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Abstract 

Tin sulphide (SnS) is an environmentally friendly, Earth abundant and easy to fabricate thin 

film solar absorber for photovoltaic solar cell application. This work examines the properties 

of thermally evaporated SnS thin films, as a function of deposition parameters. Films were 

also subjected to a range of post-deposition treatments in vacuum, atmospheric pressure, 

chlorine and selenium ambient. 

SnS solar absorber layers were successfully deposited at low temperature (100 oC) to a 

thickness range from 100 to 3500 nm using thermal evaporation. Grain growth was partly 

dependent on the layer thickness where a progressive increase in grain size was noticed with 

increasing film thickness from 100 to 1500 nm; above 1500 nm thickness no further visible 

increase in the grains could be seen. Films grown to a thickness of 800 nm are found to be 

near stoichiometry with optimum energy bandgap compared to the thinner or thicker films. 

However, the SnS thin films showed strong dependence on substrate temperature. The 

temperature dependent study reveals that higher substrate temperatures lead to an increase 

in adatoms mobility, thereby promoting coalescences of smaller grains to form bigger grains. 

The increase in grain size with substrate temperature however stagnates after 350 oC such 

that further increasing the temperature does not induce further grain growth. Samples 

deposited at 350 oC substrate temperature were stoichiometric (Sn/S = 1.00) and with energy 

bandgap of 1.37 eV. Texture coefficient calculations showed that (111) orientation is more 

likely associated with the substrate temperatures  300 oC while, the (040) diffraction plane is 

related to higher temperatures (350 oC). Photoluminescence measurements demonstrated 

that controlling the film composition and optical bandgap is critical to produce a film that will 

luminesce, a requisite for any implementation in solar devices. On the other hand, the type of 

susbtrate material was found to significantly influence the properties of the SnS absorber 

films.The substrates studied include soda lime glass (SLG), quartz (Q), indium tin oxide (ITO) 

and fluorine-doped tin oxide (FTO) coated glass, molybdenum (Mo) coated SLG and quartz. 
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Films composition remains stoichiometric (Sn/S = 1.00  0.01) across the range of substrates. 

For the Na-free samples, reduction in micro-strain followed an increase in grain size. Unlike 

kesterite or chalcopyrite materials, the absence of Na in the substrate induces a significant 

grain growth with the average grain size increasing from 0.14 μm on SLG to 0.32 μm on quartz, 

ITO and FTO. SnS absorber layers deposited at 350 oC (thickness of 800 nm) were subjected 

to heat treatment in diverse environments such as vacuum (P = 10-6 mbar, 60 min), nitrogen 

(P=1000 mbar, 60 min) and selenium (20 min under 10 mbar argon pressure) for temperatures 

greater than the growth temperature (400-500 oC). Vacuum annealing was ineffective in both 

inducing grain growth and achieving recrystallisation. Nitrogen ambient revealed a 

recrystallised structure with slight increase in grain sizes and ~6% decrease in the bandgap 

compared to the reference 1.37 eV for the as-grown layer due to loss of sulphur (Sn/S ratio 

increased from 1.00 to 1.27 following anneal). The incorporation of Se led to substantial 

increase in grains with an average grain size of ~2.0 µm compared to 0.14 µm for as-grown 

films, with a nearly complete sulphur substitution by selenium. In addition, Se incorporation 

minimised voids while reducing the bandgap to 1.28 eV, improving photoluminescence yield 

and the open circuit voltage. Finally, this thesis explores a range of n-type buffer layers in 

order to fabricate devices. Numerical simulations show that ZnS buffer layer has potential to 

replace conventional CdS in fabricating SnS-based solar cells as it offers the most appropriate 

band alignment. Working devices could only be fabricated when combining the selenium heat 

treatment and the ZnS buffer layer. 
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Chapter 1  

Introduction to Thin Film Photovoltaic Technology 

1.1 Motivations 

Development of environmentally friendly and alternative source of energy have become a 

global concern to supplement the fast dwindling fossil fuels. Several categories of these 

alternative or renewable energy technologies exist such as solar, biomass, hydropower, 

geothermal, tidal and wind. Fossil fuels need to be phased out and possibly replaced by low-

carbon source of energy in order to meet the 2 oC and near zero carbon emission goal of the 

Paris Agreement [1]. This requires significant (over 80%) use of low carbon energy sources 

(nuclear and renewables) and a rapid shift towards green electricity before 2050. Solar energy 

from the sun, which is effectively inexhaustible is the most useful among all forms of renewable 

energy sources (all other forms of renewable energy sources directly or indirectly depends on 

the sun) and is reported to possess the potential to contribute significantly to electrical energy 

generation [2]. The total power of the incident solar radiation on Earth’s surface can be 

estimated from the solar contact (1367 Wm-2) and the cross-sectional area of the Earth 

covered by land (1.48 ×108 km2). This will give 2.0 × 105 TW, which is about 10,000 times the 

estimated world power requirement for 2050 [3, 4]. However, the distribution of this solar 

energy on the earth’s surface is not uniform due to diverse topography and latitude. Covering 

only 0.4% of the land area or 1.2% of Sahara desert with 10% efficiency solar panels can 

provide the current global energy demand [4, 5]. The Sun is the centre of our solar system 

with an average distance of 1.5 × 1011 m from the Earth. In addition, by far the most crucial 

source of energy for life on Earth including electricity generation. The Sun is a sphere of a hot 

gaseous matter with a diameter of about 1.39 × 109 m and a blackbody surface temperature 

of 5,778 K under a hydrogen-helium fusion reaction. It radiates solar energy by 

electromagnetic waves over a wavelength range of 290 - 4000 nm referred to as the solar 

spectrum. This energy is in the form of photons and depends on variables such as latitude, 
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time of the day and atmospheric conditions. The intensity of the solar radiation outside the 

Earth’s atmosphere, at the mean Earth-Sun distance is expressed as the solar constant that 

has value of 1367 Wm-2 [6]. The efficiency of a PV cell is sensitive to variations in the spectrum 

of the incident solar radiation. Following this, ASTM International has developed the standard 

for the solar spectra for diverse radiation received outside the Earth’s atmosphere and at the 

Earth’s surface [7]. These diverse radiations are mostly due to attenuation effects due to 

atmospheric scattering and absorption, which are defined by air mass (AM). The air mass is 

the amount of atmosphere that solar radiation have to travel through to reach the surface of 

the earth and it depends mainly on the position of the sun, while the air mass number indicates 

the distance travelled by solar radiation in the earth’s atmosphere. As shown in figure 1.1, 

ASTM E490 corresponding to AM0 is the photon incident outside the earth’s atmosphere and 

is useful in space applications. However, the standard spectrum at the earth’s surface is the 

AM1.5G (the G stands for global, which includes both direct and diffuse radiation) or AM1.5D 

(which includes the direct radiation only) based on standard ASTM G173 (see figure 1.1).  

 

Figure 1.1 Standard solar spectra [8].  

The sum of radiation received on the Earth’s surface is an integral of the AM1.5G spectrum 

otherwise called the spectral power density and equals 960 Wm-2, normally rounded up to 

1000 Wm-2 for ease of use and comparison. This value is used as the standard irradiance on 
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PV devices, for fair and convenient comparison of solar cells. Thin film solar cells are 

semiconductor devices, which directly convert solar radiation into electricity. The crucial 

integral part of any solar cell device is the solar absorbing material, which absorbs sunlight 

and transports the resulting charge carriers to the electrical contacts via other supporting 

components. The most used solar absorber to date is the multi-crystalline silicon (Si) but 

requires thick layer of material about 100 µm to absorb incident light, whereas the use of thin 

films that require not more than 2.0 µm to absorb most of the incident photon is currently 

paving the way for cost and material reduction in the photovoltaic industry. Thin films are quasi 

two-dimensional layers ranging from fractions of a nanometre to several micrometre in 

thickness. The thickness of the layer is mostly controlled during film deposition. Thin films are 

crucial in the development and study of materials with new properties such as solar absorbers 

and photovoltaic devices.  

Recent market trends reveals rapid take-up of solar energy in both established and emerging 

markets as revealed in the PV annual installation in figure 1.2. This trend if sustained with 

further improvement could guarantee a stable power system with up to 30% solar energy 

before 2030 [1]. 

 

Figure 1.2. Recent trend in market uptake by region of PV installation (P, projected; ROW, 

rest of the world). Taken from supplementary information [9]. 
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Therefore, the development of low cost and efficient PV technologies is crucial for providing 

electricity to the growing world population and arresting man-made climate change [10].  

1.2 Thin film photovoltaic technology  

Thin film photovoltaic (PV) technology involves the direct conversion of sunlight into electricity 

using an electrochemical or p-n junctions made from semiconductor materials via a process 

called photovoltaic effect. The photovoltaic (PV) effect was discovered by Edmond Becquerel 

in 1839 [11], when he noticed that a platinum electrodes in a dilute sulphuric acid solution 

exposed to light produced a voltage. The PV effect occurs in solar cells (the type of cell that 

composes solar panels) and it can continue to provide voltage and current (product of which 

gave electrical power in watts, W) as long as light continues to shine on the p-n junction 

materials. Solar cells were first used to provide power in remote locations for communication 

system, weather monitoring and to power satellites and space vehicles [12, 13]. The energy 

crisis of 1970 triggered much interest in the use of solar cells for terrestrial applications and to 

date this technology is being used in diverse areas including consumer products (clocks, toys, 

calculators), businesses, remote areas in developed and developing world [13]. Production 

and sales in the PV market has been dominated by crystalline silicon (c-Si), where wafer costs 

is over 50% of the total module cost. For significant contribution of PV technology to world’s 

energy demand, the major cost component can be eliminated by replacing wafers with thin 

films of semiconductors deposited on supporting substrates. Thin film technology offers two 

major advantages over c-Si, which include the possibility of significant reduction (up to 98%) 

in the active material requirements and ease of adaptation for large area deposition. Light 

absorber materials of cadmium telluride (CdTe) and copper indium gallium selenide (CIGS) 

are mostly used for producing thin film solar cells and devices based on both technologies 

have shown efficiencies > 22% [14]. However, toxicity issues related to use of cadmium in 

addition to the lack of abundance of tellurium and indium (see figure 3) make these materials 

sensitive to market fluctuation [3, 15]. As shown in figure 1.3, the availability of tellurium, 

indium and cadmium in the Earth’s crust were estimated to be 0.001, 0.333 and 0.023 parts 
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per million (ppm), respectively. Unlike CdTe and CIGS, SnS light absorber materials are 

relatively cheap, non-toxic and earth abundant (availability of 4.8 and 66.5 ppm for tin and 

sulphur, respectively).  

 

Figure 1.3 Natural occurrence in the Earth’s crust and current world trading price of the 

elements relevant to thin film photovoltaics such as SnS, copper zinc tin sulphide (CZTS), 

CdTe and CIGS, adapted from [3].  

1.3 Fundamentals of semiconductors  

Semiconductor materials, which are neither good conductors nor good insulators, have their 

electrical properties in the middle between those of conductors and insulators. These materials 

have range of useful properties that include passing current in one direction easily rather than 

the other, displaying variable resistance and sensitivity to incident photon. In photovoltaic 

application, the interaction of incident photons with the semiconductor can lead to generation 

of carriers that can be collected to create electric current. For this to happen, the incident 

photon energy (eV) must reach the semiconductor surface and be equal to or greater than the 

energy bandgap of the semiconductor to trigger flow of electrons from the valence band (VB) 

to conduction band (CB). The best-developed semiconductor materials are silicon (Si) and 

germanium (Ge) which are in the group IV of the periodic table. Others include the combination 

of elements from different groups, such as IV-VI to yield SnS, PbS, PbTe semiconductor 
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compounds. The most vital parameters of semiconductor materials for solar cell application 

include the energy bandgap, the number of free carriers (holes and electrons) available for 

conduction and the generation and recombination of free carriers.  

1.3.1 Semiconductor band structure and light absorption 

The modern interpretation of the properties of semiconductors relies on quantum states for 

electrons (by Pauli exclusion principle) to explain the movement of charge carriers in a crystal 

lattice. The electrons of an isolated atom orbiting the nucleus occupy discrete energy levels 

with each defining an electronic layer. In a crystallised state where set of atoms is evenly 

distributed, the energy states of the electrons become bands separated by empty spaces 

called the energy bandgap due to the interaction between the atoms of the crystal. As shown 

in figure 1.4, the upper band is the conduction band while the lower band is the valance band 

and since the electrons in the valence bands are bound to the nucleus, the electric transport 

will occur in the upper band. The bandgap is normally small usually in the range of 0 < Eg < 

3.0 eV (for example polycrystalline SnS has 1.35 eV [15]) to allow an electric field to move an 

electron from the valence band to the conduction band.  

 

Figure 1.4 Schematic energy band structure of a semiconductor (0 K). 

The band structure also reveals the almost-empty conduction band by a set of horizontal lines, 

where the bottom line indicate the bottom edge of the conduction band given by conduction 
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valence band maximum (VBM), while the distance between the CBM and the energy of a free 

electron outside the crystal (vacuum energy level) is quantified by the electron affinity (). The 

energy bandgap (Eg) otherwise referred to as the width of the forbidden band is the difference 

in energy levels between the CBM and the VBM. Energy bandgap is equally the minimum 

energy needed from the solar radiation to create an electron hole (e-h) pair. Once this bandgap 

energy is met, the electron is excited into a free state (from VB to CB) and can then participate 

in conduction. The energy of each packet of light (the photon) entering the surface of the 

semiconductor can be related to the wavelength of the light as: 

𝐸 (𝑒𝑉) =
1.24

 (µ𝑚)
                                                                                                                        (1.1) 

The creation of electron-hole pairs via the absorption of sunlight is crucial to the operation of 

thin film solar cell therefore the total energy and momentum of particles participating in the 

absorption process need to be conserved. The absorption of photon (α) by semiconductor is 

influenced by the position of VBM and CBM in the energy momentum (E-K) characteristics 

(see figure 1.5). Based on this, semiconductors are grouped into direct and indirect bandgap 

materials. 

 

Figure 1.5 Diagram of photon absorption (a) direct and (b) indirect bandgap semiconductor.  

In the direct bandgap semiconductors, electron can be excited from VB to CB giving off 

smallest possible energy difference (Eg = Ec – Ev) as a photon of light without a change in the 

crystal momentum value (see figure 1.5a). In this case, the valence band maximum (VBM) 
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and conduction band minimum (CBM) occur at the same value of crystal momentum, K, this 

characterises the direct bandgap semiconductors such as GaAs, CIGS, CdTe and SnS. In 

addition, direct bandgap semiconductors show a sharp change in photon absorption (α) from 

zero for hv < Eg to values > 104 cm-1 for hv > Eg [16], the relationships between α, hv and Eg 

are explained in chapter three (section 3.7.6).  

For indirect bandgap semiconductors (such as Si and Ge), the VBM and CBM do not occur at 

the same value of K, therefore crystal momentum is not conserved in band to band carrier 

transitions (see figure 1.5b). Since a change in crystal momentum is required for photon 

absorption or emission, a two-step process is needed involving phonon scattering (phonon 

absorption or emission) to conserve K. Phonons are the particle form of lattice vibrations in 

the semiconductor and they are characterised by low-energy particles with relatively high 

momentum. The absorption coefficient for indirect transitions are relatively small compared 

with direct transitions due to their dependence on both photon and phonon transitions. As a 

result, light penetrates more deeply into indirect bandgap than direct bandgap semiconductors 

[17], hence the reason why a substantial thickness is needed when such materials are used 

as an absorber layer for PV device fabrication.  

1.3.2 Carrier generation, transport and recombination 

Carrier generation occurs when an electron makes transition from VB to CB in a 

semiconductor as a result of interaction with other electrons, holes, photons or phonons. 

Generation alongside recombination processes are crucial in shaping the characteristics of a 

semiconductor device.  Figure 1.6 (a-c) depicts the optical absorption process that can result 

to carrier generation. In (a) when hv < Eg, e-h pairs are not generated under intrinsic conditions. 

Under extrinsic condition, photon absorption occurs due to the available energy states in the 

forbidden gap because of chemical impurities. For hv = Eg, e-h pairs are generated (see figure 

1.6b) and similarly, for hv > Eg, e-h pairs are generated and the excess energy (hv - Eg) is 

given off as heat. The excitation of the electrons across the Eg leaves positively charged holes 

(vacancies) in the VB. However, figure 1.6 (d) depicts generation process called impact 
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ionisation which occur when a highly energetic carrier (electron or hole) donates its excess 

energy to excite an electron from VB to CB generating another e-h pair. The newly generated 

electron with the presence of high electric field can get high energy and generate further 

carriers, which can cause avalanche multiplication of carrier generation. While the generation 

due to light absorption depends on carrier concentration, for the impact ionisation (caused by 

an electron with an energy, which is much higher than the EC) it is purely the current density.  

 

Figure 1.6 Schematic illustration of photon transition in semiconductor due to (a-c) light 

absorption hv < Eg, hv = Eg, hv > Eg and (d) impact ionisation [17, 18]. 

Since there are many empty states in the CB, a small applied potential can move these 

electrons, resulting in a moderate electric current. Therefore, e and h can flow under the 

influence of the classical processes of a drift (electric field) and a diffusion (concentration 

gradient).  Drift stands for the charged particle’s response to the electric field (�⃗� ). When �⃗�  is 

applied across a uniformly doped semiconductor, the bands tend to bend towards the upward 

direction of the applied electric field with holes moving in the same direction of the applied field 

while electrons move in the opposite direction. The drift current densities for electrons and 

holes (𝐽 𝑛
𝑑𝑟𝑖𝑓𝑡

and𝐽 𝑝
𝑑𝑟𝑖𝑓𝑡

), respectively can be written as: 

𝐽 𝑛
𝑑𝑟𝑖𝑓𝑡

= 𝑞𝑛𝜇𝑛�⃗�                                                                                                                      (1.2) 

𝐽 𝑝
𝑑𝑟𝑖𝑓𝑡

= 𝑞𝑝𝜇𝑝�⃗�                                                                                                                      (1.3) 

Eg
(a)

EC

EV
(b) (c)

hv

(d)

E
Energy
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where q is the electric charge, n and p is the number of electrons and holes, µn, µp are the 

respective mobility and �⃗�  is the electric field in the x-direction. Electrons and holes in 

semiconductors also tend to diffuse (move) from regions of high concentration to regions of 

lower concentration because of their random thermal motion. Similar to the way the air in a 

balloon is distributed evenly within the volume of the balloon, in the absence of any external 

forces, carriers will equally tend to distribute themselves evenly within the semiconductor 

material [22]. This process stands for diffusion. The diffusion current densities for electrons 

(𝐽 𝑛
𝑑𝑖𝑓𝑓

) and holes (𝐽 𝑝
𝑑𝑖𝑓𝑓

) can be respectively written as: 

𝐽 𝑛
𝑑𝑖𝑓𝑓

= 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥
                                                                                                                    (1.4) 

𝐽 𝑝
𝑑𝑖𝑓𝑓

= −𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥
                                                                                                                 (1.5) 

where Dn, Dp  are diffusion coefficients for electron and hole. At the core of drift and diffusion 

is the same physics of collisions among particles and medium atoms, hence the existence of 

the relationship between D and µ given by the Einstein relation [17, 19]: 

𝜇𝑛,𝑝 =
𝑞𝐷𝑛,𝑝

𝑘𝑇
                                                                                                                        (1.6) 

where 𝑞/𝑘𝑇 is equivalent to thermal voltage and at room temperature equal to 25 mV. The 

total electron and hole currents can be given by the sum of their drift and diffusion components 

[19].   

𝐽𝑛 = 𝑞𝑛𝜇𝑛�⃗� + 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥
                                                                                                       (1.7) 

𝐽𝑝 = 𝑞𝑛𝜇𝑝�⃗� − 𝑞𝐷𝑝
𝑑𝑛

𝑑𝑥
                                                                                                       (1.8) 

Recombination is the process through which both electron and hole carriers annihilate each 

other. It is the reverse of generation and acts to restore the equilibrium condition of the carriers, 

such that in equilibrium the generation rate (G) and recombination rate (R)  are in dynamic 
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balance, R = G. In this case the equilibrium carrier concentrations p and n are related to the 

intrinsic carrier concentration (ni) by the mass-action law: 𝑝𝑛 = 𝑛𝑖
2 . In non-equilibrium 

conditions, where R ≠ G and 𝑝𝑛 ≠ 𝑛𝑖
2 , by either illumination and/or current injection, the 

concentrations of e and h tend to relax back toward their equilibrium values by recombination 

in which an electron falls from CB to VB and eliminates a VB hole. Crucial recombination 

mechanism for solar cell operations include non-radiative recombination, radiative 

recombination and Auger recombination. Non-radiative recombination occurs through traps 

(defects) in the forbidden gap (bandgap) as depicted in figure 1.7 (a). Here the rate of e-h 

recombination (RSLT) for a single trap state (SLT) in the bandgap is given by the Shockley-

Read-Hall recombination formula [20]: 

𝑅𝑆𝐿𝑇 =
𝑝𝑛 − 𝑛𝑖

2

𝜏𝑛(𝑝 + 𝑝𝑡) + 𝜏𝑝(𝑛 + 𝑛𝑡)
                                                                                    (1.9) 

where 𝜏𝑛 and 𝜏𝑝 are the average lifetime the excess minority carriers of electrons and holes, 

respectively will live in a sea of majority carriers, 𝑛𝑡 and 𝑝𝑡 are the densities of the available 

trap states at equilibrium. Equation 1.9 applies to the steady state situation, in addition 

provides the net recombination rate for the electrons and holes. 

Radiative (band-to-band) recombination occurs when an electron recombines with a hole to 

emit a photon as shown in figure 1.7 (b). Some of the emitted energy can be shared with a 

phonon in an indirect bandgap semiconductor. This is also the opposite of the optical 

generation process and is much more efficient in direct bandgap than in indirect bandgap 

semiconductors and the net recombination rate due to radiative processes with B as a 

constant is given by [17]: 

𝑅𝜆 = 𝐵(𝑝𝑛 − 𝑛𝑖
2)                                                                                                                (1.10) 
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Figure 1.7 Recombination process in semiconductors (a) non-radioactive, (b) radioactive, 

and Auger recombination at (c) CB, (d) VB [17]. 

Auger recombination (RAuger) is similar to radiative recombination except that the energy of 

transition is given to a second carrier in either the CB (see figure 1.7c) or the VB (see figure 

1.7d). This electron or hole then relaxes thermally releasing its excess energy and momentum 

to a phonon. Auger recombination is the inverse process of impact ionisation, the creation of 

e-h pair when an energetic electron collides with a crystal atom and breaks the bond. The net 

recombination rate due to Auger processes is given by [17]: 

𝑅𝐴𝑢𝑔𝑒𝑟 = (𝐶𝑛𝑛+𝐶𝑝𝑝)(𝑝𝑛 − 𝑛𝑖
2)                                                                                 (1.11) 

where 𝐶𝑛 and 𝐶𝑝 are comparable constants.  

Generally, non-radiative recombination is common in indirect bandgap semiconductors, 

radiative recombination in direct bandgap semiconductors while Auger recombination is 

common in heavily doped semiconductors.  

