction plane is related to higher temperatures (350 oC). Photoluminescence measurements demonstrated that controlling the film composition and optical bandgap is critical to produce a film that will luminesce, a requisite for any implementation in solar devices. On the other hand, the type of susbtrate material was found to significantly influence the properties of the SnS absorber films.The substrates studied include soda lime glass (SLG), quartz (Q), indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) coated glass, molybdenum (Mo) coated SLG and quartz. ii Films composition remains stoichiometric (Sn/S = 1.00 0.01) across the range of substrates. For the Na-free samples, reduction in micro-strain followed an increase in grain size. Unlike kesterite or chalcopyrite materials, the absence of Na in the substrate induces a significant grain growth with the average grain size increasing from 0.14 Όm on SLG to 0.32 Όm on quartz, ITO and FTO. SnS absorber layers deposited at 350 oC (thickness of 800 nm) were subjected to heat treatment in diverse environments such as vacuum (P = 10-6 mbar, 60 min), nitrogen (P=1000 mbar, 60 min) and selenium (20 min under 10 mbar argon pressure) for temperatures greater than the growth temperature (400-500 oC). Vacuum annealing was ineffective in both inducing grain growth and achieving recrystallisation. Nitrogen ambient revealed a recrystallised structure with slight increase in grain sizes and ~6% decrease in the bandgap compared to the reference 1.37 eV for the as-grown layer due to loss of sulphur (Sn/S ratio increased from 1.00 to 1.27 following anneal). The incorporation of Se led to substantial increase in grains with an average grain size of ~2.0 ”m compared to 0.14 ”m for as-grown films, with a nearly complete sulphur substitution by selenium. In addition, Se incorporation minimised voids while reducing the bandgap to 1.28 eV, improving photoluminescence yield and the open circuit voltage. Finally, this thesis explores a range of n-type buffer layers in order to fabricate devices. Numerical simulations show that ZnS buffer layer has potential to replace conventional CdS in fabricating SnS-based solar cells as it offers the most appropriate band alignment. Working devices could only be fabricated when combining the selenium heat treatment and the ZnS buffer layer
    corecore