1.3.3 Intrinsic and extrinsic semiconductors  

 Light absorption in semiconductors is said to be intrinsic, when the energy of each absorbed 

photon is consumed by raising an electron from the VB to CB thereby creating e-h pair by the 

EC

EV
(b) (c)

phonons

photon

(a)

×
Midgap trap

(d)
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atoms of the semiconductor. Here the probability of occupancy of an energy level by an 

electron with energy (E) obeys Fermi-Dirac distribution given by [17]: 

𝐹(𝐸) =
1

1 + 𝑒
(𝐸−𝐸𝐹)

𝑘𝑇⁄
                                                                                                     (1.12)            

where EF is the Fermi energy that is the average statistical level occupied by all of the charge 

carriers and at whatever temperature, probability of occupancy for this state energy is always 

one-half, k is Boltzmann’s constant, and T is the Kelvin temperature. As shown in figure 1.8, 

the Fermi distribution function is a strong function of temperature. At absolute zero, F(E) is a 

step function and all the states below EF are filled with electrons while those above EF are 

completely empty. With increasing temperature, thermal excitation will leave some states 

below EF empty, while the corresponding number of states above EF are filled with the excited 

electron [17].  

 

Figure 1.8 The Fermi distribution function F(E) versus (E-EF) at various temperatures [19, 

20].  

When EF is sufficiently far (> 3kT) from either band edge in intrinsic semiconductor, the carrier 

concentration can be well approximated as [17, 20]. 
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𝑛 = 𝑁𝐶𝑒
(𝐸𝐹−𝐸𝐶)

𝑘𝑇⁄                                                                                                       (1.13)  

𝑝 = 𝑁𝑉𝑒
(𝐸𝑉−𝐸𝐹)

𝑘𝑇⁄                                                                                                       (1.14)  

where 𝑁𝐶 and 𝑁𝑉 are the CB and VB effective density of states (cm-3) which are respectively 

given by: 

𝑁𝐶 = 2(
2𝜋𝑚𝑛

∗𝑘𝑇

ℎ2
)

3
2⁄

                                                                                               (1.15) 

𝑁𝑉 = 2(
2𝜋𝑚𝑝

∗𝑘𝑇

ℎ2
)

3
2⁄

                                                                                               (1.16) 

where 𝑚𝑛
∗  and 𝑚𝑝

∗  are the effective mass of electrons and holes, respectively. For the intrinsic 

semiconductor, 𝑛𝑝 = 𝑛𝑖 (𝑛𝑖 is the intrinsic carrier concentration) and, (𝐸𝑔 = 𝐸𝐶 − 𝐸𝑉) such that: 

𝑛𝑖
2 = 𝑛𝑝 = 𝑁𝐶𝑁𝑉𝑒

(𝐸𝑔 𝑘𝑇)⁄                                                                                           (1.17) 

In the complete ionisation conditions, the free electron density n-type semiconductor (where 

n >> p), n = ND and the hole concentration in equilibrium is given by 𝑝 = 𝑛𝑖
2/ND. Similarly, the 

free hole density in p-type semiconductor with a density of NA of acceptor ions, p = NA and 

𝑛 = 𝑛𝑖
2/NA, can both be expressed as: 

𝑛 = 𝑁𝐷 = 𝑁𝐶𝑒
(𝐸𝐹−𝐸𝐶) 𝑘𝑇⁄ = 𝑁𝐶𝑒

(𝐸𝐹−𝐸𝐶) 𝑘𝑇⁄ 𝑒(𝐸𝐹−𝐸𝐼) 𝑘𝑇⁄ = 𝑛𝑖𝑒
(𝐸𝐹−𝐸𝑖) 𝑘𝑇⁄       (1.18) 

Similarly, 

𝑝 = 𝑛𝑖𝑒
(𝐸𝑖−𝐸𝐹) 𝑘𝑇⁄                                                                                                        (1.19) 

Equation 1.17, which depicts the product of equations 1.18 and 1.19, remains constant at 𝑛𝑖
2 

at a given temperature and the relationship 𝑛𝑝 = 𝑛𝑖
2 represents the law of mass action.  

The Fermi level in an intrinsic semiconductor, Ei = EF and is given by: 

𝐸𝑖 =
𝐸𝐶𝐸𝑉
2

+
𝑘𝑇

2
𝑙𝑛 (

𝑁𝑉
𝑁𝐶
)                                                                                      (1.20) 
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which is typically very close to the middle of the bandgap (𝐸𝑔). Number of free electrons 

influences the conductivity of semiconductor, when this number increases the conductivity 

increases therefore, the conductivity of an intrinsic semiconductor increases with temperature.  

However, the number of electrons and holes in their respective bands and hence the 

conductivity of the semiconductor can as well be controlled via the introduction of controlled 

impurities of dopants, called donors and acceptors. The doped intrinsic semiconductor is 

called extrinsic semiconductor where optical absorption is via deep localised states. Donors 

are dopants, which can donate an electron to the conduction band while acceptors are dopants 

that can accept an electron from the valence band and thus create a hole [21]. The controlled 

introduction of donor and acceptor impurities into a semiconductor allows creation of n-type 

and p-type semiconductor. The impurities also introduce additional localised electronic state 

into the energy band structure within the forbidden band. If the energy of the state ED 

introduced by donor is sufficiently close to the 𝐸𝑐 (within a few kT), there will be sufficient 

thermal energy to allow the extra electron to occupy a state in the CB and the donor state will 

be positively charged (ionised). Similarly, an acceptor atom will introduce a negatively charged 

(ionised) state at the energy EA. The number of ionised donors and acceptors are given by 

[17]: 

𝑁𝐷
+ =

𝑁𝐷

1 + 𝑒
(𝐸𝐹−𝐸𝐷)

𝑘𝑇⁄
                                                                                           (1.21) 

𝑁𝐴
− =

𝑁𝐴

1 + 𝑒
(𝐸𝐴−𝐸𝐹)

𝑘𝑇⁄
                                                                                           (1.22) 

When donors and acceptors are ionised such that no  ND in n-type and po  NA in p-type 

semiconductors, the Fermi energy can then respectively, be written as: 

𝐸 = 𝐸𝑖 + 𝑘𝑇 𝑙𝑛
𝑁𝐷
𝑛𝑖
                                                                                               (1.23) 

𝐸 = 𝐸𝑖 − 𝑘𝑇 𝑙𝑛
𝑁𝐴
𝑛𝑖
                                                                                              (1.24) 
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Generally, electrical conduction is due to the mobile charge carriers in semiconductors, 

electrons or holes, which are provided by impurities or dopants in the crystal. In an extrinsic 

semiconductor, the concentration of doping atoms in the crystal largely influence the density 

of charge carriers, which determines its electrical conductivity.  

1.3.4 The p-n junction physics  

The p-n junction is simply an interface between two types of semiconductor materials, p-type 

(positive side with excess of holes) and n-type (negative side with an excess of electrons) in 

intimate contact. In optical absorption process of semiconductors, the excited minority carriers 

normally recombine with the majority carriers and thus do not contribute to a photocurrent. 

Figure 1.9 depicts the uniformly doped and physically separated p and n type semiconductor 

before bring them into intimate contact. The electron affinity (p or n), which represents the 

energy difference between the conduction band and the vacuum level, is indicated along with 

the work function (p or n). The work function stands for the energy required to remove an 

electron from the semiconductor to the ‘free’ vacuum level and is the difference between the 

vacuum level and the Fermi level [21]. Notice that the Fermi level, EF, is near the EV for the p-

type and EC for the n-type semiconductors.  

 

Figure 1.9 Schematic illustration of uniformly doped (a) p-type and (b) n-type 

semiconductors before the p-n junction formation. 
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A built-in electric field is therefore needed to separate and collect the photo-generated carriers 

before recombination. In inorganic cells, such fields are introduced by a p-n junction formation 

when a p-type and n-type semiconductors are brought into intimate contact as illustrated in 

figure 1.10 (a). Due to the differences in the electron and hole concentrations in the opposite 

sides, the excess holes in p-side and excess electrons in n-side will tend to diffuse to opposite 

side. This causes a build-up of positive and negative charges on the n-type and p-type regions, 

respectively. The negatively charged fixed acceptor ions in p-type side and positively charged 

fixed donor ions in n-type side near the junction in the semiconductor lattice creates electron 

field at the junction. The excess carriers near the junction are then removed by the field 

resulting in the creation of a depletion region and the direction of the electric field in this region 

is from n-type side to p-type side, which opposes the majority carrier diffusion process (see 

figure 1.10 b). Similarly, the minority carriers on reaching the junction can drift across the 

depletion region and become majority carriers in the other side. Such that equilibrium will exist 

when the diffusion current equals the drift current, and this will cause the net current across 

the junction to be zero. Figure 1.10 (c) shows the space charge region (W) which is the 

transition region between the n and p type semiconductor materials. 
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Figure 1.10 Schematic illustration of a uniformly doped p-n junction (a) under equilibrium, (b) 

energy band diagram and (c) space charge distribution.  

From figure 1.10 (b), the energy difference between EF and Ei away from the junction on the 

p-type side is given by [17, 18]: 

𝑞𝑉𝑛 = 𝐸 − 𝐸𝑖                                                                                                                       (1.25) 

𝑞𝑉𝑝 = 𝐸𝑖 − 𝐸                                                                                                                       (1.26) 

Using equations 1.18 and 1.19 in equation 1.25 and 1.26, respectively and considering 

complete ionisation will give: 

𝑞𝑉𝑛 = 𝑘𝑇 𝑙𝑛 (
𝑁𝐷
𝑛𝑖
)                                                                                                             (1.27) 
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𝑞𝑉𝑝 = 𝑘𝑇 𝑙𝑛 (
𝑁𝐴
𝑛𝑖
)                                                                                                              (1.28) 

The sum of equations 1.27 and 1.28 give the built-in voltage (Vbi), which represents the 

electrostatic potential difference due to the junction formation and can be expressed as [17]: 

𝑞𝑉𝑏𝑖 = 𝑘𝑇 𝑙𝑛 (
𝑁𝐴𝑁𝐷

𝑛𝑖
2 )                                                                                                    (1.29) 

Due to the space charge neutrality condition of the semiconductor, the total negative charge 

per unit area on the p-region is equal to the total charge per unit area in the n-region, which is 

given by: 

𝑥𝑝𝑁𝐴 = 𝑥𝑛𝑁𝐷                                                                                                                 (1.30) 

where 𝑥𝑝  and 𝑥𝑛  are the extent of the depletion region penetrating into the p and n type 

semiconductors, respectively (see figure 2.8 c). The total depletion region width, W, as a 

function of Vbi is given by: 

𝑊 = 𝑥𝑝 + 𝑥𝑛 = √
2𝜀𝑠
𝑞
(
𝑁𝐴 +𝑁𝐷
𝑁𝐴𝑁𝐷

) 𝑉𝑏𝑖                                                                (1.31) 

where 2𝜀𝑠 is the semiconductor permittivity. It can be seen from equation 1.31 that W strongly 

depends on the doping concentrations of the p and n regions. Therefore, a one sided abrupt 

junction can be formed if one side is more heavily doped than the other is, and in some cases 

for solar cells, ND >> NA such that equation (1.31) simplifies to: 

𝑊  𝑥𝑛 = √
2𝜀𝑠𝑉𝑏𝑖
𝑞𝑁𝐷

                                                                                                  (1.32) 

In addition, if a positive voltage VF is applied to the p region with respect to the n-region, the 

pn junction becomes forward-biased and the total electrostatic potential across the junction 

reduces by 𝑉𝑏𝑖 − 𝑉 . However, if a positive voltage is applied to the n-region with respect to 

the p-region, the pn junction becomes reverse-biased and the total electrostatic potential 
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across the junction increases to 𝑉𝑏𝑖 + 𝑉𝑅. In a one-sided heavily doped junction, the depletion 

region width (W) can be rewritten as: 

𝑊 = √
2𝜀𝑠(𝑉𝑏𝑖 − 𝑉)

𝑞𝑁𝐵
                                                                             (1.33) 

where NB is the doping concentration of the lightly doped semiconductor material, V is positive 

for forward bias and negative for reverse bias. Notice that forward bias reduces depletion 

region width while the reverse bias increases the depletion region width. In figure 2.9 (c), Ln 

and Lp are minority carrier diffusion lengths of electrons in the p-region and holes in the n-

region, respectively. The minority carrier diffusion length is the average distance a minority 

carrier can travel from the point of generation to the depletion region before recombination 

with majority carrier. Ln and Lp are equal to √𝐷𝑛𝜏𝑛 and √𝐷𝑝𝜏𝑝, respectively, 𝐷𝑝 and 𝜏𝑝 have 

been defined in equations (1.7) - (1.9).  

1.3.5 Heterojunctions 

 A heterojunction represents the interface between two regions of dissimilar solid-state 

materials with unequal bandgaps in contrast to homojunctions. The two dissimilar materials 

must also have unequal electron affinity, work function and it could be in the form of a 

semiconductor (p-n or p-i-n) or metal-semiconductor configuration (Schottky junction). The 

coupling of multiple heterojunctions in a solar cell leads to the formation of a hetero-structure. 

As detailed in chapter six (section 6.3), when the two dissimilar semiconductors with unequal 

bandgap and electron affinity are brought into intimate contact, charge is transferred until the 

Fermi levels in the two materials are equal. The behaviour of the resulting heterojunction 

depends crucially on the alignment of the energy bands at the interface, which can be 

categorised into three to include straddled alignment (type I), staggered alignment (type II) 

and broken-gap (type III) alignments as illustrated in figure 1.11. 
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Figure 1.11. Schematic representation of semiconductor heterojunction band alignments. 

Away from the interface, the energy band profile in the absence of interface states depends 

mainly on the electron affinities, energy bandgap and work function of the two semiconductors 

forming the junction. The arrangements of the energy band alignments near the junction for 

the various heterojunctions have been proposed by Anderson [22] which neglected the 

interface states and Oldham and Milnes [23] that included the effect of interface states. Energy 

band profiles based on Anderson is considered the good approximation for many 

heterojunctions and shape of the band bending has been predicted by Sharma and Purohit 

[24]. 

1.3.6 Theory of solar cells and current density-voltage characteristics 

Solar cells are materials that converts light directly into electricity via photovoltaic effect. The 

photovoltaic effect involves the creation of a voltage and electric current in a device upon 

exposure to light. The photovoltaic effect is closely related to the photoelectric effect, but unlike 

in the later where electron is ejected out of the material, in the PV effect the excited charge 

carrier is still contained within the material. Due to the depletion region and built-in voltage, a 

p-n junction only allows current to flow in one direction when a bias is applied. A solar cell has 

the same current-voltage (I-V) characteristics as a diode when operating in the dark. The ideal 

diode law describes the response of a diode to an applied voltage, which does not account for 

a photocurrent. The total dark current density otherwise called the ideal diode law or Shockley 

equation is given by [19, 21]: 

Straddling gap (type I)

CB

VB

Staggered gap (type II) Broken gap (type III)
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𝐽 = 𝐽𝑜 (𝑒
𝑞𝑉
𝑘𝑇

−1)                                                                                                                      (1.34) 

where q is the elementary charge, V is the applied voltage, k is the Boltzmann constant, T is 

the temperature and 𝐽𝑜 is the pre-factor of the diode equation called the saturation current 

density and is a measure of the recombination rate in a device. It can be expressed as: 

𝐽𝑜 =
𝑞𝐷𝑝𝑝𝑛𝑜

𝐿𝑝
+
𝑞𝐷𝑛𝑛𝑝𝑜

𝐿𝑛
                                                                                                      (1.35) 

However, when a solar cell is illuminated, electron-hole pairs are generated within the minority 

carrier diffusion length from the boundary of the depletion region. The light generated minority 

carriers can be separated and collected by the depletion region to create a photocurrent (see 

figure 1.12 (a) and the equivalent circuit of an ideal solar cell is shown in figure 1.12 (b). Under 

the illumination, the current flow in the solar cell and the applied voltage can be controlled by 

diode such that the shape of the  current density-voltage curve (J-V) curve is determined only 

by the diode [25]. The light generated current will oppose the diode dark current, therefore the 

total current density (J) becomes: 

𝐽 = 𝐽𝑜 (𝑒
𝑞𝑉
𝐴𝑘𝑇

 − 1) − 𝐽𝐿                                                                                                             (1.36) 

where 𝐽𝐿 is the light generated current density and A is the diode ideality or quality factor, 

which is equals to 1 or 2 when recombination in the quasi-neutral regions and depletion region 

dominate the devices, respectively. In practical cases, parasitic resistances, which are always 

present in the real solar cell brings about power losses in the device. To account for these 

power losses, the series and shunt resistances are incorporated into the equivalent ideal 

circuit as shown in figure 1.12 (c). Series resistance, Rs arise from both the bulk resistance of 

the semiconductor and the electrical contacts, as well as the contact resistance between them. 

Shunt resistance, Rsh develops from the defects of the device such as light generated current 

leakage from the edge of the solar cell or due to pinholes in the device [25]. Introducing Rs 

and Rsh in equation (1.36) will yield: 
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𝐽 = 𝐽𝑜 [𝑒
(
𝑞(𝑉−𝐽𝑅𝑠)

𝐴𝑘𝑇
)
− 1] + 

𝑉 − 𝐽𝑅𝑠
𝑅𝑠ℎ

− 𝐽𝐿                                                                       (1.37) 

 

Figure 1.12 (a) Energy band diagram of a device under illumination and equivalent circuit of 

(b) ideal solar cell and (c) real solar cell with its parasitic losses (series, Rs and shunt, Rsh 

resistances). JL is the illuminated current density, Jdark is the current density of the diode, J is 

the current flow in the load and V is the applied voltage, adapted from [25].  

The J-V characteristics of a solar cell in the dark and under illumination are shown in figure 

1.13, where 𝑉𝑚𝑝 and 𝐽𝑚𝑝 are the voltage and current density at the maximum output power 

(𝑃𝑚𝑎𝑥) of the solar cell. 

 

Figure 1.13 J-V characteristics of a solar cell in the dark and under illumination, adapted 

from [25]. 
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The crucial performance parameters of a solar cell that can be estimated from figure 1.13 

include the short circuit current density (JSC), open circuit voltage (VOC), fil factor (FF) and 

power conversion efficiency ().  

JSC (mA/cm2) represents the maximum current density when no bias is applied and in an 

ideal solar cell is equal to JL. The Voc is the maximum voltage from the solar cell that occurs 

when light generated current is equal and opposite to forward bias diffusion current. The 

open circuit voltage is limited by interface defects and recombination losses [26]. The Voc in 

ideal solar cell is estimated when the total current is zero using: 

𝑉𝑜𝑐 =
𝐴𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝐿
𝐽𝑜
+ 1)                                                                                       (1.38) 

The fill factor (FF) represents the measure of the “squareness” of the J-V curve or the quality 

of the solar cell. FF is estimated by the ratio of obtainable maximum power (𝑃𝑚𝑎𝑥 = 𝑉𝑚𝑝𝐽𝑚𝑝) 

shown in figure 1.13 to the product of 𝑉𝑜𝑐 and 𝐽𝑠𝑐 as follows: 

𝐹𝐹 =
𝑉𝑚𝑝𝐽𝑚𝑝
𝑉𝑜𝑐𝐽𝑠𝑐

                                                                                                        (1.39)   

The efficiency () is commonly used parameter to compare the performance of one solar cell 

to another. It is the ratio of useful electrical power (Pmax) produced by the solar cell to the 

incident illumination power (Pin) under standardised testing conditions and given by: 

 =
𝑃𝑚𝑎𝑥
𝑃𝑖𝑛

=
𝑉𝑜𝑐𝐽𝑠𝑐𝐹𝐹

(𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎)(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑙𝑖𝑔ℎ𝑡 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)
         (1.40) 

Researchers are finding new ways over the past 30 years to make solar cells convert more of 

the incident illumination power into electricity, but several aspect of photovoltaic process and 

losses (summarised in figure 1.14) are limiting the power conversion efficiency of solar cells.   
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Figure 1.14 Losses in solar cell.  

Most of these losses given in figure 1.14 can be minimised via selection of materials with 

optimum bandgap, increasing film thickness, reducing interface defects, use of anti-reflective 

coating and surface texturing. 

1.4 Aims of the thesis 

This thesis will systematically address the critical issues of secondary phases, non-

stoichiometric nature of constituent elements (tin and sulphur) and small grain sizes that limit 

SnS photovoltaic applications and introduce new eco-friendly pathways to generate grain 

growth. This will be achieved via deposition process (thickness, temperature and substrate 

material) and post-heat treatment optimisations of thermally evaporated SnS solar absorbing 

thin films. Alternative buffer layers will also be explored to replace the conventional cadmium 

sulphide (CdS) material due to toxicity of cadmium.  

1.5 Objectives of the thesis 

This thesis describes the process and optimisation of thermally evaporated SnS solar 

absorbing thin films. The objectives of the project include the following,  

 Optimise the film thickness, temperature and substrate materials dependent properties 

of thermally evaporated SnS thin films. 
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 Investigate the effect of post annealing treatments and Se - S substitution on the SnS 

thin films. 

 Assess the influence of chlorine (SnCl2 or MgCl2) treatment on the physical (grain 

growth) of SnS thin films 

  Study the role of different buffer layers (CdS, ZnS, ZnO and In2S3) and their band 

alignment on the junction formation and performance of SnS devices.  

1.6 Contribution to knowledge of the thesis  

The state of research on SnS is under developed (Web of knowledge in 2014: 72 research 

papers for SnS compare to 230 and 470 for CZTS and Perovskites new solar cells, 

respectively) despite SnS being a promising absorber material. The thesis aims to exploit this 

loophole and fill many gaps in the knowledge database. This study has investigated the 

incorporation of selenium (Se) in annealing optimisation process of SnS by adopting the 

established selenisation process for CZTSSe [27] to overcome the use of H2S that is more 

complicated and dangerous to use [28]. The S-Se anion exchange is found to bring significant 

grain growth and recrystallisation whilst maintaining good thin film quality. 

1.7 Thesis structure 

The thesis is divided into seven (7) chapters. Following this introduction to thin film 

photovoltaic technology (chapter 1), the review of the history of SnS thin film development, 

material properties and technologies are presented in chapter 2. Specifically the thermal 

evaporation method, which can provide easy and inexpensive scalable route to deposit SnS 

solar absorbers is described in detail. This is followed by the experimental and characterisation 

methods used throughout this work (chapter 3). The experimental results are analysed and 

discussed in the following three chapters. Chapter 4 detailed the influence of layer thickness, 

substrate temperature and substrate type (SLG, quartz, ITO, FTO, Mo coated SLG and quartz) 

on the microscopic, optical and crystallographic properties of SnS solar absorbing thin films. 

However, the link between heat treatments in diverse environment (including Se - S 
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substitution and the recrystallisation of the SnS absorber layers are presented in chapter 5, 

while chapter 6 depicts the role of buffer layers on the SnS thin films solar cell. Finally, the 

conclusions from the research work and suggestions for future work is presented in chapter 7.  
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Chapter 2  

Literature Review 

This chapter focuses on the literature review of SnS solar absorbers and devices used in 

photovoltaic applications. After brief introduction in section 2.1, the general overview of SnS 

solar absorber is presented in section 2.2. The SnS-based solar cell structure in substrate and 

superstrate configurations are discussed in section 2.3 followed by the device layer 

components in section 2.4 and finally the conclusions presented in 2.5.  

2.1 Introduction 

Solar absorber otherwise called thin film in this study is a layer of material ranging from few to 

thousands of nanometres in thickness. Solar absorbers are the building block of solar cells, 

which are being developed as a way of significantly reducing the cost of solar cells. The key 

point is to absorb photons from a certain range of wavelength (visible light and near infrared) 

as efficiently as possible with minimised reflection.  Photovoltaic solar cells have been making 

a steady substantial progress and currently on track toward meeting more than 1% of the 

world energy demand. Going forward requires more research in photovoltaic solar cell 

absorbers and technologies that face no scalability constraints in generating up to 10% of the 

global electricity consumption. The motivation for the thin film solar cell research are due to 

reduced active material requirement and low energy costs [13]. Solar absorbers can be grown 

using different methods of physical or chemical deposition in either vacuum or atmospheric 

pressure conditions. The resulting material properties such as phase purity, crystallographic, 

optical and microscopic structures can vary based on the growth method and conditions. Non-

toxicity and earth abundancy are crucial for solar absorber that has a potential for low cost 

photovoltaic devices and contribute to providing substantial fraction of the world’s energy 

demand. Simple binary SnS solar absorbers, which are earth abundant, inexpensive and 
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environment friendly, have recently experienced a renewed interest in the thin film solar cell 

community.  

2.2 Overview of SnS solar absorber  

Research on Tin Sulphide (SnS) absorber materials have been evolving for the past 20 years. 

SnS is one of the most promising yet under-explored photovoltaic solar absorber material for 

cost effective and good efficiency solar cell devices. SnS is a dark brown solid material, 

insoluble in water and belongs to group IV-VI compound usually comprised of multiple phases 

[29, 30]. Its origin is usually associated to a Latvian-German Chemist, Robert Herzenberg who 

discovered it in 1934 [31], the reason the mineral is called Herzenbergite. However, prior to 

this tin and sulphur have been used in the eighteenth century in making ‘aurum 

mosaicum’(SnS2 obtained as a yellow scaly crystalline powder used as pigment in bronzing 

and gilding wood and metal work) [32]. Herzenberg also first reported the growth of single 

crystal SnS by reacting stoichiometric tin and sulphur. Some of the earlier works on the 

development of SnS-based solar absorbers during the last century [33-37] sparked research 

interest of PV community and have provided a gateway to the recent investigations mainly 

dominated by polycrystalline layers [38-42]. The major challenges that are yet to be 

adequately addressed are the existence of secondary phases such as SnS2 and Sn2S3, small 

grain sizes and poor band alignments with n-buffer layers. These have limited the application 

of SnS thin films in solar cell devices. Reviewing SnS phase, intrinsic defects, crystal and 

optoelectronic properties are vital to understand the property sensitivity of SnS films to 

advance the improvement in device performance. SnS is an environmental friendly and earth 

abundant p-type semiconductor with good physical, optical and electrical properties such that 

only a few microns (< 2.0 µm) of the layer are needed to absorb most of the incident photon. 

Some of these main properties of SnS solar absorber are presented in table 2.1. 
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Table 2.1. Basic properties of SnS solar absorber. 

Parameters  Values References  

Energy bandgap Eg (eV) Egdirect 1.35 

Reported range (1.00-1.70) 

Egindirect 1.1  

Reported range (1.00-1.45) 

[15, 36, 39, 

43-50] 

Absorption coefficient (cm-1) >104 [15, 48, 51] 

Refractive index  1.60-3.52 [15, 48] 

Conductivity type p Intrinsically [51, 52] 

n SnCl4/CH3OH heat treatment  [53] 

Isolation ion substitution (Pb2+ for Sn2+) [54-56] 

Intrinsic resistivity (-cm)  13-20 [15] 

Rel. dielectric permittivity r 13  [57] 

CB effective density (cm-3) 1.181018  [57] 

VB effective density (cm-3) 4.761018 [57] 

e- mobility µn (cm2Vs-1)  15-25 [57, 58] 

Hole mobility µp (cm2Vs-1) 90-100 [57, 58] 

Acceptor density NA (cm-3) 1017 [57, 58] 

Electron affinity  (eV) 4.20 [59] 

Work function s (eV) 4.78 [60] 

Binding energies (eV) Sn 3d5/2 = 485.3, S 2p3/2 = 161.4 [15] 

Crystal structure  Orthorhombic  [61] 

Space group  Pnma, Cmcm  [61, 62] 

United cell volume (Å3) 192.67 [63] 

Density (gcm-3) 5.08 [64] 

Lattice constant (Å) a = 4.33, b = 11.18, c = 3.98 [15, 50, 63]  

Bulk modulus (GPa) ~36.6  [63] 

Melting point (K) 1143-1163 [33, 35] 

2.2.1 SnS phase purity and control 

The challenge in identifying possible phase impurities in SnS may be a key factor in SnS solar 

cells having to date yet to exceed the 4.4% efficiency limit [28]. SnS is composed of tin and 

sulphur with Sn having dual valency (Sn2+ and Sn4+) which leads to formation of various 

phases dependent on the atomic composition [29, 65]. This Sn dual valence exists as Sn(II) 
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((Kr)4d105s25p0) and Sn(IV) ((Kr)4d105so5po) oxidation states, while SnS and SnS2 adopts 

single oxidation states of Sn and Sn2S3 has two oxidation state of Sn [29].  In order to 

synthesize pure SnS crystals, it is important to know the phase diagram (see figure 2.1) and 

this shows that adequate control of Sn and S composition can lead to pure SnS phase. These 

multiple phases include SnS (orthorhombic), SnS2 (trigonal), Sn2S3 (rhombic), Sn3S4 

(tetragonal) and Sn4S5 with SnS, SnS2 and Sn2S3 the distinct and stable phases. The presence 

of secondary phases in SnS thin films has been shown to have a negative impact on the power 

conversion efficiency of SnS-based photovoltaic devices [61], with SnS2 specifically being 

suggested to act as a recombination centre for holes and electrons while Sn2S3 can act as a 

hole trap [66]. A good understanding of the SnS phase formation would be useful to provide 

guidance on the deposition processes that can lead to obtaining pure SnS layer with suitable 

properties for photovoltaic application. Only SnS phase which is associated with a p-type 

conduction, has significant potential for application as photovoltaic light absorber due to its 

attractive properties [15, 42, 67], though both SnS2 and Sn2S3 can also be useful in other PV 

applications. For instance SnS2 that shows n-type conductivity and energy bandgap range of 

2.18-2.27eV [68, 69] can be a possible candidate for use as buffer layer material in thin film 

solar cells, as a high surface area photo-catalyst [70] and as a photodetector [71]. Sn2S3 

exhibits both p- and n-type conductivity with bandgap range of 1.05-2.12 eV [72-75] depending 

on its deposition condition and crystalline structure. This has been suggested to be useful for 

near lattice-match heterojunctions with CdTe, GaSb and AlSb, which can be applied in the 

detection and generation of infrared radiation [74]. In solar cell applications, obtaining a 

stoichiometric p-type SnS phase is critical to enhance performance as studies have shown 

that a deviation from ideal stoichiometry of only 15% is enough to change SnS conduction 

from p- to n-type [66] and this has been the major reason for poor device performance.  
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Figure 2.1 The phase diagram of the SnS thin films [76]. 

 In addition to these SnS, phases arising due to different compositions and preparation 

methods, several other known or proposed polymorphs exist. These include the α-SnS with 

orthorhombic structure (space group Pnma) stable at room temperature, -SnS also with 

orthorhombic structure (space group Cmcm) but forms and are stable at high temperatures. 

Others are the rock salt phase (space group Fm-3m), as well as the zinc blende phase, which 

exist in inform of bulk cubic SnS and finally, the newest -cubic phase [61, 62, 77-80]. Ettema 

et al. [81] reported two different forms of SnS namely, α-SnS and -SnS that show similar 

charge distribution with α-phase having higher direct energy bandgap (1.6 eV) than the -

phase (range of 1.0 – 1.5 eV [15]). They observed that the α-SnS is a low temperature phase 

compound with lower symmetry than the higher temperature -SnS phase.  

Several techniques have proven useful in confirming and identifying the phase and purity of 

SnS thin films. X-ray diffraction (XRD) measurements have shown that with accurate reference 

powder diffraction files, this technique can reliably distinguish between SnS, SnS2 and Sn2S3 

[66, 82, 83]. X-ray photoemission spectroscopy (XPS) can also show the presence of 
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secondary phases when analysed at suitable energy resolution and careful analysis [81, 84, 

85]. To complement XRD, Raman spectroscopy is therefore, used to clearly characterise and 

identify the binary phases of the polycrystalline SnS layers.  

2.2.2 Intrinsic defects of SnS 

Intrinsic defects are crucial to the SnS solar absorber application in photovoltaic devices as 

they can influence the concentration, mobility and lifetime of the photo-generated charge 

carriers. Recent progress in the improvement of the power conversion efficiency of SnS-based 

devices is due to the reduction of interface recombination defects. This was achieved through 

the growth of enlarged grain sizes and adjustments of buffer layer materials in order to 

optimise the band offsets [28]. Here, some basic defects are reviewed in order to assist with 

the experimental efforts to optimise the deposition conditions and SnS absorber quality. Since 

the sulphur vapour pressure is higher than tin [86], producing stoichiometric SnS solar 

absorber and maintaining it following annealing is challenging, thus the existence of intrinsic 

defect is likely to happen. There are six fundamental intrinsic defects in binary chalcogenide 

SnS thin film; these include tin and sulphur vacancies (VSn, VS), tin-on-sulphur and sulphur-on-

tin antisites (SnS, SSn) and tin and sulphur interstitial (Sni, Si) defects [52, 87, 88]. As shown in 

figure 2.2, VSn and VS are lattice site that would have been occupied by tin and sulphur atom, 

respectively, are vacant giving rise to vacancy defects. SnS and SSn are anti-site defects, which 

occur, in ordered alloy when Sn and S atoms occupy the position that should have been 

occupied by S and Sn atoms, respectively. Sni and Si are interstitial defects, which occurs due 

to Sn and S atoms occupying a site in the crystal lattice at which there is usually not an atom. 

These intrinsic point defects in SnS can also be categorised into positively and negatively 

charged defects, which acts as donors and acceptors, respectively. Few experimental studies 

on the defects in SnS solar absorbing thin films using photoluminescence (PL) technique are 

available [89, 90]. In addition, theoretical analysis have also been reported, which are obtained 

from both density functional theory (DFT) [52, 87] and projected augmented-wave method 

(PAW) [88]. Figure 2.2 shows the calculated formation energies of the intrinsic defects in (a) 
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Sn poor, S rich and (b) Sn rich, S poor SnS thin films [52]. From these defects, VSn, SnS and 

VS defects have sufficiently low formation energies to modify the intrinsic properties of SnS. 

 

Figure 2.2 Defect formation energies of intirnsic defects in SnS as a function of the Fermi 

level in the (a) Sn poor, S rich and (b) Sn rich, S poor, adapted from [52].  

The defect calculations suggest that the tin vacancy (VSn) acts as a shallow acceptor, which 

is mainly responsible for the intrinsic p-type conductivity of SnS in support of experimental 

observations. Sulphur vacancy (VS) acts as a donor-type defect but its formation energy is 

larger than that of tin, therefore VS defects will ineffectively compensate the positive carrier 

excess due to VSn. In addition, VS has negatively charged states inside the band gap that can 

act as electron traps and SnS can yield deep gap states, which are detrimental for photo-

generated carrier transport [52, 87]. These intrinsic defects can however be significantly 

minimised by adjusting the growth of SnS towards the S-rich conditions defined by the phase 

diagram in figure 2.1 but not too much so as to maintain suppression of secondary phases. 

Therefore, there is still considerable potential to optimise SnS solar absorber and improved 

SnS-based photovoltaic devices.   

2.2.3 Crystal structure  

SnS is comprised of diverse crystal lattice structures driven mainly by the ability of Sn to adopt 

two different oxidation states, Sn(II) and Sn(IV). The rich crystal lattice diversity of the SnS 
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system presents a challenge to its growth and characterisation. Naturally, SnS takes the form 

of a herzenbergite, which in its ground state and low temperatures crystallizes into the layered 

orthorhombic crystal structure with space group Pnma that are composed of layered 2D sheets 

as shown in figure 2.3 (a). Here Sn2+ ion coordinates to three S2- ions with the Sn 5s2 lone pair 

of electrons occupying the last position of the tetrahedral site [62]. Other SnS crystal structures 

are the rocksalt with space group Fm3m shown in figure 2.3 (b), as well as the high 

temperature orthorhombic Cmcm and the Zincblende F-43m shown in figures 2.3 (c) and (d), 

respectively.  

 

Figure 2.3. (a-d) crystal structure of various SnS polymorphs, (e) SnS2 and (f) Sn2S3 (Sn and 

S in grey and yellow colour, respectively) [62] 

Figure 2.3 (e) shows the P-3m1 crystal structure of tin disulphide (SnS2). SnS2 is probably the 

first known SnS compound which its laboratory synthesis dates back to over 200 years ago 

[32]. SnS2 has Sn(IV) where 2D planes of edge-sharing SnS6 tends to favour octahedral 

coordination environments. SnS2 in its ground state crystallise to a hexagonal layered 

structure composed of SnS2 trilayers, where the Sn(IV) ion coordinates to six sulphur ions 

(c) SnS Cmcm

(d) SnS F-43m

(b) SnS Fm-3m(a) SnS Pnma

(f) Sn2S3 Pnma(e) SnS2 P-3m1
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similar to that found in rutile-structured SnO2. Each sheet of Sn atom is sandwiched between 

two sheets of S atoms, where each S-Sn-S layer is held by weak Van der Waals interactions 

[61]. Figure 2.3 (f) shows the Pnma crystal structure of tin sesquisulphie (Sn2S3), which usually 

exhibits equal proportion of Sn(II) and Sn(IV) oxidation states. Similar to SnS at ground state, 

it crystallises into an orthorhombic Pnma structure, but consists of 1D chains where Sn(IV) 

ions adopts chain centre positons with octahedral coordination to sulphur, and the Sn(II) ions 

adopting the chain end locations in the preferred trigonal-pyramidal arrangements. Sn2S3 due 

to its mixed valence state has reduced dimensionality compared to the single valence 

structures [61, 62]. In this work, both the SnS orthorhombic structure in ground state (Pnma) 

and high temperature (Cmcm) as well as the SnS2 and Sn2Sn3 were identified with the help of 

X-ray diffraction (XRD) and Raman spectroscopy.   

2.2.4 Optoelectronic properties   

Figure 2.4 shows the theoretical calculations of Shockley-Queisser limit indicating realistic 

conversion efficiency of ~33% under AM1.5 (explained in chapter 1) for single-junction solar 

devices [91-93].  

 

Figure 2.4 Illustration of the Schockley-Queisser theoretical efficiency limits for single 

junction solar cells under AM1.5 illumination as a function of energy bandgap, adapted from 

[91, 92], recent efficiencies taken from [14]. Various absorber materials (cSi, SnS, CZTS, 

CdTe etc.) are shown for comparison.  
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Notice from figure 2.4 that the bandgap of sulphides (CZTS, CIS and CIGS) can be tuned by 

controlling Se/S ratio to enhance the power conversion efficiency of the solar cell, therefore 

this can be extended to SnS (no record or report exist for the S-Se substitution for SnS thin 

films). This limit is defined by balancing the photocurrent produced when an incident photon 

has sufficient energy to excite an electron from the VBM to the CBM with the loss mechanism. 

The loss mechanisms, which may arise from the nature of material or design issues makes 

the predicted efficiencies difficult to achieve experimentally. These losses include blackbody 

radiation, radiative recombination (significant in direct energy bandgap materials) and 

spectrum losses [94]. Spectrum losses however has greater impact in choosing solar 

absorbers for PV applications. Spectrum losses results in thermalisation of carriers when 

photons with h > Eg pass through the absorber in which the excess of the energy bandgap is 

wasted as heat. In addition, transmission losses also results where photons with h < Eg pass 

through the absorber without generation of e-h pair therefore do not contribute to the 

photocurrent. Therefore choosing solar absorber materials with appropriate bandgap is crucial 

in fabricating high efficiency PV devices. It can be deduced from figure 2.4 that absorber 

materials with bandgaps range of 1-1.5 eV can yield over 30% power conversion efficiency. 

The ideal direct energy bandgap of SnS solar absorber range of 1.30-1.50 eV [15, 42, 86] and 

high optical absorption coefficient in the excess of 104 cm-1 [95] makes SnS suitable choice for 

PV devices.  

2.3 SnS-based thin film solar cell structure 

The use of SnS absorber material in solar cells started 30 years ago, when Sharon and 

Basavaswaran in 1988 [96], observed the PV potential of SnS in photo-electrochemical (PEC) 

cell exhibiting a photo conversion efficiency of 0.63% with the structure SnS/Ce4+, Ce3+/Pt. 

SnS solar absorbers were grown by passing H2S through an acidic solution of stannous 

chloride (SnCl2). Other SnS absorbers synthesised by different chemical routes used in PEC 

cells show similar PV characteristics of > 0.50% conversion efficiency with fill factor >0.6 [97]. 

Research towards using vacuum evaporated SnS absorbers in solar cells started in 1994, 



38 
 

Noguchi et al. [36] successfully synthesised SnS absorber using thermal evaporation 

technique and produced ITO/n-CdS/p-SnS/Ag cell structure. It showed an open circuit voltage 

(Voc) of 120 mV, a short circuit current density (Jsc) of 7 mAcm-2, a fill factor (FF) of 35% and 

conversion efficiency () of 0.29%. This work appeared to have spurred the research interest 

of PV community into SnS material with Reddy et al 1997 [37] fabricating Al/n-CdS/p-SnS/Ag 

device structure with a Jsc and  of 8.4 mAcm-2 and 0.5%, respectively. SnS-based solar cells 

can be fabricated in the substrate or superstrate configurations. Figure 2.5 shows the 

schematic illustration of a typical SnS solar cell in substrate and superstrate configuration.  

 

Figure 2.5. Schematic illustration of substrate and superstrate configurations for a typical 

SnS solar cell.  

Generally for the substrate configuration, there is the glass substrate, the metallic back contact 

(normally Mo or Cu), the absorber layer (p-type), the buffer layer (n-type), the transparent 

conducting oxide (e.g i-ZnO/ITO) and metal front contact (e.g Ni/Al). The stacking sequence 

is glass/Mo/p-SnS/n-ZnS/i-ZnO/ITO/Ni-Al and the illumination takes place through the front 

contact. The first-ever produced SnS-based working device was in substrate configuration 

with power conversion efficiency of 0.63% [96], this was followed by Reddy et al. in 2006 [47] 

synthesised SnS onto glass/SnO2 substrate via chemical spray pyrolysis. Reddy et al. coated 

the SnS absorber with evaporated indium doped (CdS:In) buffer layer (p-SnS/n-CdS junction) 

before finally depositing a 400 nm thick indium to form the top contact. The best cell exhibited 
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an open circuit voltage of 260 mV, a short circuit current of 9.6 mAcm-2, a fill factor of 53% and 

efficiency of 1.3%. The best efficiency reported so far on p-SnS/n-CdS in substrate 

configuration is 2.53% via thermal evaporation of SnS absorber [98]. The substrate 

configuration further progressed with the use of alternative wider bandgap buffer layers to 

replace CdS. Recently Reddy et al in 2015 achieved an improved efficiency of 2.02% by 

replacing CdS with ZnMgO using the configuration of Mo/SnS/Zn0.76Mg0.24O/ZnO:Al/Ag [99]. 

Other J-V characteristics reported are Voc = 575 mV, Jsc = 9.96 mAcm-2 and FF = 36.4%, they 

attributed high Voc to the reduction in the recombination due to low Jsc. They synthesised the 

SnS absorber by sulphurisation of sputtered Sn precursor layers in a closed chamber, while 

the Zn0.76Mg0.24O buffer layer was grown by chemical spray pyrolysis. Power conversion 

efficiencies of over 2% was reported via modifications in device design 

(Mo/SnS/Zn(O,S)/ZnO/ITO), post deposition heat treatments and optimisation of p-

absorber/n-buffer band alignments via tuning of the conduction band offset (CBO) [100, 101]. 

This efficiency was nearly doubled by adding thin layer of SnO2 (1nm) at SnS/Zn(O,S) 

interface, reaching efficiency of 3.88% as reported for SnS deposited via congruent thermal 

evaporation [102] and world record efficiency of 4.4% [28] for SnS synthesised via atomic 

layer deposition (ALD). This record efficiency device exhibited Voc, Jsc and FF of 372 mV, 

20.2 mAcm-2 and 58.0%, respectively in a cell area of 0.232 cm2. This high efficiency device 

was achieved following the annealing of SnS layer in H2S to enlarge grains and reduce 

recombination loss at grain boundaries and oxidizing SnS surface before junction formation to 

suppress recombination centre losses to the junction.  

On the other hand, superstrate configuration is fabricated in a reverse order compared to 

substrate configuration (see figure 2.5b) in the following stacking sequence: glass 

substrate/front contact/n-ZnS/p-SnS/metal back contact. Note that front contact can be indium 

tin oxide (ITO), fluorine-doped tin oxide (FTO) or aluminium zinc oxide (AZO). The n-buffer 

layer can be zinc sulphide (ZnS), cadmium sulphide (CdS), indium sulphide (In2S3) or zinc 

oxide (ZnO), while the back contact can be silver (Ag), gold (Au), aluminium (Al) or 
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molybdenum (Mo). Research into fabrication of SnS-based solar cell in superstrate 

configuration started in 1994 when Noguchi et al. [36] produced an ITO/CdS/SnS/Ag structure. 

The SnS absorber was deposited via vacuum evaporation method, best cell exhibited an open 

circuit voltage of 120 mV, a short circuit current density of 7 mAcm-2, a fill factor of 35% and a 

conversion efficiency of 0.29%. Reddy et al in 1995 reproduced same structure but replaced 

ITO with aluminium using spray pyrolysis method to synthesis SnS absorber and vacuum 

evaporated CdS.  They produced an improved current-voltage properties as follows: Voc = 140 

mV, Jsc = 8.4 mAcm-2, FF = 38% and  = 0.5% [37].  An attempt in 2009 by Ghost et al. to 

fabricate SnS in superstrate configuration by thermally evaporating SnS onto ZnO buffer layer 

resulted in inefficient device [103]. The glass/ITO/ZnO/SnS/In structure used exhibited Voc, 

Jsc, FF and  of 120 mV, 0.04 mA, 33% and 0.003%, respectively in a cell area of 0.4 cm2. 

Following this, efficiency of SnS solar cells in superstrate configuration stagnated until recently 

in 2013 Schneikart et al. fabricated a CdS/SnS heterojunction device via thermal evaporation 

of the SnS absorber [104]. The best device exhibited an open circuit voltage of 217 mV, a 

short circuit current of 19.0 mAcm-2, a fill factor of 39.2% and a power conversion efficiency of 

1.6%. They attributed the low open circuit voltage to possible existence of pinholes in the SnS 

layer and the cliff at the CdS/SnS interface. Similar to the substrate configuration, replacing 

the CdS layer with wider bandgap material may be the way forward. Ikuno et al in 2013 [105] 

further improved the power conversion efficiency of SnS device in superstrate configuration to 

2.1% by replacing CdS with wider bandgap buffer layer material of Zn1-xMgxO to optimise the 

CBO and post fabrication annealing. The device also exhibited Voc , Jsc and FF of 270 mV, 

12.1 mAcm-2 and 64%, respectively. They attributed the improvement to mainly conduction 

band offset optimisation.  

From the literature, it is evident that each of the different layer components that make up a 

working device can affect the performance of the solar cells. As their properties differ in 

microcrystalline structure, carrier mobility and optical bandgap, there are bound to be, 

recombination centres, inter diffusion, chemical changes, defects and interface states that can 
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result in electrical and optoelectronic changes [106]. Therefore, the properties of materials 

used for these layers should be investigated before their application in solar cells.   

2.4 Layer properties of SnS-based devices 

This sub-section focuses on the properties and deposition process of the different layers in 

SnS-based solar cell structure. As stated in section 2.3, substrate and superstrate 

configuration are the inverse of each other, so the layer properties are reviewed following the 

substrate configuration order. 

2.4.1 The substrate  

Substrate here refers to the integral part of a device that serves as a base material for the 

deposition of the other component parts that complete the solar cell. Different substrates have 

diverse influence on the microcrystalline structure, grain growth, optoelectronic properties and 

device performance of SnS-based solar absorber and solar cells. These effects can result 

from the chemical nature, surface quality and thermal stability of the substrate material [40, 

107, 108]. Therefore, selection of suitable substrate is crucial to obtaining good quality SnS 

absorber that can enhance device performance. Substrate should be stable at the production 

temperature of the solar cell. There must be chemical compatibility of substrate and SnS 

absorber material ideally, no chemical reaction should exist between the substrate and the 

film layer as interdiffusion can cause inclusion of undesired atoms in both SnS absorber and 

substrate.  

Generally glass usually with thickness of 2-4 mm is used for deposition of SnS solar absorber 

as well as fabrication of both substrate and superstrate solar cell structures. A common type 

of glass used is soda lime glass (SLG) composed of soda (Na2O) 16%, lime (CaO) 10 % and 

silica (SiO2) 74%. SLG preference is due to its robustness to processing, cost effectiveness 

and ability to withstand relatively high temperature up to 500 oC [109]. Some impurities in SLG 

such as sodium (Na) can diffuse during thermal processes into the absorber layers and this 
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can be detrimental for SnS photovoltaic applications [110, 111] but beneficial to other solar 

absorbing thin films such as CIGS [112]. 

Very few investigations have been done to date to compare the influence of the various 

substrate for SnS solar absorber application. Revathi et al. initiated the study of substrate 

influence on SnS solar absorber in 2013 using glass, ITO and Mo-coated glass [108]. They 

reported that the layers deposited onto ITO and Mo-coated glass substrates exhibited single 

SnS phase only, while the film grown on glass had traces of SnS2 in addition to the dominant 

SnS phase. This was followed by Reddy et al. in 2016 who investigated the influence of 

aluminium, silicon, molybdenum, nickel, indium tin oxide and SLG substrates on the properties 

of sulphurised SnS solar absorber [40]. However, they observed pure phase and high quality 

SnS layer across the substrates but films on aluminium substrate exhibited bigger grain sizes 

and low electrical resistivity. Recently Basak et al. 2018 investigated the behaviour of SnS 

solar absorber on the substrate configurations of glass/ZnO:Al, glass/ITO and glass/CdS via 

thermal evaporation. They observed better crystallinity for samples deposited on glass/ZnO:Al 

in addition to lesser dislocation density, higher optical density better mobility and less resistivity. 

Also the J-V characteristics of the glass/ITO forms ohmic junction with SnS while, that of 

glass/ZnO:Al shows a rectifying contact. They attributed diverse behaviour to the difference in 

work function of the substrates [113]. 

2.4.2 The back contact 

The absorber/metal back contact junction is one of the interface of the SnS device structure. 

One of the the crucial issue with the fabrication of SnS solar devices in a substrate 

configuration is the formation of a quasi-ohmic electrical back contact that withstand the post 

deposition heat treatments and the formation of the p-n interface with reduced recombination 

losses. The criteria of matching work function and thermal expansion coefficients, limit the 

choice of available materials. Studies have looked at some metals to assess their compatibility 

with SnS. Devika et al. [114] investigated some of possible metals for SnS back contacts such 

as Ag (Ag  = 4.3 eV), Al (Al  = 4.25 eV), In (In = 3.83 eV) and Sn (Sn = 4.42 eV) circular metal 
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contacts on p-type SnS. The authors reported a work function of 4.2 eV for SnS, which differs 

from other sources [115]. From transmission line method, they found that Al, In and Sn 

exhibited ohmic contacts while Ag did not and reported that the highest current flow is with In 

contacts probably due to In diffusion into the film.  Reddy et al [116] studied Zn/p-SnS contacts 

and found significant reduction in resistivity compared to Ag. They observed that Zn metals 

pins the Fermi level in SnS at about 0.57 eV, and it slightly diffused into SnS layer. However, 

these investigations suggest good options for ohmic contacts with SnS, leading SnS-based 

solar cells use Mo as the metal back contact [28, 102]. Patel and Ray [117] tested several 

back contacts such as graphite, Cu, Mo and Ni in superstrate device with a configuration 

Glass/F:SnO2/In2S3/SnS/M (M= Graphite, Cu, Mo and Ni). They noted that Mo and Ni are poor 

choices due to increased series resistance and decreased shunt resistance resulting from 

tunnelling assisted recombination. The authors found graphite and Cu to be suitable 

alternatives to these materials, with Cu being the best option. However, Mo has been the 

choice for CIGS and CZTS-based devices, the literature showing that exchanging Mo for Cu 

or graphite could significantly enhance the fill factor of SnS-based solar cells, which is 

presently very low compared to other materials [118]. In addition to high quality material, SnS 

devices should have optimised back contact interfaces to minimise recombination and 

resistive losses.   

2.4.3 The absorber layer and deposition methods  

 The absorber layer is responsible for light absorption and conversion of the incident photon 

into electricity. The promising properties that make SnS a good choice for solar cell 

applications and some challenges that may limit its performance had been highlighted in 

section 2.2. This sub-section will focus on how the various deposition routes can influence the 

properties of SnS absorber. As shown in figure 2.6 for the best performing SnS-based device, 

the route chosen to grow the absorber layer must guarantee the formation of polycrystalline 

layer with large columnar grains (see figure 2.6 b and c) to minimise grain boundaries. Grain 
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boundaries are regions of increased recombination in the absorber and they can impede 

carrier transport via charge trapping to form potential barriers.  

 

Figure 2.6 (a) device structure, (b) cross-section and (c) top view scanning electron 

microscope (SEM) image showing the absorber of the record efficiency SnS-based solar cell 

[28]. Scale bar in (c) denote 500 nm. 

The routes to deposition of SnS solar absorber have been evolving with crucial modifications 

over the last two decades. Most of the physical properties of SnS layers depends on the 

synthesis routes, which can be divided into three categories. The first route that initiated the 

work on SnS involves solution-based methods such as chemical bath deposition (CBD) [119-

125], successive ionic layer adsorption and reaction (SILAR) [126, 127], brush plating [128] 

and electrochemical deposition (ECD) [46, 96, 129, 130]. The second route involves the 

physical vapour deposition from the SnS source material or target such as thermal evaporation 

[15, 36, 39, 102, 104, 113], sulphurisation (2-step process) [40, 131-134], RF sputtering [105, 

135-137], molecular beam epitaxy (MBE) [138-140], electron beam evaporation [141-143] and 

closed space vapour transport [144, 145]. The last route uses transport by chemical vapours 

to form the film layer, this include chemical spray pyrolysis (CSP) [47, 50, 146, 147], chemical 

vapour deposition (CVD) [100, 148, 149], metal organic chemical vapour deposition 

(MOCVD)[150-152], plasma enhanced chemical vapour deposition (PECVD) [153, 154] and 

atomic layer deposition (ALD) [28, 67, 155]. Figure 2.7 (a-i) shows the schematic diagram of 

some of the deposition methods for the SnS-based solar absorber, the different deposition 

methods has diverse influence on the properties of the films.  
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Figure 2.7 (a-i). Schematic diagram of SnS absorber deposition methods [143, 152, 156]. 

Thermal evaporation and atomic layer deposition have shown the best reported efficiencies of 

3.88% [102] and 4.4% [28], respectively to date.  However, atomic layer deposition (ALD) is 

self-limiting and has been reported to be highly expensive and unsuitable to industrial scale-

up [102]. Hence alternative deposition method more suitable to manufacturing process and 

easy to use needs to be further investigating including thermal evaporation, which is a highly 
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scalable technique. The use of thermal evaporation to produce SnS solar absorber is therefore 

reviewed in sub-section 2.4.3.1. 

2.4.3.1 SnS deposition by thermal evaporation 

Thermal evaporation method is the simplest method conceptually, corresponding to raising 

the temperature of the source material in an open boat, crucible or suspended on wire (inside 

vacuum or non-vacuum chamber) so that the material evaporates or sublimes onto the 

substrate. The boat or wire materials are selected as a high temperature material (for example 

Mo, quartz or graphite crucible) and must not react adversely with the evaporant. SnS source 

material is heated in order to attain the requisite vapour pressure for the evaporation to take 

place, the evaporation rate is then governed by the Langmuir-Dushman equation [157]. 

𝑁𝑒 = 3.513 × 1022𝑃𝑒√
1

𝑀𝑇
                                                                                                           (2.1)        

where Pe  is the equilibrium vapour pressure of the evaporated SnS material under saturated 

vapour conditions at a temperature T and M is the molecular weight of the material. The 

production of uniform SnS layers with high throughput is a requirement for good efficiency 

devices, and this usually means that the substrate has to be rotated. When source materials 

are heated in high vacuum, the evaporating atoms travel in a straight line to hit the substrate, 

part of the substrate directly facing the source material receives more coating than the edges, 

substrate rotation is used to ensure uniform coating [158]. In thin film coating process, steps 

are always taken to assure good film adhesion and to control various properties of the layers 

as desired. Fortunately, thermal evaporation system design and methods can allow 

adjustability of a number of parameters such as film thickness, substrate temperature, rate of 

deposition, substrate rotation and source-substrate distance. This gives opportunity to achieve 

desired results in the uniformity, adhesion strength, grain structure, optoelectronic and 

crystallographic properties of the films.  
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The use of thermal evaporation to deposit SnS solar absorber dates back to 1994 when 

Noguchi et al. [36] explored the advantage of variable substrate temperature range of 150-

350 oC to deposit SnS films and fabricated n-CdS/p-SnS heterojunction solar cell. They 

reported a change in the prominent diffraction peak from (111) to (040) as the substrate 

temperature increases. They recorded a direct energy bandgap of 1.48 eV, which they 

attributed to the presence of SnS2. The SnS films had p-type conductivity with a resistivity, 

carrier density and Hall mobility range of 13 - 20 cm, 6.3 × 1014 - 1.2  × 1015 cm-3 and 400 - 

500 cm2V-1s-1, respectively. Their completed working device exhibited a power conversion 

efficiency of 0.29% under 100 mWcm-2 illumination. This was followed by Deraman et al. [159] 

in the same year investigating electrical conductivity of SnS using a substrate temperature 

range of 50-300 oC. They observed that the conductivity of the layers increase from 0.5-

2.0 Sm-1 with an increase in the substrate temperature from 50-250 oC and attributed this 

effect to the changing film composition. Since then to date, thermal evaporation of SnS thin 

films has been evolving with diverse optimisation of the deposition parameters. Difference in 

the vapour pressure of tin and sulphur has also been reported to influence the composition of 

the deposited films by Nwofe et al. [160] and Devika et al. [15]. Nwofe et al. investigated the 

properties of the films at substrate temperature range of 280-360 oC and found non-

stoichiometric films to form at 300  T  340 oC, as well as a higher crystallinity for the higher 

substrate temperatures. The layers contained densely packed large grains and the film 

thickness was 2.0-3.6 µm, while the deposition rate was not reported. However, Devika et al. 

adjusted substrate temperature from room to 325 oC using a deposition rate and film thickness 

of 10 Ås-1 and 0.5 µm, respectively. They found smaller grain size for lower temperature and 

the Sn/S ratio ranged from 0.85-1.10 corresponding to a substrate temperature range of 50-

350 oC. Secondary phase (SnS2) was present in the layer deposited at 50 oC substrate 

temperature. From the Devika et al. observations, optimal substrate temperature exist at 275 

oC for achieving stoichiometric films, which differs from the findings of Nwofe et al by 25-65 

oC. This difference exist because the film thickness are not the same. Similarly, Reddy et al. 
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[161-163] observed that the Sn and S composition gradually changed from sulphur-rich to tin-

rich with the increase of growth temperature, also reported is a change of orientation from 

(111) to (040) direction as temperature increased from 275-350 oC. The authors noted that the 

films were single phase following Raman analysis.  The films exhibited a direct energy 

bandgap that decreased with an increase in the growth temperature while, the electrical 

resisitivity decreased from 335-97 cm with the growth temperature from 275-350 oC. 

Other researchers have also explored the adjustability of substrate temperature to optimise 

the microscopic, crystallographic and optoelectronic characteristics of SnS films. Hegde et al. 

[164] studied these SnS properties at substrate temperature range of 50-300 oC and observed 

that only the films deposited at 300 oC showed single stoichiometric SnS phase with (111) 

preferred orientation. They employed a source-substrate distance, deposition rate and film 

thickness of 15cm, 8 Ås-1 and 500 nm, respectively. The authors found the average grain size 

and crystallites of the films to increase with the substrate temperatures. Miles et al [39] coupled 

the effect of film thickness, source and substrate temperature on thermally evaporated SnS 

films. They observed a bandgap value of 1.55-1.70 eV for a film thickness of 0.8 µm, while 

further increase in thickness resulted in the reduction of the bandgap. The authors also noted 

that with thermal evaporation, densely packed columnar grains, stoichiometric, conformal and 

pinhole free SnS films can be produced. The substrate temperature has also been used to 

tune the crystallographic and electrical properties of SnS to fabricated good efficiency SnS-

based solar cells by Kawano et al. [98]. They reported best device efficiency of 2.53% for the 

SnS absorber deposited at substrate temperature of 200 oC compared to 1.36 and 1.01% 

efficiency of the films deposited at 175 and 225 oC, respectively. In this report, the SnS 

absorber was deposited for 120 min without control of the substrate temperature and film 

thickness.  

Layer thickness also plays a vital role in SnS-based thin films as it can be used to tune the 

intrinsic property of the films to get desired quality for solar cell application. To date few reports 

exist on the SnS layer thickness optimisation. Devika et al [165] found that optical band gap, 
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resistivity and preferred orientation of SnS films are strongly related to the film thickness. They 

varied the thickness between 0.10 to 1.25 µm using a constant temperature of 300 oC and 

deposition rate of 10 Ås-1. The report suggested that good crystalline SnS quality could be 

obtained at thickness  0.75 µm with optimum bandgap of 1.5 eV. Nwofe et al. [95], Jain and 

Arun [166] respectively noted that increase in the films thickness leads to decrease in energy 

bandgap and the XRD peaks become stronger. 

2.4.3.2 Post deposition heat treatments 

In addition to the issue of non-stoichiometry of tin and sulphur in SnS due to high volatility of 

S, as-deposited SnS films show poor crystalline quality and small grains. This limits the power 

conversion efficiencies of the device due to high carrier recombination at the grain boundaries. 

Thermal annealing is generally used in thin film semiconductors to favour crystalline quality, 

grain growth and optoelectronic properties. The post deposition heat treatment process 

usually leads to the formation of larger grains, decreasing of the surface roughness and 

improvement in device performance [28, 157]. In SnS solar cells, a high quality layer 

comprised of large grain is necessary to facilitate the transport of photo-generated carriers, 

reduce grain boundary recombination and thus potentially enhance the power conversion 

efficiency of the device. Several investigations have been made on the influence of heat 

treatments on SnS solar absorbing thin films in diverse environments such as vacuum [41, 

167-169], air [170, 171], hydrogen sulphide (H2S) [28, 102, 172], chlorine [150, 173] and inert 

atmosphere such as argon (Ar) [167] and nitrogen (N2) [174, 175]. Thermal annealing 

treatment in SnS solar absorbing thin films are found to be effective in reducing recombination 

and promoting grain growth and carrier mobility [101]. Contradicting reports exist for vacuum 

annealing, while Devika et al. [168] noticed reduced grain size and higher transmittance due 

to decrease in thickness following anneal, Ogah et al. [176] reported the opposite (increased 

grain size and reduced transmittance which is linked to improved crystallinity). This 

contradiction is bound to occur since their as-deposited SnS were different; in the former initial 

thickness was 0.5 µm re-evaporation during anneal will leave ultra-thin layer of SnS on the 
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glass substrate which is bound to allow high transmittance. While in the later thickness is >1.0 

µm, cluster of grains will tend to coalesce to yield bigger grains. Thermally annealing SnS in 

air was found to change the conductivity from p to n-type with formation of SnO2 without 

influencing the film structure [171]. To stop SnS oxidation and change in conductivity type, 

SnS annealing could be done in Ar or N2. SnS treatment in inert atmosphere (Ar or N2) can 

assist the grain growth with noticeable loss in stoichiometry of tin and sulphur [52, 167, 174]. 

However, thermal annealing in chlorine ambient has been found to react aggressively with the 

SnS, which result in the formation cracks and isolated domains [150, 173]. The SnS post 

anneal treatment in the presence of  H2S environment has been studied in several works [28, 

102, 172]. This thermal treatment in H2S is effective in suppressing the creation of sulphur 

vacancies VS due to high sulphur loss following anneal and significantly enhancing grain 

growth. SnS heat treatment in H2S ambient is one of the crucial factors that lead to the record 

SnS device efficiency to date [28]. Another way that has not been explored is the thermal 

annealing in selenium ambient that can allow S-Se substitution similar to CZTS [27], this study 

will investigate this possible new route in thermal annealing of SnS solar absorbing thin films.   

2.4.3.3 Numerical simulation studies 

Numerical simulation can provide easy route in examining the expected performance of a thin 

film solar cell. The use of simulation tools can also reduce the amount of material usage in the 

search to optimise fabrication conditions. One of the simulation tools which has been used for 

SnS device is the one-dimensional solar cell capacitance simulator structures (SCAPS-1D) 

[177]. The software was developed for the CdTe, CIGS and CuInSe2 materials but can be 

modified to allow the use of other materials such as SnS. Ullah and Mari [178] reported 

successful use of SCAPS to analyse the effect of absorber layer thickness, operational 

temperature and illumination on performance of SnS-based thin films solar cells. They noticed 

that increase in layer thickness leads to increase in efficiency and devices perform optimally 

at room temperature. The simulated device showed maximum efficiency of 10.6%, Voc of 0.92 

V, Jsc of 13.4 mAcm-2 and FF of 86.3%. The report did not speculate the limit of layer thickness, 
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which is crucial in the laboratory experiments. SCAPS software has equally been used to get 

insight on the optimal buffer layer for SnS heterojunctions [179]. Xu and Yang [58] have 

studied the properties of SnS heterojunctions with diverse buffer layers via numerical analysis. 

They explored buffer layers such as CdS, ZnS, ZnO and a-Si, and noticed that ZnS/SnS has 

best conversion efficiency of 16.26% due to its optimal band alignment with SnS. Therefore, 

the need to explore alternative buffer layer to replace conventional CdS is vital to enhance the 

performance of SnS devices.   

2.4.4 The buffer layer 

The buffer layer is used to form interface with the absorber layer to provide transition between 

the absorber and the TCO. The energy bandgap of buffer layer must be sufficiently large in 

order to maximise the transmission of incident light to the SnS absorber layer. It should exhibit 

n-type conductive in order to form anisotype heterojunction with the p-type absorber layer. In 

addition, the buffer layer should exhibit relatively high electrical conductivity to ensure that field 

region is largely located in the absorber layer to maximise carrier collection, as well minimise 

resistance losses in the transport of carriers to the external circuit [180]. 

Cadmium sulphide (CdS) is commonly used to form SnS/CdS heterojunction but there are 

evidences of non-optimal CBO with CdS [42, 58, 59, 181]. SnS/CdS heterojunction has a large 

negative CBO of -0.5eV, which gives rise to an increase of interface recombination [42, 181] 

and reduce the open circuit voltage (Voc) of the solar cell. A small positive CBO of the range 

(0 eV<Ec<0.1 eV) [181] is suitable to reduce the interface recombination and enhance open 

circuit voltage. The use of CdS buffer layer for SnS-based solar cells stagnated efficiency at 

2.53% [98]. The search for suitable buffer layer to replace CdS is probably one of the 

challenges for SnS-based solar cells. To overcome this challenge, band alignment studies 

have been reported for wide bandgap alternative buffer layers of SnO2 [59], ZnMgO [99, 105], 

Zn(O,S) [42] and InSxOy [181]. Sugiyama et al. [182] also investigated the band offsets of 

diverse alternative buffers layers such as SnS/SnS2, SnS/In2S3, SnS/ZnIn2Se4, SnS/ZnO and 
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SnS/Mg0.3Zn0.7O using photoelectron yield spectroscopy. They claimed that SnS/Mg0.3Zn0.7O 

that exhibited type-I heterostructure is the most appropriate n-type layer for p-SnS in order to 

improve device performance. These investigations have led to the achievement of best 

efficiency of 3.88% to date using thermal evaporation and Zn(O,S) buffer layer.  

2.4.5 The transparent conducting oxide layer 

The transparent conducting oxide (TCO) is generally used as the front contact for thin film 

solar cells. It is normally n-type with good electrical conductivity and high transmittance in the 

visible and near infrared range. It is required that the sheet resistance of the TCO is no more 

than 10 sq-1 to produce high efficiency solar cells. The most widely used TCOs are indium 

tin oxide (ITO), aluminium zinc oxide (AZO) and fluorine-doped tin oxide (FTO) [180]. In 

substrate configuration of devices TCO deposition is the final step before top metal grid, while 

in superstrate devices it is the initial step. The choice between the TCO sometimes greatly 

depend on the deposition temperature of the p-SnS and n-buffer layer, which are governed by 

the type of configuration. Therefore, for higher temperature deposition such as superstrate 

devices where TCO comes first, FTO is the material preferred, since it is more stable 

compared to ITO at elevated temperatures. However, for low temperature deposition, such as 

in substrate devices where SnS absorber and the n-buffer layer are deposited first with any 

post heat treatment, ITO is the material of choice since it has a high optical transmission for a 

given sheet resistance [180], the deposition process is explained in section 3.4.  

2.4.6 Top contact grid  

The top grid usually consist of either a metal layer or a stack of two layers. For a single metal 

layers, gold, indium or silver are often used. In two layers, the first layer of the front grid must 

establish an ohmic contact with the TCO and must have a high melting point to prevent 

diffusion to the device area during the period of operation and nickel is often used for this 

purpose. The second layer should exhibit good electrical property and aluminium is commonly 

used.  
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2.5 Conclusions 

The review has shown that SnS can be deposited with a large variety of deposition methods 

however, thermal evaporation technique is the most scalable and easy to use route towards 

large-scale industrial manufacturing. In addition, SnS solar devices can be fabricated in 

substrate or superstrate configuration, but the best efficiencies to date were obtained in the 

substrate configuration where it is possible to separate absorber deposition and junction 

formation. This gives the advantage of treating the SnS surface before coating with buffer 

layer and optimise the CBO. Sulphur content is vital at the junction and the back contact for 

device performance but its volatility has proven to be a challenge for producing S-rich SnS 

absorber. To move forward with possible use of SnS absorber in solar cells, microscopic and 

crystallographic characteristics should be considered, as much of the variability in the 

optoelectronic properties correlates with the variation in the material quality, especially sulphur 

content.  
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Chapter 3  

Experimental and Characterisation Methods  

3.1 Introduction 

This chapter describes the substrate and source preparations, the thin film deposition 

processes and the characterisation methods used throughout this work. The pre-deposition 

processes, which include the substrate and source material preparations, are presented in 

sections 3.2 and 3.3, respectively. Four main deposition methods were applied during the 

research activity. These methods, which included thermal evaporation, magnetron sputtering, 

electron beam evaporation and chemical bath deposition, are described in section 3.4. Section 

3.5 follows by outlining the post deposition treatments required to optimize the properties of 

the SnS layers. Finally, the device fabrication processes and description of characterisation 

method used for both layers and photovoltaic devices described in section 3.6. 

3.2. Substrate preparation 

The substrates serve as a mechanical support for the thin films and selection of a suitable 

substrate is vital for SnS based solar absorbers. The substrate used in this work include the 

following: soda lime glass (Thermo scientific, 76  26  1 mm3) composed of soda (Na2O) 16%, 

lime (CaO) 10 % and silica (SiO2) 74%, quartz composed of SiO2 with 99.999 % purity, 

fluorine-doped indium tin oxide (FTO) and indium tin oxide (ITO) coated glass composed of In 

74%, O2 18% and Sn 8%. Soda lime glass is the first choice in this study because of its cost 

effectiveness and it can withstand relatively high temperature up to 580 oC [109]. However, 

some impurities in SLG such as sodium (Na) can diffuse during thermal processes into the  

absorber layers and this can be detrimental for SnS photovoltaic applications [110]. To 

overcome this, quartz substrates were also used for comparison. For the superstrate 

configuration, ITO or FTO coated glass was used due to its relatively low resistivity of <15 /sq. 

The cleanliness of the substrates is critical in getting a good quality and pinhole free thin film 
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as dust or lint on the substrate surface shadows the surface during evaporation. All the 

substrates were cleaned chemically (dilute decon-90 solution with deionised water) followed 

by ultrasonication via deionised water (DI) water for 15 min. The substrates were again rinsed 

with deionised water and blown dry under a nitrogen stream before being placed immediately 

in the evaporator. Care was take during cleaning process to avoid scratching of the surface of 

the glass coated with FTO and ITO. 

3.3 Sample deposition methods 

3.3.1 Thermal evaporation 

The source materials used in this work (SnS, ZnS and In2S3) were all solids in pellets and 

powdered form, while CdSO4, NH3.H2O and thiourea were the source material for CdS growth . 

The SuperVac SnS pellets (T7-5014-M) with 99.999 % purity was sourced from Testbourne 

Limited, UK. The source material is carefully loaded inside the crucible and placed in upright 

position in the CH-8 shielded heat crucible connected to either of the source heaters (see 

figure 3.2) inside the chamber. The vacuum chamber is then evacuated to a pressure  8.0  

10-7 mbar. 

The review of the thermal evaporation method is included in chapter 2. It is one of the most 

cost effective and easy to use type of physical vapour deposition (PVD) method. Here, the 

source materials were heated at sufficiently high temperature to increase their vapour 

pressures. The vapour stream emitted from the heated source material then traverses the 

chamber, hits the substrate and condenses as a thin film. As illustrated in figure 3.1, the film 

formation process has multiple steps occurring at microscopic level. These include arrival of 

atoms onto the substrate surface; sticking together of vapour atoms (adsorption); surface 

diffusing; bonding together and formation of crystals by the atoms (nucleation process) to the 

final formation of the new films [183-185]. All these steps are controlled by deposition rate, 

temperature, amount of evaporant and input power.  
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Figure 3.1 Theory of the formation of thin films on a flat substrate for thermal evaporation 

[186]. 

For all the deposition, high vacuum (Pa  8.0  10-7 mbar) were used to avoid reaction between 

the vapour material and chamber environment. High vacuum is also necessary to ensure 

straight-line path for most of the emitted vapour atoms from the source to the substrate 

(300 mm distance). This creates a conducive environment during the film formation process 

ensuring little or no interaction between residual gases and vapour atoms.  The conditions 

used are in agreement with the report that for a substrate to source distance in the range of 

10 to 50 cm in a vacuum evaporator, pressure lower than 1.33  10-5 mbar are necessary to 

maintain a straight-line path for the vapour atoms [157]. A schematic diagram of the 

evaporation setup used in this work, Oerlikon Univex 250 is shown in figure 3.2. 
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Figure 3.2 Schematic illustration of the thermal evaporation setup. 

Irreversible temperature stripes and crayons were used to calibrate the substrate heater and 

data is shown in figure 3.3. These differences in the setup and measured temperatures is 

because of the separation between the heating element and substrate holder causing heat 

losses.   

 

Figure 3.3. Oerlikon Univex substrate heater calibration 
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3500 nm). Other constant parameters were a substrate rotation of 10 rpm to enhance 

homogeneity, deposition rate of 3 nms-1 and source-substrate distance of 300 mm. The films 

were evaporated through resistance heating using a low voltage range of 0.8-1.0 V and high 

current ranging from 90 to 105 A to melt 3-8 mm SnS pieces. For the 8-12 mm ZnS pieces, 

the voltage were varied between 1.0-2.2 V and current measured to range from 110 to 180 A 

during the deposition.  Similarly, a voltage range of 1.0-1.5 V and current ranging from 100-

121 A were used to evaporate In2S3 powder source material. A quartz crystal sensor mounted 

inside the chamber was used to monitor the deposition in real time; and triggers the substrate 

shutter to close once the pre-set final film thickness was achieved. In order to calibrate the 

thermal evaporator, the tooling factor and Z-ratio of the source material was adjusted to 

achieve good agreement between the recorded and measured thickness.  

3.3.2 Magnetron sputtering 

Magnetron sputtering is a widely used PVD method that requires good vacuum conditions 

similar to thermal evaporation. It is mostly preferred for temperature and surface sensitive 

material deposition. During magnetron sputtering, energetic gas ions generated from a glow 

discharge plasma are accelerated towards a target containing the material to be deposited. 

To enable the ignition of plasma, a negative charge is applied to the target source material in 

a vacuum chamber containing an inert gas - such as argon. This causes free electrons 

(secondary electrons) to flow from the negatively charged target material and interact with the 

outer electronic shell of the argon gas atoms. The arrangement of the magnets create parallel 

magnetic field to the target surface and constrain free electron (e-) motion to the vicinity of the 

target as illustrated in figure 3.4. Hence, the positively charged argon ions (Ar+) attracted to 

the negatively charged target material at a very high velocity ejects atomic size particles from 

the source material to the surface of the substrate and are deposited as thin films [187-189].  
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Figure 3.4. Schematic diagram of magnetron sputtering process.  

In this work, magnetron-sputtering system (Teer Coatings UDP 350) was used to deposit Mo 

back contact, ZnO and ITO window layers.  As illustrated in figure 3.5, the setup consists of 

three targets that run in direct current (DC) magnetron modes and one target operating in 

radio frequency (RF) magnetron mode.  

 

Figure 3.5. Schematic illustration of the teer coatings UDP 350 magnetron sputtering setup.  
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In DC mode, the target is directly conducting electricity and has limitations when it comes to 

dielectric target as the build-up of a positive charge on the surface of the target over time 

creates quality control issues on the films and can even terminate the discharge of sputtering 

atoms. RF modes enables the sputtering of dielectric materials by alternating the electric 

potential of the current to avoid a charge build-up of sputtering target materials [189]. Since 

DC power supply are easy to control, simple and relatively low cost in power consumption but 

cannot be used for insulators, pulsed DC and RF as well as DC for Mo deposition were 

considered in this work. In pulsed DC mode, the target is bombarded with powerful voltage 

spikes to clean its surface and prevent the build-up of a dielectric charge.  

In this work, substrates were placed in the chamber parallel to the source target surface at a 

substrate-target distance of 70 mm before evacuating the chamber to < 8.0  10-6 mbar. DC 

magnetron sputtering (Mag 1) was used to deposit ~1 µm thickness of Mo thin film on SLG 

and quartz substrate to provide electrical back contact for the solar cells in substrate 

configuration. The source material target used for the deposition was supplied by PI-KEM Ltd, 

with dimension 248 133  10 mm3 and 99.95% purity. A pre-sputtering treatment was first 

done for 20 minutes to clean the source target surface and remove impurities. The Mo films 

were then deposited at room temperature for 43 minutes with a fixed current of ~3.0 A and 

voltage of 323  30 V.  The argon-mass flow rate was measured at 70.0 sccm with working 

pressure of 6.3  10-3 mbar and substrate carousel set to rotate at constant speed of 5 rpm.  

The intrinsic zinc oxide (ZnO) window layer was deposited using pulsed DC magnetron 

sputtering (Mag 4) at room temperature with carousel rotation of 5 rpm. A source target of 

100 mm diameter and 3 mm thickness with 99.99 % purity, bonded to a 3 mm thick copper 

back plate was used. After the standard 20 min pre-sputtering stage, a nominal 60 nm ZnO 

layer were deposited for 35 min in Ar/O2  flow ratio of 25.0 with voltage and current of 506 V 

and 0.2 A, respectively. Immediately after ZnO deposition, the system was switched to RF 

magnetron sputtering (Mag 2) mode for in-situ ITO deposition at substrate temperature of 

~150 oC. A source target with 99.99 % purity (In2O3/SnO2; 90/10 wt%) of same dimension and 
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bonding ZnO was used for the sputtering. The substrates were heated for 30 min before a 

pre-sputtering stage of 20 min and the deposition of ~200 nm thick ITO with RF forward power 

of 200 W for 90 min at substrate rotation of 5 rpm, working pressure of ~ 3.1  10-3 mbar and 

argon-mass flow of 25.0 sccm. 

3.3.3 Electron beam evaporation 

Electron beam evaporation (E-beam) is a form of physical vapour deposition that allows for 

deposition of thin films of high-melting-point materials that would have been difficult to deposit 

using thermal evaporation. As illustrated in figure 3.6, in high vacuum (pressure  10-5 mbar) 

electrical current is passed through a tungsten filament that emits electrons. The electron 

beam using magnets bends and focus into the crucible to melt the source material. The vapour 

atoms travels outwards in all direction and condenses on the substrate as thin films [157, 190]. 

In this work, E-beam evaporation (Tecvac ECU 700) was used to deposit nickel (Ni) and 

aluminium (Al) front contact of the solar cell. The samples were covered with a shadow mask 

that creates cell area of 0.16 cm2 before being placed in the chamber parallel to the source 

crucible at a distance of 400 mm and evacuated to a pressure  10-5 mbar. The electron beam 

is focused on the Ni and Al pellets in copper and graphite crucibles respectively, to melt pellets 

and create vapour atoms. The current was varied from 0.01 to 0.40 A with voltage of ~7kV 

and a substrate rotation of 10 rpm to enhance homogeneity of the film layers. The thickness 

were measured using a quartz crystal senor, the deposition rate of 0.2 nm/s and 2.0 nm/s 

were used to achieved the desired thickness of 50 and 1000 nm for Ni and Al, respectively.  
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Figure 3.6 Schematic illustration of the electron beam evaporation process.  

3.3.4 Chemical bath deposition  

Chemical bath deposition (CBD) method provides an easy and low cost method of producing 

cadmium sulphide (CdS) thin films at relatively low temperatures through reactions between 

Cd and S ions in an alkaline solution [191]. In this process, high quality film layers are produced 

by intimate contact between the bath solution and substrate material allowing homogenous 

formation of thin films on the substrates [192]. The CBD process involves the dissolution of a 

soluble salt (cadmium salt) in an aqueous solution to release cations whereas the anions are 

provided from a suitable compound of non-metallic element (thiourea) that can decompose in 

the presence of hydroxide ions. The film grows through ion-by-ion condensation of Cd2+ and 

S2- ions on the substrate when Cd2+ and S2- ions exist over the solubility limit [191]. The film 

formation can occur by a process of homogenous nucleation in the volume of the solution or 

through the process of heterogeneous nucleation on the substrate. The typical process 

reaction steps for the homogeneous mechanism involving cadmium acetate are given by [193]. 

 (𝑁𝐻2)2𝐶𝑆 + 2𝑂𝐻− → 𝑆2− + 𝐶𝑁2𝐻2 + 2𝐻2𝑂                                                                        (3.1)                                                       

  [𝐶𝑑(𝑁𝐻3)4]
2+ → 𝐶𝑑2+ + 4𝑁𝐻3                                                                                                (3.2) 

   𝐶𝑑2+ + 𝑆2− → 𝐶𝑑𝑆                                                                                                                       (3.3) 
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Sulphide ions (S2-) are released by the hydrolysis of thiourea while, Cd2+ ions form from 

cadmium sulphate (CdSO4) by coming with NH3 in the range of pH 10-11[194]. In 

heterogeneous mechanism,  𝐶𝑑(𝑁𝐻3)4
2+ complexes adsorb on the substrate and film growth 

takes place by ionic exchange reaction with S2- ions that reduces the overall speed of reaction 

and prevents Cd(OH)2 formation [195, 196]. 

The CdS buffer layer used in making device in this work was deposited by CBD as illustrated 

in figure 3.6. The 318 mL of deionised water was poured into a double-walled beaker and 

brought to a stable temperature of 70 oC. Then 2 and 1.5 mM of CdSO4 and NH3.H2O 

respectively, were added to the solution successively while the solution was being stirred to 

ensure uniform thermal and chemical homogeneity for the formation of the film. The samples 

with configuration of substrate/Mo/SnS, substrate/Mo/SnSSe and ITO coated glass were then 

inserted into the solution (see figure 3.7) for 2 minutes before 12mM of thiourea was added to 

solution and left for 20 minutes with continuous stirring of the bath. Thereafter, the samples 

were removed from the bath, rinsed with DI water and dried using nitrogen gas. Finally, the 

samples were subjected to heat treatment at atmospheric pressure for 10 min at temperature 

of 200 oC to promote intermixing at the SnS/CdS junction before being transfer for ZnO and 

ITO deposition.  

 

Figure 3.7 Schematic diagram of chemical bath deposition set up for CdS growth. 
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3.4 Post deposition heat treatment of the samples 

Post deposition heat treatment of the light-absorbing thin film can improve the quality of the 

layers and enhances the device performance. A very high quality SnS layer comprised of large 

grains is required to facilitate the transport of photo-generated carriers, reduce grain boundary 

recombination and thus potentially enhance the power conversion efficiency of the solar cells. 

The post deposition heat treatment process usually leads to the formation of larger grains and 

the decreasing of the surface roughness [28, 157]. In this study, post deposition heat treatment 

was performed in vacuum, argon and nitrogen environments. In order to activate the absorber 

layer, enhance grain growth and power conversion efficiency, the possibility of Se/S 

substitution was investigated in both vacuum and argon environments.   

The vacuum annealing treatment followed film deposition. The as-deposited sample was 

taken from the evaporator, carefully cut into three parts with one used as reference while, the 

other two parts were loaded back in the evaporator. The evaporator was then evacuated to a 

pressure of ~10-7 mbar before setting the substrate temperature at 400 and 450 oC for 60 min, 

for the second and third part of the sample, respectively.  

 In nitrogen (N2) ambient heat treatment, the samples were investigated using two sets of 

experiments. For the first set, three samples of the as-deposited SnS films were annealed at 

temperature range of 400, 450 and 500 oC for 60 min at 1000 mbar N2 flow in a tube furnace.  

In the second set, samples were treated with SnCl2 and MgCl2 solution prior to the annealing. 

This was performed by dipping the samples in a saturated solution of SnCl2 and MgCl2 for 

about 10 seconds, rinsed with deionised water before gently blown dry under a nitrogen 

stream. Then, the samples were moved into the tube furnace where the annealing took place 

at similar condition with the first set. A Carbolite annealing system (TZF-12/65/550) fitted with 

twin Eurotherm 2132 temperature controllers was used during the thermal annealing in N2 flow.  

In order to investigate the effect of Se/S substitution on the SnS absorber, the treatment was 

performed in both low vacuum and high vacuum environment using elemental selenium 
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vapour.  Three set of experiments were conducted. In the first experiment, the Se and SnS 

pellets were co-evaporated in vacuum at substrate temperature of 350 oC using the similar 

process described in section 3.2. For the second experiment, SnS films were first deposited 

at similar substrate temperature with first experiment before evaporating Se pellets at 

temperature of 400 and 450 oC. 

For the third experiment, the selenisation process involves placing the sample face down 

inside a cylindrical graphite box with 300 mg of selenium pellets placed on both ends of the 

box as illustrated in figure 3.8. The furnace was evacuated to a pressure of 5.5  10-3 mbar 

and backfilled with ~10 mbar of argon before increasing the temperature to the desired set 

point (range of 400-500 oC). The set point was controlled using timer and once it stabilises, 

the temperature was held constant for 20 min before the tube furnace is cooled to  40 oC to 

end the process and get the samples out (see figure 3.9, a typical example for a 450 oC set 

point). 

 

Figure 3.8 Schematic illustration of the tube furnace for Se anneal. 
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Figure 3.9 Typical measured temperature profile of the tube furnace for a 450  10 oC set 

point. 

3.5 Device fabrication processes 

The devices were fabricated in both substrate and superstrate configurations. The substrate 

configuration followed the stacking sequence glass/Mo/SnS/ZnS/ZnO/ITO/Ni-Al (detail and 

diagram in chapter 2 section 2.3, figure 2.5). In this process, Mo (~1.0 µm thickness) was 

sputtered onto substrate (SLG or quartz) as the back contact of the device before depositing 

the SnS absorber layer onto it. Thereafter, some of the samples were either annealed in N2 or 

Se environment (detailed in section 3.5) before coating with either ZnO, ZnS, In2S3 or CdS 

buffer layers.  This was immediately followed by sputtering ZnO (~60 nm) and ITO (~200nm) 

before depositing Ni (50 nm) and Al (1000 nm) metallic front contact to complete the device.   

For superstrate configuration (detailed in section 2.5), the substrates used were the 

commercial indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) coated glass slides with 

surface resistivity of 15 /sq. The n-buffer layer of either ZnO, ZnS, In2S3 or CdS with nominal 

thickness of 50-60 nm was first deposited on the ITO surface before coating with SnS absorber 

layers. Some of the films were thereafter subjected to heated treatment in either N2 or Se 

environment to promote intermixing before finally depositing a gold (Au) back contact of 100 

nm thickness at room temperature. 
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3.6 Characterisation techniques 

3.6.1 Thickness measurement 

Thickness is one of the most important thin film parameters for consideration as it determines 

to a great extend the properties of the film. In this work film thickness were measured by both 

in-situ monitoring of the quartz crystal and after the thin film deposition using a profilometer. 

Physical measurement was made using a Bruker DektakXT profilometer to compare to the 

crystal monitor reading. For the low thickness In2S3 and ZnS (80  10 nm) grown at room and 

~250 oC substrate temperatures, high temperature tape was used to mask a region on the 

samples during film deposition. The tape creates a step height when removed from the sample 

surface that enables easy measurement of the thickness by the vertical motion of the stylus 

tip over the step.  

3.6.2 Scanning electron microscopy and energy dispersive X-ray spectroscopy 

Scanning electron microscopy (SEM) provides insight into the material properties such as 

grain distribution, grain size, surface topographies, thickness and composition. A Tescan 

Mira3 high performance scanning electron microscope (operated at 5-20 kV and working 

distance of 5-15 mm) used in this study was equipped with energy dispersive X-ray Oxford 

instrument (X-Max 150) detector for analysing the elemental composition in the samples. The 

SEM scans the surface of the samples with a focused beam of electrons. When these high-

energy electron beam strikes the sample surface, they interact with the sample atoms at 

various depths and produce a variety of radiations that contain details about the sample’s 

surface topography, composition and view/map grain orientations. The theory of emission of 

electrons and X-rays are shown in figure 3.10. The penetration depth (Re) is defined by 

electron energy of the penetrating beam voltage (Eb) into the sample and can be expressed 

as [197]: 

𝑅𝑒 = 𝐸𝑏
4.28 × 10−6

𝜌
                                                                                                                       (3.4) 
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where 𝜌 is the density of the sample material.  

The modes of radiation used in this study include the secondary electrons (SE) that give 

information on the topography of the sample, backscattered electrons (BSE) that provide 

information on the topography/atomic contrast and the X-ray photons that provide important 

insight on the atomic and elemental composition of the sample.   

 

Figure 3.10 Schematic of the emission of the secondary electrons, backscattered electrons 

and characteristic X-rays. 

3.6.3 X-Ray diffraction 

The crystal structure of the samples in this study were examined using a Siemens D5000 X-

ray diffractometer in Bragg-Brentano configuration using a CuKα ( = 1.5406 Å) radiation 

source, a step size of 0.02 and an acquisition time of 2 seconds/step. X-ray diffraction (XRD) 

provides vital insight on the structure of the crystal or the identity of a crystalline substance. 

XRD is a non-destructive technique that works on the principle of Bragg’s law of diffraction as 

follows [197]. 
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where dhkl is the inter-planar spacing,  is the angle between the incident and the diffracted X-

rays, n is an integer (taken as 1 in this experiment) and  is the wavelength of the radiation. 

This is illustrated in figure 3.11a while figure 3.11b represents a typical Bragg-Brentano 

configuration adopted in this study.  

The data extracted from the analysis were thereafter compared with the reference powder 

diffraction files to identify the appropriate crystal structure and orientation of the films. The SnS 

film has orthorhombic crystal structure and its lattice parameters of SnS can be calculated as 

follows [198]:  

1

𝑑ℎ𝑘𝑙
= √

ℎ2

𝑎2
+
𝑘2

𝑏2
+
𝑙2

𝑐2
                                                                                                              (3.6) 

where a  b  c, are the lattice parameters. The crystallite size of the samples and micro strain 

were calculated using Williamson-Hall analysis [199]: 

𝛽𝑐𝑜𝑠𝜃 =
0.94

𝐷
+ 4𝑠𝑖𝑛                                                                                                          (3.7) 

where D is the crystallite size,  is the wavelength of the X-ray radiation (1.5406 Å),  is the 

full width half maximum (FWHM) of the diffraction peak and  is the Bragg angle. The linear 

fit to the data from the plot of cos versus 4sin were used to estimate the average crystallite 

size (D) and the micro strain () from the y-intercept and the slope of the fit, respectively. 

Crystallite size can also be estimated using Scherrer’s relation [164]: 

𝐷 =
0.94

𝛽𝑐𝑜𝑠𝜃
                                                                                                                                   (3.8) 

where D, ,  and  retain their meaning as defined in equation (3.7).  

While Williamson-Hall analysis deals with broadening due to grain size and micro strain, 

Scherrer‘s relation [164] is only due to grain size. The Scherrer’s relation cannot measure the 

accurate values of crystallite size hence, W-H analysis was used in this study. 
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The lattice parameters ‘a’, ‘b’ and ‘c’ of a single crystal SnS thin film are given as 4.148, 11.48 

and 4.117 Å, respectively [200]. In this study, lattice parameters were calculated using Eva 

software. The software was integrated into the XRD and it calculates data such as miller 

indices (hkl), Bragg’s angle and lattice parameters.  

  

Figure 3.11 (a) X-ray diffraction from atomic planes and (b) typical Bragg-Brentano 

geometry. 

3.6.4 Secondary ion mass spectrometry 

Secondary ion mass spectrometry (SIMS) is a surface analysis technique used to study the 

composition of solid surface to the bulk of the material. The analysis enables the elemental, 

isotopic and molecular composition of the surface to be determined up to a depth of few 

nanometres. Figure 3.12 shows the working principle of SIMS, where a primary ion beam is 

used to bombard the surface of the sample under vacuum to generate secondary ions that 

are collected and analysed using a mass spectrometer. Only the positively or negatively 

charged particles which make up the secondary ions are detected by the mass spectrometer 
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and were used to provide the basis for the compositional analysis while, the neutral atoms 

which are the most abundant of the ejected atoms are not used.  

 

Figure 3.12 Schematic illustration of SIMS principle.  

The elemental depth profiling was investigated by measuring the secondary ion count rate of 

the selected elements as a function of sputtering. In this study, SIMS was performed using a 

primary beam of oxygen ions (5 kV, 300 nA) rastered over a 0.5 x 0.5 mm2 area (gating 10%) 

and quadrupole detector from Hiden Analytical. 

3.6.5 Raman spectrometry 

Raman spectroscopy is a non-destructive structural analytical tool based on the inelastic 

scattering of photons (usually from a laser) with elemental vibrational excitations in materials 

commonly used in the identification of crystalline as well as to observe vibrational, rotational 

and other low-frequency modes in a system. The laser light interacts with the molecular 

vibrations, phonons or other excitation in the system, resulting in the upward or downward 

shift of the laser photons energy. This shift in energy provides insight on the vibrational modes 

in the system. The theoretical basis of the Raman scattering effect is illustrated in figure 3.13. 

Since XRD technique is based on Bragg’s law (details in section 3.6.3), the indexing of the 

crystalline phases can present some difficulties when there are overlapping of some SnS 

Bragg peaks with  SnS2 and Sn2S3 reflections. Crystalline materials are indistinquished if they 

+

-

Emitted secondary ionsPrimary ion beam

Mass spectrometer

Sample

Neutral excited 

atoms



72 
 

have similar atomic planar space, these feature are common in SnS materials due to the 

proximity of the d-spacing of the (hkl) diffraction peaks [39, 45, 201]. Raman analysis is thus 

used to complement the XRD analysis in detecting secondary phases in SnS thin films since 

it is based on the vibrational modes of the system [202, 203]. 

 

Figure 3.13 Schematic illustration of energy-level diagram in Raman scattering (the line 

thickness represents the signal strength from different transitions). 

In this study, the phases of the SnS films were further verified using a Horiba Labram 300 

Raman spectrometer of 632.8 nm wavelength using a HeNe laser. 

3.6.6 Spectrophotometry 

Optical properties of thin film absorbers characterise their ability to absorb incident light within 

the visible spectrum (~300-700 nm) and near infrared (up to 1400 nm) for absorbers. 

Ultraviolet-visible and near infrared spectroscopy (UV-Vis + NIR) is normally used to probe 

the absorption of light of thin film absorbers. The effectiveness of thin films at absorbing light 

generally depends on their absorption coefficient (α), which determines how far light of a 

certain wavelength can penetrate into the material before it is absorbed. For good thin film 

absorbers, the absorption coefficient are usually high such that only a shallow region of the 
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material allows the penetration of light.  For a given material, the absorption coefficient (α) can 

be calculated from transmittance, T, and reflectance, R, measurements as follows [204]: 

𝛼 = −(
1

𝑡
)  ln  (

[(1 − 𝑅)4 +  4𝑇2𝑅2]
1
2 − (1 − 𝑅)2

2𝑇𝑅2
)                                                     (3.8) 

where (t) stands for the thickness of the film, the optical energy bandgap (𝐸𝑔) can then be 

related to  α  as: 

𝛼ℎ = 𝑐(ℎ − 𝐸𝑔)
𝑛
                                                                                                                     (3.9) 

where h is Planck’s constant, c is a constant called the band tailing parameter, n is the 

frequency that depends on the nature of transition (n equals  ½ or 2 in direct and indirect 

allowed transitions, respectively). In order to determine the absorption characteristics of the 

SnS thin films in this study, T and R were measured using a UV-Vis-2600 spectrophotometer 

over a wavelength range of 300 - 1400 nm for SnS, In2S3 and ZnS samples.  

3.6.7 Hot point probe 

Hot point probe was used to determine the conductivity type of the SnS samples. It provides 

a very simple way to distinguish between n-type and p-type type materials using two probes 

(hot and cold) connected to a sensitive galvanometer with the hot probe connected to the 

positive terminal and the cold probe connected to the negative terminal of the meter as 

illustrated in figure 3.14. When the two probes make contact with the sample surface, carriers 

diffuse from the contact point such that the charge of the dominant carrier determines the 

direction of the net current flow [205]. Positive deflection is obtained in the meter when 

applying the set up to n-type semiconductor while, a negative deflection is observed when 

applying it to a p-type semiconductor. For the SnS samples measured, a negative deflection 

was observed indicating a p-type conductivity for the SnS layers studied. 
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Figure 3.14 Schematic illustration of hot point probe set up. 

3.6.8 Photoluminescence spectroscopy 

Photoluminescence spectroscopy is a non-contact and non-destructive technique of probing 

the electronic structure of material. During this process, a light is directed to a sample where 

it can be absorbed to cause photo-excitation. In this study, photoluminescence (PL) 

measurement was performed using a Horiba Jobin Yvon iHR320 fully automated spectrometer 

fitted with an InGaAs PMT detector cooled to -30 °C to reduce noise. The measurement setup 

is shown in figure 3.15.  A 532 nm continuous wave diode-pumped solid state (CW-DPSS) 

laser (MGL III-532 200 mW) was used as an excitation source. Power-dependent PL 

measurements were performed by adjusting the intensity of the laser beam using the MGL 

PSU-III-LED controller. PL measurements at varying temperatures were performed by placing 

the sample in a Janis SHI-4-2 closed cycle refrigeration cryostat using compressed He gas 

coupled with a Lakeshore Model 335 temperature controller. The laser light was chopped and 

focused onto the sample inside the cryostat and luminescence from the sample was focused 

into the entrance slit of the 320 mm focal length monochromator. The luminescence was 

filtered with a long-pass filter using a cut-off wavelength of 760 nm to prevent artefacts arising 

from laser radiation.  
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Figure 3.15 Photoluminescence spectroscopy set-up.   

3.6.9 Simulated device characteristics 

SCAPS modelling tool was used to simulate the current density-voltage (J-V) and access the 

properties of thin film layers. The need for numerical simulation is necessary, as the 

heterojunction interface (such as p-SnS/n-buffer) is more complex in practice to access 

optimal alignment. SCAPS modelling tool is designed for simulation of the properties of 

semiconductor structures based on solving one-dimensional Poisson and the electron-hole 

continuity equations given as [179]: 

𝑑2

𝑑𝑥2
𝛹(𝑥) =

𝑒

𝜀𝑜𝜀𝑟
[𝑝(𝑥) − 𝑛(𝑥) + 𝑁𝐷 −𝑁𝐴 + 𝜌𝑝 − 𝜌𝑛]                                                            (3.10) 

𝑑

𝑑𝑥
𝐽𝑛(𝑥) − 𝑒

𝜕𝑛(𝑥)

𝜕𝑡
− 𝑒

𝜕𝜌𝑛
𝜕𝑡

= 𝐺(𝑥) − 𝑅(𝑥)                                                                              (3.11) 

𝑑

𝑑𝑥
𝐽𝑝(𝑥) + 𝑒

𝜕𝑝(𝑥)

𝜕𝑡
+ 𝑒

𝜕𝜌𝑛
𝜕𝑡

= 𝐺(𝑥) − 𝑅(𝑥)                                                                              (3.12) 

where 𝛹  is electrostatic potential, 𝑒  is an electron charge, 𝜀𝑜 𝜀𝑟  the vacuum and relative 

dielectric permittivity, p and n the hole and electron concentrations, ND and NA the charged 

impurities of donor and acceptor types, 𝜌𝑝 and 𝜌𝑛 the holes and electrons distributions, 𝐽𝑛 and 
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𝐽𝑝  the electron and hole current densities, 𝐺(𝑥)  and 𝑅(𝑥)  the charge generation and 

recombination rates, respectively. From the output provided by SCAPS simulation, thickness 

and buffer layer dependent properties of J-V characteristics and band alignment were 

estimated. The schematic structure of the solar cell adopted in SCAPS is shown in chapter 2, 

while the input layers parameters are presented in table 3.1.  

Table 3.1 Key input modelling parameters used in SnS simulations [24, 57-59, 104, 206-211]. 

Parameters set in the simulation SnS ZnS In2S3 CdS ZnO 

Thickness (nm)  80020 6010 6010 5010 5010 

Ionisation potential, Ip (eV) 5.37 7.25 7.20 6.90 7.65 

Work function, s (eV) 4.78 4.60 4.65 4.90 4.65 

Electron affinity,  (eV) 4.00 3.90 4.25 4.50 4.35 

Energy bandgap, Eg (eV) 1.37 3.35 2.95 2.40 3.30 

Relative dielectric permittivity r 13  8.30 13.5 10  9  

CB effective density (cm-3) 1.181018  6.341018 1.81019 2.21018 2.21018 

VB effective density (cm-3) 4.761018 1.461019 4.01013 1.71019 1.81019 

Electron mobility µn (cm2Vs-1)  15 250 40 340 100 

Hole mobility µp (cm2Vs-1) 100 20 20 50 25 

Acceptor density NA (cm-3) 1015 - - - - 

Donor density ND (cm-3) - 5.71017 1018 1017 1018 

3.6.10 Experimental device characteristics  

The J-V measurements were performed to probe the performance of the solar cells. To 

measure the J-V of the solar cells, the solar spectrum was recreated via Sun 2000 solar 

simulator model with AM1.5 spectrum (explained in chapter 1), adjusted to 1000 Wm-2 using 

the set-up shown in figure 3.16. The measurement was then performed in the dark and under 
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illumination at room temperature using a Keithley 2400 series source meter. The current was 

recorded with the help of a labtracer software as the voltage was swept from -0.2 - 0.5 V. 

 

Figure 3.16 Schematic diagram of current - voltage measurement set-up. 
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Chapter 4  

Growth and Characterisation of SnS Solar Absorbers 

This chapter focuses on the growth and optimisation of SnS thin film photovoltaic absorbers 

deposited by thermal evaporation for application in p-n junctions thin film solar cells. A brief 

introduction presented in section 4.1 and sample description in section 4.2, are followed by a 

systematic study of the influence of film thickness, substrate temperature and type of substrate 

material on the properties of the SnS thin films presented in section 4.3. Finally, the conclusion 

to the chapter in 4.4. 

4.1 Introduction 

The study of SnS thin films microstructure, optical and crystallographic properties with the 

deposition variables such as thickness, temperature and substrate material are crucial for 

getting films that are suitable for photovoltaic device applications. The main challenges with 

the growth of SnS absorber layers are the formation of secondary phases such as SnS2 and 

Sn2S3 due to dual valence of Sn (Sn2+ and Sn4+), small grain sizes and non-adherence of the 

layers on the substrate surface.  

The literature on the growth of SnS thin films by thermal evaporation technique shows that 

there is a strong interdependence between the deposition parameters and SnS thin film 

properties [39, 85, 95, 98, 212]. For instance, SnS film layer thickness range of 2.4-3.4 µm 

thermally evaporated at 300 oC substrate temperature was reported to exhibit a direct 

bandgap of 1.30-1.32 eV [95], while 65 and 800 nm thick films deposited at 200 and 350 oC 

substrate temperatures by same technique has a bandgap of 2.28 and 1.65 eV, respectively 

[39, 85].  

In this study, the influence of film thickness, substrate temperate and substrate material type 

on the properties of SnS solar absorbing thin film were decoupled and systematically 
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investigated.  Single phase SnS is vital as secondary phases have negative impact on the 

device performance, for example, SnS2 acts as recombination centre for holes and electrons 

and Sn2S3 can promote hole trapping [61, 66]. Also stoichiometric p-type SnS phase is critical 

to enhance performance as studies have shown that a deviation from ideal stoichiometry of 

only 15% is enough to change SnS conduction from p- to n-type [66] and this has been one 

of the major reason for poor device performance to date. Substrate adherence is also crucial 

as film delamination can lead to device failure. Sodium (Na), a major constituent of SLG is 

known to diffuse during thermal processes (temperatures > 300 oC) and contaminates the film 

or enhance grain growth in other solar absorbers such as CdTe [213-215] and CZTS [216]. 

Quartz was used due to its purity compared to SLG to investigate if Na has any effect on SnS 

grain growth.  

4.2 SnS sample properties 

To obtain SnS thin films, 99.999% purity SnS pellets (T7-5014-M) with stoichiometric 

composition of tin and sulphur (Sn/S = 1.00) were deposited onto pre-cleaned soda lime glass 

(SLG, 76 ×  26 ×  1 mm3) and quartz at high vacuum (<8.0 ×  10-7 mbar) by thermal 

evaporation. The substrate holder was rotating at a constant speed of 10 rpm to ensure a 

homogenous layer of SnS films. In order to optimise the SnS layer properties, the following 

deposition parameters were used; substrate temperature Ts (from room temperature to 400 

oC), film thickness t (from 100 to 3500 nm) and substrate material type (SLG, quartz, ITO and 

FTO coated glasses, Mo coated SLG and quartz). 

4.3 Results and discussions  

The thickness of the layers was measured using a stylus profilometer to confirm the values 

obtained from the crystal monitor. The morphology, composition, structure and optical 

properties were studied using SEM, EDS, SIMS, XRD, Raman and UV-VIS-NIR spectroscopy 

as explained in chapter 3 section 3.6. 
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4.3.1 Optimisation of SnS solar absorber thickness 

The thickness of the solar absorbing layer is a vital parameter of photovoltaic device due to its 

ability to influence charge carrier absorbance and generation, as well as the power conversion 

efficiency of the solar cell. SnS simulations can provide improved insight of the thickness 

dependent operation of thin film solar cells and can remove any constraints in the sourcing of 

physical material. SnS layer thickness was varied from 100 nm to 3000 nm using solar cell 

design based on SnS/ZnS/ZnO/ITO structure, which provided the background for the 

experiments. The key input parameters were presented in chapter 3. Note that ZnS was used 

over CdS due to its higher energy bandgap.  

4.3.1.1 Numerical simulation: Influence of thickness on device 

The simulated current density-voltage (J-V) curves of SnS/ZnS/ZnO/ITO solar cells are shown 

in figure 4.1. The PV process was initiated in the simulation by illuminating the cell with 1 Sun 

(AM1.5), thereafter the SnS solar absorber thickness was varied to find out optimal thickness 

for SnS solar cell, while keeping that of ZnS, ZnO and ITO constant. Figure 4.2 shows the 

influence of SnS solar absorber thickness on the main parameters of the PV device. 

 

Figure 4.1. Illuminated J-V curves of simulated SnS/ZnS/ZnO/ITO device. 
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Figure 4.2. Influence of SnS absorber thickness.  

Notice that the SCAPS data showed the saturation point for device efficiency to be 2000 nm 

with minimum threshold of 800 nm, same as short circuit current (Jsc). At the thickness of 800 

and 3000 nm, the estimated efficiency is 7.53% and 7.81%, respectively. Similar behaviour 

was observed in the fill factor, short circuit current and open circuit voltage output of the device, 

where the variations with SnS layer thickness become negligible over a thickness of 800 nm 

except for Jsc, which appears to decrease at 2500 – 3000 nm. The proposed structure shows 

that lowering the absorber layer thickness to ~800 nm can give similar device performance 

with 3000 nm, which means reduction in material usage and cost. This is a vital step in the 

fabrication of solar cells therefore, the next sub-section will look at the physical properties of 

the SnS layers in the thickness range of 100 nm to  3000 nm. 

4.3.1.2 Thickness dependent properties   

The composition of the as-deposited films at a constant substrate temperature of 100 oC varied 

with the increase in film thickness (t) as shown in table 4.1. The Sn/S ratio varied between 
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0.84 - 1.86, whereas the starting material (pure SnS pellets) had a stoichiometric composition 

of tin and sulphur (Sn/S = 1.00  0.01). The atomic composition reveals a marginal difference 

for film thickness  800 nm, thereafter it varied with considerable difference. This is due to 

differences in the vapour pressures of Sn and S as noticed in other reports [15, 217]. A typical 

EDX spectrum for the 800 nm thick film is shown in figure 4.3 (a) while figure 4.3 (b) indicates 

the points of measurements.  

 

Figure 4.3 (a) EDX spectrum and (a) SEM point of EDX measurement. 

The atomic compositions taken from multipoint, that is spectrum 1 to spectrum 8 (see 

figure 4.3b) were similar, the average value was estimated and included in table 4.1, which 

gave error value of  0.01.  

(a)

(b)
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This reveals that a thickness of 800 nm can be optimised for photovoltaic application due to 

its near stoichiometry of 0.94. The p-type conductivity in 100, 400 and 800 nm are mainly due 

to tin vacancy (VSn) otherwise called cation defect which acts as a shallow acceptor. Also 1500 

and 2100 nm thick films are p-type because in Sn-rich limit, the sulphur vacancy (VS) which 

has lower formation energy (see chapter 2 figure 2.2b) than VSn, does not significantly 

compensate the p-type conductivity [52]. This is because the ultra-deep level (2+) of VS lies 

very close to the valence band maximum and therefore, with <15% sulphur loss, does not 

compensate the holes produced by VSn. However, for the 3500 nm thick layer the sulphur 

vacancy (VS), which is significant (>30% sulphur loss) led to anion defect, which resulted in 

the conductivity type change from p to n-type. 

Table 4.1. SnS thin film composition across the film thickness (t) range along with the energy 

bandgap (Eg) and Urbach energy (Eu) determined from optical measurements and 

conductivity type. The starting SnS evaporant material was measured at Sn/S = 1.00 using 

EDS.  

 t  20 (nm) Sn (at %) S (at %) Sn/S  0.01 Eg (eV)  0.05 Eu (eV)  0.005 Type 

100 47.4 52.6 0.90 2.03 0.164 p 

400 48.1 51.9 0.93 1.68 0.167 p 

800  48.5 51.5 0.94 1.48 0.168 p 

1500 54.4 45.6 1.19 1.46 0.183 p 

2100 57.7 42.3 1.36 1.44 0.213 p 

3500 65.0 35.0 1.86 1.26 0.219 n 

The surface morphology of the SnS film of thickness range 100 nm to 3500 nm deposited at 

100 oC on SLG was studied using SEM. The surface morphology (top view) of the films show 

randomly oriented needle and rice-like grains (see figure 4.4). The micrographs reveal a 

gradual change of the grains from island nature to a closely packed structure with the increase 
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of film thickness. The micrographs depicts a progressive increase in the grain size with 

increasing film thickness from 100 to 1500 nm, above the 1500 nm thickness no further visible 

increase in the grains can be seen. This indicates that further increasing the thickness at 

constant substrate temperature has no effect on grain growth, as the thermal energy at the 

substrate for the mobility of adatoms will be constant.  

 

Figure 4.4 SEM micrographs of as-deposited SnS films (top view) at thickness range of 100-

3500 nm and constant substrate temperature of 100 oC. 

The wavelength dependence of optical transmittance was studied in the wavelength range 

300-1400 nm for the as-deposited films. Figure 4.5 (a) shows the plots of the transmittance, 

T(), and reflectance, R(), spectra. A shift in absorption edge towards longer wavelength and 

decrease in transmittance as the film thickness increases are observed indicating increase in 

photon absorption with the deposition conditions. The absorption coefficient (α) was 

determined from T and R data, and the film thickness (t) (see chapter 3) and Tauc plots were 

used to determine the energy bandgap of the films. Both direct and indirect (𝐸𝑔)  have been 

reported for SnS thin films depending on preparation and growth conditions [125]. In this study, 

the plot of (αh)n vs (h) gave better fit for n = 1/2, indicating the films to have a direct allowed 

transitions with optical energy bandgap range of 1.26 - 2.03 eV for the varying film thicknesses 

(see figure 4.5b). As shown in figure 4.6, a trend of decrease in the bandgap energy with the 

increase in Sn/S atomic ratio was observed due to loss in Sulphur.  The wider energy bandgap 
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of 2.03 eV observed at the lowest thickness film of 100 nm is due to its amorphous structure 

as depicted in the XRD spectra of figure 4.9 (a) and possible quantum confinement effect [218-

221]. These results are also comparable to report from the literature, which showed increased 

population of SnS2 and Sn2S3 secondary phases [99, 202, 222].  

 

Figure 4.5 (a) Transmittance (solid lines) and reflectance (dotted lines) and (b) (αh)2 versus 

h  of the films as a function of layer thickness. 
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Figure 4.6 Sn/S atomic ratio and energy bandgap as a function of film thickness (the lines 

are guides for the eye). 

Below the optical band edge, the relationship between (α) and photon energy (h) is following 

the Urbach empirical rule [223, 224]. For single crystal, the fluctuations of atomic position 

during thermal vibration at high temperatures determines the nature of the band tail state. The 

Urbach rule is given as [223]: 

𝛼 = 𝛼𝑜    (
ℎ

𝐸𝑢
)                                                                                                                         (4.1) 

𝐼𝑛 𝛼 = 𝐼𝑛 𝛼𝑜 + (
ℎ

𝐸𝑢
)                                                                                                                 (4.2) 

where αo denotes a pre-exponential term which is constant and Eu is Urbach energy which 

indicates the width of the exponential absorption edge. The logarithm of equation 4.1 results 

in equation 4.2. From the plot of ln (α) against (h) (see figure 4.7) near the absorption edge 

for the as-deposited SnS films at different film thickness, the Urbach energies were estimated 

as the inverse of the slope. Figure 4.8 shows the energy bandgap (Eg) and Urbach Energy 

(Eu) as a function of the film thickness. The Eu value is ranging from 0.164 to 0.219 eV across 

the thickness range as shown in table 4.1, indicating a slow increase up to 800 nm then large 

increase with thickness. This suggest the presence of intrinsic disorders in the films that 

increases with the film thickness indicating the increase in the width of the localised states 
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within the bandgap [225]. Notice that sulphur vacancy defects and crystalline structure 

disorder are present in the films with thickness above 800 nm. The crystalline disorders were 

evidenced in the XRD data where the film orientation changed from (111) to (020) with 

increased thickness (see figure 4.9a) 

 

Figure 4.7 ln(α) versus h of the as-deposited SnS films as a function of thickness. 

 

Figure 4.8 Energy bandgap (Eg) and Urbach Energy (Eu) as a function of film thickness (the 

lines are guides for the eye). 
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Figure 4.9 (a) shows the X-ray diffraction (XRD) spectra of the as-deposited SnS thin films. 

All reflections are indexed using references from the database on the joint committee on 

powder and diffraction standard powder diffraction file (JCPDS PDF), matching the 

orthorhombic SnS (PDF 039-0354), SnS2 (PDF 023-0677) and Sn2S3 (PDF 014-0619). 

 

Figure 4.9 (a) XRD (* and # stands for SnS2 and Sn2S3, respectively) and (b) Raman spectra 

of SnS films deposited at a constant temperature of 100 oC as a function of layer thickness. 
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Figure 4.10 Crystallite size and strain as a function SnS film thickness (bars indicate 10% 

error in determination of crystallite size and strain, while lines are guide for the eye). 

The crystallographic analysis reveals the presence of secondary phases (SnS2 and Sn2S3) 

across the thickness range with the (111) prominent peak changing to (002) as the film grow 
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because of compositional disorder earlier shown in figure 4.6. Raman analysis were also 
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layer ‘b’ axis [227]. Figure 4.11 shows the variation in the Ag and B2g Raman mode positions 

as a function of film thickness. The Ag and B2g modes revealed a systematic shift to a higher 

wavenumber with increasing layer thickness. This showed that thinner films have vibrations 

taking place at lower wavenumber than thicker films.  

 

Figure 4.11 Variation in Ag and B2g Raman mode positions as a function of film thickness. 
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(detailed in section 3.2) as well as the source material composition (stated in section 3.3.1) 

were the same unless otherwise stated.  

Physical observation of the film showed that most of the films were pinhole free and its 

adherence to substrate increased with temperature: films grown > 300 oC adhered strongly to 

substrate surface unlike the samples deposited at lower temperature. The layers were darkish-

grey at 200-300 oC and changed to grey at  350 oC. The surface morphology of the as-

deposited films were studied using SEM. Figure 4.12 shows the surface micrographs of the 

films, which have randomly oriented rice and flake-like grains. The increase in temperature 

led to the growth of bigger grains. The recorded small grain sizes at lower substrate 

temperatures ( 250 oC) is because the kinetic energy of the adatoms are low compared to 

higher temperatures and the coalescence of the nucleating atoms are restricted. This gave 

rise to high bandgap due to quantum confinement effect [200, 228]. Further increase in 

substrate temperature beyond 350 oC yield no visual change on the surface morphology. The 

small grain sizes observed at room temperature to 100 oC correlates with the broadening of 

Raman peaks (see figure 4.30a). Average grain sizes were quantified and the values 

increased from 20  1.0 nm to 150  7.5 nm with increase in substrate temperature from room 

to 400 oC (see figure 4.13). The growth of bigger grains are likely due to increase in adatoms 

mobility with temperature, promoting coalescences of smaller grains to form bigger grains. 

Other authors have reported similar behaviour of SnS grains prepared by thermal evaporation 

[164, 229].  
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Figure 4.12 SEM micrographs of SnS films (top view) as a function of substrate temperature 

(scale bar is same for all images). 

 

Figure 4.13 Average grain size (5.0% error) as a function of substrate temperature. 
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sample are the same with stoichiometric Sn and S atomic composition. Table 4.2 shows the 

variation of Sn/S atomic ratio across the substrate temperature range. The films showed a 

gradual increase of the Sn/S ratio with substrate temperature, whereas the starting material 

(pure SnS pellets) had a stoichiometric composition of tin and sulphur (Sn/S = 1.00). The Sn/S 

range of 0.89 - 1.10 show a trend of decreasing S content (see figure 4.15) in the films as 

substrate temperature increases in agreement with reports in the literature [15, 230]. 

 

Figure 4.14 EDX spectrum of SnS films deposited at 350 oC. 
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Figure 4.15 Sn/S ratio and energy bandgap of SnS films as a function of substrate 

temperature. Phases confirmed with XRD and Raman data (see figures 4.23 and 4.30).   

Notice that the changing atomic ratio of Sn and S can also give insight into the phases present 

with respect to substrate temperature. Secondary phases of SnS2 and Sn2S3 can be seen due 
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Table 4.2. SnS thin film composition at different substrate temperatures range of room 

temperature (RT) to 400 oC along with key optical properties. The starting SnS evaporant 

material was measured at Sn/S = 1.00 using EDS. The energy bandgap Eg and Urbach energy 

Eu were determined from optical measurements, while absorption coefficient (α) was extracted 

at  = 550 nm. 

Sub. temp 10 
(oC) 

Sn (at %) S (at %) Sn/S  
0.01 

α (×105 cm-1) Eg (eV) 

 0.05 

Eu (eV) 

 0.005 

RT 47.2 52.8 0.89 0.05 1.60 0.156 

50 48.0 52.0 0.92 0.08 1.54 0.163 

100 48.5 51.5 0.94 0.27 1.52 0.168 

150 48.8 51.2 0.95 0.34 1.48 0.171 

200 48.9 51.1 0.96 0.34 1.46 0.167 

250 49.2 50.8 0.97 0.85 1.43 0.169 

300 49.3 50.7 0.97 0.87 1.41 0.171 

325 49.5 50.5 0.98 0.92 1.40 0.172 

350 50.0 50.0 1.00 1.11 1.37 0.170 

400 52.4 47.6 1.10 1.20 1.31 0.186 

 

Figure 4.16 Sn/S ratio with film depth as determined from SIMS for substrate temperature of 

325, 350 and 400 oC. 
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The composition uniformity with respect to the film thickness was probed by SIMS and is 

shown in figure 4.16 where the intensity ratio of Sn and S ions are plotted for three films. All 

films showed uniform profiles with depth of both Sn and S but the ratios showed the films 

becoming increasing Sn rich as substrate temperature increases in good agreement with the 

EDS data shown in table 4.2. 

The transmittance, T, and reflectance, R, spectra of the as-deposited SnS thin films studied 

over the wavelength range of 300-1400 nm are plotted in figure 4.17 (a and b). The 

transmittance spectra demonstrated interference fringes which is an indication of good surface 

homogeneity and uniformity of the layers [232].  A sharp fall of the transmittance was observed 

for all films at the wavelength regarded as the fundamental absorption edge. The absorption 

edge shifts towards longer wavelength (red shift) with increase in substrate temperature, and 

this is associated with the change in composition described earlier. The optical absorption 

coefficient that indicates how strongly a material absorbs light was determined across the 

temperatures.  The films show high absorption coefficient of 3.4 × 104 to 1.2 × 105 cm-1 (at  

= 550 nm) with increasing temperature. The energy bandgap of the film was determined by 

plotting the values of (αh)2 vs (h) and extrapolating the linear region to the h axis as shown 

in 4.17 (c and d). The direct bandgap energy range of 1.31-1.60 eV recorded were found to 

decrease with increase in the substrate temperature. The high bandgap energy (1.48-1.60 eV) 

recorded at lower substrate temperatures range of room to 150 oC are due to presence of 

secondary phase, Sn2S3 that has a wide bandgap of ~1.64 eV [233] as confirmed with XRD 

and Raman data. The near stoichiometric SnS film (Sn/S = 1.00) grown at 350 oC substrate 

temperature has a direct bandgap of 1.37 eV. This bandgap is near optimum for photovoltaic 

cell applications and it is close to the reported bandgap of stoichiometric polycrystalline SnS, 

1.35 eV [15]. The noticeable change in the bandgap with the substrate temperature is linked 

to the changing composition of the films (see table 4.2).  
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Figure 4.17 (a and b) Transmittance (solid lines) and reflectance (dotted lines) and (c and d) 

Tauc plot of the SnS thin films deposited on SLG as a function of substrate temperature. 

To estimate the Urbach energy across the substrate temperature, ln(α) against (h) was 

plotted across the temperature (see figure 4.18) and the inverse of their slope near the 

absorption edge were estimated as the Urbach energies. The Eu value is ranging from 0.156 

to 0.186 eV as a function of substrate temperature (see figure 4.19 and table 4.2), similar 

behaviour exist with increasing film thickness discussed earlier, indicating that increase in both 

thickness and temperature lead to increase in the disordered atoms. For temperature of 250-

350 oC, Eu is invariant (within the experimental error) while a large increase is observed for 

the highest temperature. This correlates well with the increase in Sn/S ratio (10% at 400 oC) 

resulting in an increase in the disordered atoms and defects in the structural bonding that can 

cause the absorption edge to spread at the lower region [224]  and is the main reason for the 

observed variations. 
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Figure 4.18 ln(α) versus h of the SnS films as a function of substrate temperature. 

 

Figure 4.19 Urbach energy (Eu) as a function of substrate temperature (the line is a guide for 

the eye). 
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complex function of the photon energy with real part n, and imaginary part taken as the 

extinction coefficient, k. Both k and n were estimated from the following relations [223, 234]: 

𝑘 =  
𝛼

4
                                                                                                                                         (4.3) 

𝑛 =  
1 + 𝑅

1 − 𝑅
+ √[

4𝑅

(1 − 𝑅)2
 −  𝐾2]                                                                                       (4.4) 

where n is the refractive index, k is the extinction coefficient, while , and R retain their 

meaning in this work. Figure 4.20 (a and b) show the behaviour of the refractive index and 

extinction coefficients of the films with wavelength as a function of substrate temperature. The 

refractive index of the SnS films decrease rapidly with increase in wavelength up to 860 nm 

and then stay monotonous. The extinction coefficient has high values at the lower wavelength 

region with peaks at ~600 nm, which correlates with the high absorption region of the films. 

Shaaban et al. [235] reported similar behaviour for nanocrystalline SnS films prepared by 

thermal evaporation.  The n and k value range from 1.22-1.41 and 0.35-0.51, respectively (at 

 = 550 nm) with increasing temperature (see figure 4.20c). This is a good value for reducing 

reflectance at the interface of the films.   
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Figure 4.20 (a) refractive index (n), (b) extinction coefficient (k) with wavelength and (c) n 

and k values extracted at 550 nm wavelength. 

Thin film materials are characteristed by a complex dielectric constant (  = 1 +i2) which is 
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and 2 are related to n and k values and can be calculated using the following equations [157, 

237]. 

𝜀1 = 𝑛2 − 𝑘2                                                                                                                               (4.5) 

𝜀2 = 2𝑛𝑘                                                                                                                                       (4.6) 
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of 1 and 2 against photon energy for SnS films grown by spray pyrolysis. This increase in the 

real and imaginary parts of dielectric constants with the substrate temperature indicate the 

improvement in the optical response of the layers and reduction in the energy dissipative rate 

of the incident light. This shows that with increase in substrate temperature, the photon 

absoprtion of films are increased probably due to the growth of bigger grains. 

 

Figure 4.21 Real (1) and imaginary (2) part of dielectric constant (at  = 550 nm) across the 

substrate temperature range (the lines are guides for the eye). 
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Figure 4.22 (a) XPS spectra of SnS films deposited on SLG at lower temperature (b) zoom 

of the Sn3d narrow scan and (c) S2s and S2p energy levels. The spectra are off-set for 

better visibility. 

The Sn3d narrow spectra with two major peaks at Sn3d5/2 and Sn3d3/2 (see figure 4.22b) 
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temperatures (see figure 4.22c), showing no change in the oxidation state of S, hence the 

possible change of Sn4+ to Sn2+ with increasing temperature. These changes in oxidation state 

of Sn accounts for the secondary phases associated with SnS as reported in literature [29, 

61]. Presence of oxygen (O1s) and carbon (C1s) contamination were observed on the XPS 

survey of films as shown in narrow scan in figure 4.22(d). These contaminations were 

minimised due to increase in substrate temperature, which resulted in a shift to lower oxidation 

state of tin (Sn4+ to Sn+2). The room temperature and 50 oC substrate temperature with binding 

energies 486.18 eV corresponds to Sn2S3, 100 oC and 150 oC with binding energies 485.50 

corresponds to SnS [239], though these partly correlates with the XRD analysis discussed in 

the next paragraph but cannot be used to adequately distinguish the SnS phases. 

XRD spectra of the SnS films as a function of temperature is shown in figure 4.23 (a). The 

diffractions peaks of all the samples matched well with orthorhombic structure of SnS 

(Herzenbergite) consistent with the powder diffraction file stated in the figures. The 

crystallography reveals the presence of secondary phases (SnS2 and Sn2S3) at lower 

temperatures, consistent with the high sulphur atomic percentage. However, at high 

temperature range of 200 - 400 oC, the layers exhibited single phase only (also confirmed from 

the Raman analysis as detailed later) with the (111) and (040) planes giving rise to the most 

prominent peak. The XRD spectra show that the (111) plane is more likely associated with the 

substrate temperatures  300 oC while, the (040) diffraction plane is related to higher substrate 

temperatures (350 oC). The zoomed spectra (see figure 4.23b) shows a 0.04o shift in the 2θ 

values towards the lower Bragg’s angle of the (111) plane as the temperature approaches 

350 oC, which may be as a result of the increase in the crystallite size and decreased micro-

strain. This is consistent with other reports [15, 45, 98, 165, 203, 240]. Other noticeable 

diffraction peaks include the (110), (120), (021), (101), (041), (141), (211), (122), (042), (080) 

and (232) Bragg reflections consistent with the reference powder diffraction pattern.  
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Figure 4.23 (a) XRD spectra as a function of substrate temperature and (b) zoom of (111) 

and (040) peaks. 

The unit cell parameters are determined using Eva software integrated in the XRD machine. 

As shown in figure 4.24, the unit cell parameters revealed a marginal increase with 

temperature similar to other report [200] and these contributed to the decrease in energy 

bandgap with temperature listed in table 4.2 [241]. 

 

Figure 4.24 Unit cell parameters (2% error) as a function of substrate temperature. 
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diffraction peaks. To complement XRD in identifying SnS phases Raman analysis, which will 

be discussed later was also conducted.  

 

Figure 4.25 XRD spectra of as-deposited SnS films at 100 oC and thickness of 1.5 µm. 

The texture coefficient (Chkl) and the degree of preferred orientation () of the films [242] were 

studied in order to quantify the effect of the substrate temperature on the crystal properties. 

The texture coefficients are defined as:  

Chkl=

Ihkl

Io, hkl

1
m

 ∑
Ihkl

Io, hkl
m

                                                                                                        (4.7) 

where m (m = 8) is the number of reflections, Ihkl is the intensity of the hkl reflection and Io, hkl 

is the intensity of the standard powder diffraction file. Chkl gives the measure of the orientation 

of each hkl plane in comparison to a completely randomly oriented sample. The degree of 

preferred orientation () of each sample was then determined from the standard deviation of 

all the Chkl values as, 

σ =√∑
1

m
(Chkl-1)

2
                                                                                                      (4.8) 

For a film to have a preferred orientation (non-random distribution of the crystallites), the 

texture coefficient at any of the (hkl) reflection must be greater than one [243-245]. Figure 4.26 

shows the Chkl values for the noticeable Bragg peaks as a function of substrate temperature , 
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while figure 4.27 shows the variation of the C(111), C(040) and  for the films deposited at higher 

substrate temperature range of 200-400 oC. At temperatures  300 oC the crystal structure is 

randomised indicated by absence of (040) plane and increase in the C(hkl) of (111), (110), (120) 

(101) and (430) diffraction planes (see figure 4.26). However, for temperatures  350 oC the 

results show a substantial increase of (040) in relation to other hkl reflections and being the 

only peak > 1 indicates that the crystallites are preferentially orientated in the (040) plane. This 

suggests that film deposited at temperature  350 oC show the set properties useful for the 

fabrication of SnS heterojunction devices.  

 

Figure 4.26 Texture coefficient (Chkl) for the range of samples tested. 

 

Figure 4.27 Texture coefficients C(111), C(040) and  as a function of temperature. 
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The crystallite size (D) and strain () are estimated from the XRD data by Williamson-Hall (W-

H) method explained in chapter 3. The calculations were performed for the films that exhibited 

single SnS phase (temperature range of 200-400 oC) and all the eight (hkl) diffraction peaks 

observed. Figure 4.28 shows the W-H linear plots of cos versus 4sin.  

 

Figure 4.28 Williamson-Hall linear plots of cos versus 4sin for the films deposited at 200-

400 oC substrate temperature.  

A trend of increase in crystallite size and decrease in strain with substrate temperature was 

observed as shown in figure 4.29. The decrease in strain may indicate the formation of higher 

quality films at higher substrate temperatures [246]. The instrumental broadening in the 

analysis was removed using Eva software during the analysis. In addition, the diffractogram 

of a standard material (Silicon) with high crystallinity and sharp Bragg peaks was also 

measured. This diffractogram was used for the determination of the peak broadening which 

comes from the instruments slits.  
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This could be that at higher temperatures, residual stress of the films relaxes and thus strain 

is reduced. As with grain size, the increase in substrate temperature increases the mobility of 

adatoms that also results in the increase of the crystallite size and crystallinity of the films 

[247]. This observation is consistent with the increase in grain size observed in figure 4.13. 

 

Figure 4.29 Crystallite size and strain for the range of samples tested (bars indicate  5% in 

determination of crystalite size and strain, while the lines are guide for the eye). 

To reliably confirm the existence of only SnS phase at high substrate tempertaures following 

XRD data, Raman studies were conducted and the data are shown in figure 4.30 (a-c). At 
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revealed the presence of secondary phases. The most intense peak for the samples is at 
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peak at 172 cm-1 are from B2g modes [153]. These suggests that at low deposition 

temperatures, synthesising pure SnS crystal phase is not possible. However, at higher 
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196 cm-1 (see figure 4.30b and zoomed data in figure 4.30c) for clarity and a minor band found 
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Sn2S3 (307 cm-1) and SnS2 (312 cm-1) [203] are detected across the high substrate 
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assigned to the B3g mode [221]. Figure 4.31 shows the influence of substrate temperature on 

the B2g and Ag mode positions. A slight shift to lower wavenumbers with increase in 

temperature were observed, which indicate the presence of bigger grain size similar to other 

report [248]. Notice the B2g modes were at higher wavenumbers for temperature <200 oC due 

to presence of secondary phases (SnS2 and Sn2S3).  

 

Figure 4.30 (a and b) Raman spectra of the SnS  films grown as a function of substrate 

temperature (c) zoom of the main bands at higher temperature.  
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Figure 4.31 Variation in Ag and B2g Raman mode positions as a function of substrate 

temperature. 

Photoluminescence (PL) measurement were carried out for some SnS films to reveal further 

information on the optical quality of the films and their potential in carrier generation for devices. 

Figure 4.32 shows the PL emission spectra of the SnS films with photon excitation at 532 nm. 

SnS film grown at 350 oC has a broad emission peak centred on 1.3 eV, whereas films grown 

at 300 oC and 400 oC showed no emission peaks. In SnS based thin film material, PL spectra 

are related to the defects between band and defect level emissions [248]. No emission was 

observed for the SnS films deposited at temperatures lower or higher than 350 oC because of 

the insufficient energy of the adatoms to compensate defects and the re-evaporation of 

sulphur atoms, respectively. Similar behaviour of SnS/CdS sample has been reported [248]. 

 

Figure 4.32 PL spectra of as-deposited SnS films recorded at 6K. 
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The related band of this peak is slightly lower than the bandgap calculated from UV-Vis 

spectrophotometry, this can be linked to emissions from vacancies or defects that are intrinsic 

to the growth processes of the films [89, 126]. This demonstrates that controlling the film 

composition and optical bandgap to some extent is critical to produce a film that will luminesce, 

a requisite for any implementation in solar devices. 

4.3.3 Substrate type dependent properties 

Different substrates have diverse influence on the microcrystalline structure, grain growth, 

optoelectronic properties and device performance of SnS-based solar absorber and solar cells 

[40, 107, 113]. These effects can result from the chemical nature, surface quality and thermal 

stability of the substrate material. Therefore, selection of suitable substrate is crucial to obtain 

good quality SnS absorber that can enhance device performance. In addition, substrate should 

be stable at the production temperature of the solar cell and there must be chemical 

compatibility between the substrate and SnS absorber, i.e. no chemical reaction should exist 

between the two as interdiffusion can cause inclusion of undesired atoms in both SnS 

absorber and substrate. This sub-section explores the use of diverse substrate for SnS 

deposition and investigated their properties with respect to their suitability for photovoltaic 

application. The substrates include soda lime glass (SLG), quartz (Q), indium tin oxide (ITO) 

and fluorine-doped tin oxide (FTO) coated glass, molybdenum (Mo) coated SLG and quartz. 

The key properties of the substrates used are presented in table 4.3. 
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Table 4.3. Thickness (t), thermal expansion coefficient (), roughness (Rs), thermal (k) and 

electrical () conductivities of the substrates [249-257]. *whether on SLG or quartz. 

Sub t (mm) 10-7 (/oC) Rs (nm) k (W/mK)   (S/m) 

SLG 1.00 90.0 1.0 1.06 10-15 

Q 1.00 5.5 <2.0 1.30 10-18 

ITO 1.10 76.0 1.8 3.95 104 

FTO 1.60 60.0 12.5 9.70 ~104 

Mo* 10-3 52.0 12.0 142 >107 

The films all showed stoichiometric composition (Sn/S = 1.00  0.01), adherence to substrate 

surface and free from pinholes irrespective of the substrate type. The constant Sn/S ratio 

across the films shows that the chemical nature of the substrate has no influence on the 

composition of the films which is solely controlled by the growth parameters (temperature, 

thickness and rate). SEM analysis reveals randomly oriented rice and flake-like small grains 

in SnS grown on SLG and Mo coated SLG, while the grain shape changed to flakes and 

platelet-like structure when grown on ITO and FTO with noticeable grain growth (see figure 

4.33). The films on quartz and Mo coated quartz substrates showed unifromly distributed 

bigger grains with less void over the substrate surface. Unlike kesterite or chalcopyrite 

materials, the absence of Na in the substrate induces a significant grain growth in SnS thin 

films (figure 4.33) with the average grain size increasing from 0.14 µm on SLG to 0.32 µm on 

quartz, ITO and FTO. This increase in grain size can also be explained by the fact that rough 

surfaces have more nucleation site [258], such that more grain growth will occur. Due to high 

roughness, grains can collide and coalesce to form a continous grains. 
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Figure 4.33 SEM micrographs (5kV) across the different substrates, inset: cross-section. 

Scale bars apply to the range of images. 

Figure 4.34 (a) shows the transmittance, T, and reflectance, R, versus wavelength across the 

substrate. The optical properties of the layers deposited on Mo coated SLG and quartz are 

not given, as the visible light absorbing Mo layer restricted the measurement of the SnS 

absorption edge in transmission, only the reflectance was measured in this case. Similar to 

the films on reference SLG substrate, the transmittance of other substrates showed 

interference fringes indicating a good surface homogeneity and uniformity of the layers. The 

low transmittance in the visible region characterised the broad absorption nature of SnS thin 

films irrespective of the substrate nature. 
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Figure 4.34 (a) Percentage transmittance (solid lines) and reflectance (dotted lines) with 

wavelength and (b) (αh)2 with h of the SnS layers across the substrate. 

The plot of (αh)n vs (h) fits better for n = ½, indicating the SnS films to have a direct allowed 

interband transitions with energy bandgap value of 1.39, 1.41 and 1.42 eV for the layers on 

quartz, FTO and ITO, respectively (see figure 4.34b) compared to the reference 1.37 eV for 

the film on SLG. The slight increase in energy bandgap of the Na-free samples of ITO and 

FTO can be linked to possible high diffusion of oxygen from ITO and FTO compared to SLG 

to the SnS films [146], as well as the decrease in the unit cell volume (see table 4.4). 

The XRD spectra of the SnS films as a function of substrate material are shown in figure 4.35. 
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Figure 4.35 XRD spectra of SnS thin films as a function of substrate material. 

The layers were highly crystallised irrespective of substrate type with similar features to SnS 

orthorhombic structure (powder diffraction file 039-0354). No secondary phase was detected 

across the substrates and the crystal structure depicted several diffraction peaks (see figure 

4.35) with (101), (111) and (040) noticed as the most prominment peak. Following the 

calulation of the texture coefficient (Chkl), the preferred orientation () were established using 

equation 4.7 and 4.8 stated in the last sub-section, the result is presented in figure 4.36. 
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Figure 4.36 (a) Texture coefficient (Chkl) and (b) degree of preferred orientation () as a 

function of substrate material (the line is a guide for the eye). 

Films on SLG, quartz and ITO exhibited strong (040) preferred orientation, while those on Mo 

coated SLG and quartz showed (111) preferred orientation in addition to the Mo peak. 

However, for the films deposited on FTO, the crystal structure became randomised such that 

Chkl in (120) and (111) planes are greater than one. These variations in preferred orientation 

are linked to the differences in surface roughness and intrinsic properties of the substrates 

while film composition remains constant throughout. Rougher surfaces with several nucleation 
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deposited on FTO and Mo coated substrates. Films on SLG, Q and ITO with similar roughness 

exhibited similar crystal orientation.  

Similar (040) preferred orientation has been observed for SnS thin films deposited on SLG [45] 

and ITO [40, 108] no report exist elsewhere for quartz substrate. Sall et al. [146] Bashkirov et 

al. [259] and Reddy et al. [40] synthesized SnS on Mo coated glass substrates via chemical 

spray pyrolysis, hot wall vacuum and sulfurisation methods, respectively and observed 

preferred orientation along (111) plane alongside the Mo peak in agreement with this work. 

Therefore, the orientation of SnS thin films on different substrates depend on the nature of the 

substrate, which in turn influences the crystallinity of the films. The variation of crystallite size 

(D) and lattice strain () were also evaluated using XRD data via Williamson-Hall method. 

Strain arises due to differences in thermal coefficient of the substrates and the nucleating film, 

which can cause peak broadening and a shift in peak position [86]. Figure 4.37 shows the 

crystallite size and lattice strain across the substrates.  

 

Figure 4.37 Crystallite size (D) and lattice strain () versus substrate materials (lines are 

guide to the eye). 

Slight variations in the D and  are attributed to the difference in the surface roughness (see 

tables 4.3 and 4.4) as crystallites may tend to grow during coalesence of grains and lattice 
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agreement with the grain sizes shown in the SEM images (see figure 4.33 and table 4.4). The 

smaller crystallite size noticed in the films on SLG compare to other substrates could be due 

to presence of higher concentration of strain, smoother surface and probably sodium (Na) 

contamination. 

Table 4.4. Summary of observed parameters for SnS as a function of substrate type.  

Substrate 
material 

Lattice 
parameters 

 0.01 a, b, c (Å) 

Unit cell 
volume 

 0.05 (Å3) 

Preferred 
orientation 

Crystallite 

size  2.0 
(nm) 

Grain 

size  5 
(nm) 

Eg 

 0.05 
(eV) 

SLG 4.32, 11.26, 4.00 194.6 040 60 140 1.37 

Quartz 4.23, 11.38, 4.02 193.5 040 65 280 1.39 

ITO 4.21, 11.45, 3.98 191.9 040 61 230 1.42 

FTO 4.41, 10.97, 3.98 192.5 111 67 320 1.41 

SLG/Mo 4.42, 10.76, 4.07 193.6 111 62 210 - 

Quartz/Mo 4.13, 11.39, 4.05 190.5 111 71 320 - 

Note that bandgaps for the SLG/Mo and quartz/Mo substrates are not recorded because the 

visible light absorbing Mo layer restricted the measurement of the SnS absorption edge in 

transmission.  

4.4 Conclusion  

SnS thin films have been successfully deposited using thermal evaporation. The deposition at 

350 oC with evaporation rate of 30 Å/s can produce pure phase polycrystalline and 

stoichiometric SnS film with near optimum energy bandgap of 1.37 eV. The effect of substrate 

temperature, layer thickness and substrate material on crystallographic, optical and 

microscopic properties of SnS solar absorbing thin films has been investigated. The 

morphological properties were considerably influenced by the nature of substrate and mildly 

independent of the layer thickness and growth temperatures. SnS2 and Sn2S3 present at lower 

substrate temperatures were found to disappear at higher substrate temperatures  200 oC. 

High-temperature dependent analysis showed that the energy bandgap of the as-deposited 

SnS was red-shifted as the composition of the samples became deficient in sulphur and richer 
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in Sn. The high temperature-dependent experiments also showed that photoluminescence 

can only be generated for films grown at 350°C, which are stoichiometric, and of energy 

bandgap of 1.37 eV. Analysis of the experimental data demonstrated that it is imperative to 

control the deposition parameters to fabricate good quality SnS absorbers suitable for solar 

cells.  
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Chapter 5  

Post Annealing Treatments and Se-S Substitution 

5.1 Introduction  

Optimisations of the deposition parameters detailed in chapter 4 (section 4.3), showed that 

the best SnS films were formed at a thickness of 800 nm and substrate temperature of 350 oC. 

The layers were stoichiometric with energy bandgap of 1.37 eV but still have voids and mix of 

small grains, which may limit their photovoltaic performance. This chapter focuses on the 

further optimisation of this as-deposited film with interest on the grain growth and reduction in 

grain boundaries via annealing treatment and the impact of selenium (Se) - sulphur (S) 

substitution.  

In SnS-based thin film solar cells, a high quality and stoichiometric SnS films comprised of 

large grains are required to facilitate the transport of photo-generated carriers and reduce 

grain boundary recombination and thus enhance the power conversion efficiency of the 

devices. Post-annealing treatments are normally used to enhance the efficiency of thin film 

devices by improving the quality of the solar absorber layer. Post annealing treatment in SnS 

based thin films has been found to be very effective in reducing recombination and promoting 

grain growth and carrier mobility [101]. The SnS post deposition anneal treatment in the 

presence of the H2S gas is one of the crucial factors that led to the record efficiency device to 

date [28, 102, 172]. The thermal treatment in H2S is effective in suppressing the creation of 

sulphur vacancies VS due to high sulphur loss following anneal and can significantly enhance 

grain growth. 

However, the use of H2S can cause possible life-threatening situations due to its toxicity. H2S 

gas burns and produces other toxic vapours such as sulphur dioxide and being heavier than 

air, can accumulate in the laboratory. Therefore, this investigation is focused on finding an 

annealing environment, which can improve the SnS solar cell performance via enhancement 
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of grain growth and passivation of grain boundaries. The processes and diverse environments 

used in this study were stated in experimental section (see chapter 4). SnS films annealed at 

high temperatures may lead to sulphur deficiency and loss in stoichiometry of Sn and S, which 

may reduce the photoconductivity of the films [52]. The possible route to overcome this 

challenge is to anneal and substitute the sulphur with selenium via selenisation in either low 

or high vacuum environments. The link between the Se - S substitution in the SnS solar 

absorber with its grain growth is thus presented in section 5.3. 

5.2 Post-deposition heat treatment of SnS thin films 

The post deposition heat treatment was done in high vacuum (pressure < 8.0 × 10-7 mbar) or 

under atmospheric pressure. For the high vacuum, the as-deposited ~800 nm thick SnS 

sample was taken from the evaporator carefully cut into three parts with one used as reference 

while, the other two parts were moved back to the evaporator. These two samples were 

subsequently annealed for 60 min at a temperature of 400 and 450 oC in vacuum. In 

atmospheric annealing, a first set of samples was annealed in a quartz tube furnace, where 

an inert atmosphere of nitrogen (N2) has been allowed to flow at operating pressure of 

1000 mbar. The stable heat treatment duration was 60 min at a temperature of 400, 450 and 

500 oC. In addition, a second set of samples was first dipped in saturated solution of SnCl2 or 

MgCl2 for 10 seconds before annealing in N2 with same condition as first set. 

The films after annealing were pinhole free and adhered strongly to the substrate with a colour 

change from grey to stormy grey for all the annealing environments. As shown in the SEM 

images of figure 5.1, the morphology of the as-deposited and annealed samples look 

approximately similar for samples annealed in vacuum, but the annealed sample has more 

packed grains with less void. Quantification of the grain sizes is not possible due to the non-

uniform shapes of the grains. Post annealing in high vacuum seems to be ineffective in 

inducing grain growth in SnS thin films irrespective of deposition condition [260]. Figure 5.2 

shows the SEM images of the SnS thin films that were annealed in N2 ambient for 60 min. It 

can be seen that annealing under nitrogen slightly improved the grain growth, the films 
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revealed a compact and dense structure with no voids or cracks as the temperature is increase 

to 450 and 500 oC. This suggests a better connection between the grains, which decreases 

the possibility of pinhole formation and grain boundary recombination. Similar observation of 

nitrogen ambient pressure assisted growth of the grains in the films was reported by Naidu R 

et al. [174] for SnS photo absorber. Figure 5.3 shows the morphology of the samples after 

chlorine treatment. A modification of the grains is evident but the shapes of these grains made 

it difficult to say if chlorine treatment was of any benefit to the grain growth. SnCl2 treated 

samples (see figure 5.3a) showed similar morphology to untreated samples annealed in 

nitrogen. On the other hand, the morphology of the sample after MgCl2 treatment (see figure 

5.3b) was characterised by several domains, separated by deep cracks. This suggests that 

MgCl2 was too aggressive for the SnS thin film recrystallization. Similar behaviour of SnS thin 

films after chlorine treated has been reported [261, 262]. It can be understood that unlike CdTe 

layer where post chlorine treatment induces grain growth and enhance performance [213, 263], 

it has detrimental consequences in SnS thin films due to the formation of small grains, voids 

and deep fractures.  

 

Figure 5.1. SnS film morphology of the reference and annealed samples in high vacuum for 

60 min. 

400 oC 450 oCReference

500 nm
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Figure 5.2. SnS morphology after annealing in N2 atmosphere (1000 mbar) for 60 min. 

 

Figure 5.3. SnS morphology after (a) SnCl2 and (b) MgCl2 treatment and annealing at 

atmospheric pressure (1000 mbar) under N2 for 60 min. 

Figure 5.4 shows the relationship between the grain size and annealing temperature. 

Independent of environment, films annealed at 450 oC showed larger grains compared to films 

annealed at lower or higher temperatures. This can be attributed to the fact that annealing at 

lower temperatures (<450 oC) lack adequate thermal energy for coalescence of small grains, 

while higher temperatures (>450 oC) cause significant re-evaporation of S atoms.  

400 oC 450 oC 500 oC

500 nm

500 nm
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Figure 5.4. Grain size as a function of annealing temperature in different environment (bars 

indicate  5% in determination of average grain size).  

Tables 5.1-5.3 show the atomic composition of Sn and S as well as the energy bandgap 

estimated from the optical measurement after post heat treatment. The vacuum annealed films 

lost stoichiometry because of re-evaporation at high temperature with high loss of sulphur 

atom due to high vapour pressure of sulphur compared to tin. The high deficiency of sulphur 

atom in the annealed SnS thin films in vacuum have been reported in literature [168, 264]. It 

is also evident from EDX results that the strong recrystallization of the films in both N2 

annealed and chlorine treated samples (see figure 5.2 and 5.3) were accompanied by high 

sulphur deficiency (see table 5.2 and 5.3) similar to the films annealed in vacuum. A typical 

EDX spectrum taken from the sample annealed at 450 oC in Nitrogen ambient under 

atmosphere pressure (1000 mbar) for 60 min is shown in figure 5.5.  
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Figure 5.5 EDX spectrum of SnS sample annealed at 450 oC in Nitrogen ambient under 

atmosphere pressure (1000 mbar) for 60 min. 

Table 5.1 Composition of the reference and annealed film in vacuum with energy bandgap. 

Temperature (oC) Sn (at %) S (at %) Sn/S  0.01 Eg  0.05 (eV) 

As-deposited 350 50.0 50.0 1.00 1.37 

400 52.7 47.3 1.11 1.24 

450 53.6 46.4 1.16 1.22 

 

 



126 
 

Table 5.2. Anneal in N2 under atmosphere pressure (1000 mbar) for 60 min. 

Temperature (oC) Sn (at %) S (at %) Sn/S  0.01 Eg  0.05 (eV) 

400 53.5 46.5 1.15 1.28 

450 55.9 44.1 1.27 1.27 

500 56.8 43.2 1.31 1.25 

Table 5.3. Anneal in N2 atmosphere (1000 mbar) for 60 min after chlorine treatment. 

Sample Sn (at %) S (at %) Sn/S  0.01 Eg  0.05 (eV) 

MgCl2 450 oC 53.2 46.8 1.14 1.26 

SnCl2 450 oC 56.0 44.0 1.27 1.25 

Figures 5.6(a-c) show the optical transmittance and reflectance spectra of the SnS films after 

post deposition heat treatment. For all the annealing conditions, the transmittance spectra 

shifted toward the infrared region, which become more evident on increasing the annealing 

temperature to  450 oC. The reflectance spectra equally shifted in the same direction. This 

indicates that for the visible region, almost all the radiation are absorbed in the annealed 

samples and can also absorb some incident photon in the near infrared region. 
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Figure 5.6 (a-c) transmittance (solid lines), reflectance (dotted lines) and (d-f) plots of (αh)2 

versus h of the SnS films annealed in (a) vacuum, (b) nitrogen and (c) chlorine treated. 

The plots of (αh)2 versus h  shown in figure 5.6 (d-f) were used to estimate the energy 

bandgap of the annealed films by extrapolating the intercepts on the h axis. For the SnS films 

annealed in vacuum, energy bandgap value of 1.22 and 1.24 eV were estimated for the 

samples annealed at temperature of 400 and 450 oC, respectively, while the as-deposited 

layer showed a higher energy bandgap of 1.37 eV. This can be linked to the deviation of Sn/S 

ratio from stiochiomtric value following anneal due to the difference in vapour pressure of Sn 
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and S. A decrease in the energy bandgap of SnS films after anneal in vacuum has been 

reported in the literature [41, 169]. Similar behaviour was observed for the samples annealed 

in N2 ambient where a direct energy bandgap range of 1.25 to 1.28 eV were estimated, this 

bandgap decreases with increaing annealing temperature in good agreement with Sn/S ratio 

variation. However, similar to both samples annealed in vacuum and N2, a direct energy 

bandgap value of 1.26 and 1.25 eV were estimated for the films after MgCl2 and SnCl2 

treatment, respectively. The reduction in the energy bandgap following annealing in these 

environment can be linked to the slight increase in grain size and changing Sn/S atomic 

composition. 

Figures 5.7 (a-c) show the XRD spectra of the reference and the annealed SnS thin films. For 

the high vacuum annealing, the diffraction patterns were very similar to the as-deposited 

sample (see figure 5.7a) suggesting that this treatment did not modify the microcrystalline 

structure of the samples. All reflections of the vacuum annealed samples fit well with the 

reference orthorhombic pattern SnS (PDF 039-0354). Similar to the as-deposited samples, 

the layers after vacuum anneal are all single phase with same plane of (111) and (040) giving 

rise to the most prominent peak with no change in orientation. This indicates that the films 

retain their crystal structure and phase after vacuum annealing.  

The XRD diffraction patterns after N2 annealing are shown in figure 5.7 (b). It can be seen that 

annealing the samples in N2 ambient brought about a significant reduction in the intensity of 

the prominent (040) due to substantial increase in other peaks. Increase in the peak intensity 

of (101) diffraction plane is evident across the annealing temperatures, which has been 

reported to be more beneficial for fabricating efficient SnS-based solar devices due to its 

higher ionisation potential compared to either (111) or (040) planes [40]. Higher ionisation 

potential can minimise the band discontinuities and enhance device performance. Similar 

diffraction patterns with decreased peak intensities have been reported for sprayed SnS thin 

films after post heat treatment in nitrogen ambient [175]. For the case of both MgCl2 and SnCl2 

treatment (see figure 5.7c), the samples exhibit the main diffraction peaks of orthorhombic 
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SnS but with a strong modification of the relative peak intensities, the preferential orientation 

is drastically reduced probably due to been annealed under atmospheric pressure in N2 or 

both N2 and chlorine environment (see figure 5.9 b and c). As the samples shown in figure 5.7 

(b and c) were annealed in atmospheric pressure under nitrogen, possible partial oxidation of 

some of the SnS films into tin dioxide (SnO2) cannot be ruled out. Thus, SnO2 was detected 

in these layers, the peak of which has been labelled with JCPDS 041-1445. 
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Figure 5.7 XRD spectra of SnS films annealed  in (a) vacuum, (b) N2 under atmosphere 

pressure (1000 mbar) for 60 min and (c) same condition as (b) after chlorine treatment (* 

stands for the reflection from the sample holder due to small size of the measured sample). 
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The unit cell volume was determined from the XRD data using the Eva software for the post 

annealed samples, this is shown in figure 5.8. The unit cell volume increased with the 

temperature irrespective of annealing environment. This revealed that the larger volume of the 

unit cell at high annealing temperature correlates well with the decrease in energy bandgap 

(see figure 5.6 d-f) as explained by Albanesi [241].  

 

Figure 5.8 Variation in unit cell volume (Å3) with annealing temperature (bars indicate 

 1.5 Å3 instrumental error in determination of unit cell volume). 

The texture coefficient (Chkl) and the preferred orientation () of the films is presented in figure 

5.9. Films annealed in vacuum retained their crystallographic orientations evidenced by the 

strong (040) diffraction peak with other peaks being less than 1.0 when compared with the 

reference sample (see figure 5.9a). Under atmospheric pressure anneal (1000 mbar), samples 

annealed in nitrogen ambient showed a deviation of the preferred orientation from (040) to 

(111) diffraction plane as the anneal temperature goes higher than 450 oC. Notice that for the 

anneal temperatures  400 oC, samples displayed moderate texture as up to two samples had 

 > 1. Similar behaviour was observed following chlorine treatment except for the layer treated 

with SnCl2, which showed (111) orientation alongside the SnO2 peak. 
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Figure 5.9 Texture coefficient (Chkl) of SnS films annealed in (a) i, ii, iii stands for reference, 

400 oC, 450 oC, respectively (c) i, ii represent MgCl2, SnCl2, while (d) degree of preferred 

orientation () as a function of both annealing environment and temperature.  

Although considerable recrystallization was achieved after post-deposition heat treatment of 

SnS films in N2 and chlorine environments, the treatments were inadequate to induce 

significant grain growth. In addition, the persistence loss in sulphur after annealing may limit 

the performance of the SnS-based solar cells. The possible solution is annealing in an 

environment that can compensate for the sulphur loss. Therefore, the next section will focus 

on the possible substitution of sulphur with selenium atom.   

5.3 Influence of Se/S substitution on the Sn(S,Se) solar absorber 

The application of the post annealing treatment discussed in section 5.2 resulted to be 

ineffective to induce SnS grain growth, reach significant recrystallization and minimise grain 
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boundaries. Moreover, the high loss of sulphur in the annealed samples resulted to shift in 

stoichiometric that can affect the device performance. To overcome this limitation and 

enhance grain growth, Se - S substitution was therefore explored via selenisation technique. 

The choice of Se instead of S is because of its ability to activate solar absorber layers and 

significantly enhance power conversion efficiency of thin film solar cells based on kesterite 

and chalcopyrite. Selenisation has been a key route for inducing grain growth and improving 

the quality of chalcogenide absorbers such as Cu2ZnSnS4 (CZTS) [27, 265, 266]. Since few 

reports exists for selenisation of SnS films yet in the literature, the treatment was implemented 

on the SnS absorber in both low and high vacuum environment using elemental selenium 

pellets. Three sets of experiments were conducted. In the first experiment, the Se and SnS 

pellets were co-evaporated in high vacuum at substrate temperature of 350 oC using the 

similar process described in section 5.2. For the second experiment, SnS films were first 

deposited at similar substrate temperature with first experiment before evaporating Se pellets 

in high vacuum at temperature of 400 and 450 oC.   

For the third experiment, the as-deposited SnS sample was taken from the evaporator, 

carefully cut into four parts with one used as reference while, the other three parts were moved 

to the tube furnace for selenisation. After loading each sample, the tube furnace was 

evacuated to a pressure of 5.5  × 10-3 mbar and backfilled with ~10 mbar of argon before 

increasing the selenisation temperature to desired set point. The temperature was varied 

between 400 to 500 oC using the process described in chapter 3. Figure 5.10 shows the 

morphology of the reference, co-evaporated (SnS and Se) and samples coated with Se in high 

vacuum, while figure 5.11 presents the variation in grain size with the selenisation conditions.  
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Figure 5.10 SEM images of SnS thin films (a) as-deposited (b) simultaneous deposition with 

Se and (c) successive Se coating in high vacuum. (c-f) respective cross-sectional image of 

samples.  

 

Figure 5.11 Variation in grain size with selenisation condition (bars indicate  5% error in 

determination of grain size). 

A weak change in the film morphology and slight recrystallization was seen in the co-

evaporated and high vacuum selenised samples in comparison with the reference sample 

(see figure 5.10). Average grain size slightly increased from 140 nm of the reference sample 

to 200 and 300 nm for the co-evaporated (SnS and Se) and samples coated with Se in high 

vacuum, respectively.  
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Figure 5.12 shows the morphology of the selenised samples in 10 mbar Ar using tube furnace, 

while figure 5.13 presents the variation in grain size with selenisation temperature. 

 

Figure 5.12 SEM images of Sn(S,Se) after selenisation at (a) 400 oC (b) 450 oC and 

(c) 500 oC temperature 10 mbar Argon for 20 min. (e-f) respective cross-sectional images of 

the samples.  

 

Figure 5.13 Variation in grain size with selenisation temperature (bars indicate  5% error in 

determination of grain size). 

Samples selenised in low vacuum argon ambient showed significant growth of new large 

grains. It can been seen that increase in the selenisation temperature slightly influenced the 

morphology, the grains get bigger with temperature. The micrograph as well as the cross-
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sectional image (see figure 5.12 a-f) indicate growth of compact, columnar and platelet like 

grain with a size which increased from 500 nm to ~2000 nm with the increase in temperature 

(see figure 5.13). The EDX spectrum of the sample selenised at 400 oC in 10 mbar Ar ambient 

is shown in figure 5.14. Notice that no oxygen was detected because the sample was allowed 

to naturally cool down in the low vacuum to prevent oxidation.  

 

Figure 5.14 EDX spectrum of Sn(S,Se) sample selenised at 400 oC in 10 mbar Ar. 

Tables 5.4 and 5.5 show the atomic composition of Sn, S and Se of the Se treated samples 

in high and low vacuum, respectively along with the energy bandgap estimated from optical 

measurement.  

Table 5.4. SnS atomic composition (a) as-deposited, (b) simultaneous deposition with Se and 

(c) successive Se coating at high vacuum.  

Sample (oC) Sn (at %) S (at %) Se (at %) Sn/(S+Se) 

 0.02 

Se/(S+Se) 

 0.02 

Eg (eV) 

 0.05 

(a) 50.9 49.1 - 1.04 - 1.37 

(b) 48.8 44.8 6.3 0.95 0.12 1.27 

(c) 47.5 45.2 7.3 0.90 0.14 1.25 
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Table 5.5 Parameters of the selenised samples in Ar (10 mbar) for 20 min at different 

temperatures. 

Temp. 20 
(oC) 

Sn (at %) S (at %) Se (at %) Sn/(S+Se) 

 0.02 

Se/(S+Se) 

 0.02 

Eg (eV) 

 0.05 

400 44.6 16.2 39.2 0.81 0.71 1.26 

450 48.3 4.2 47.5 0.93 0.92 1.25 

500 46.6 3.8 49.6 0.87 0.93 1.17 

For the selenised samples in high vacuum, the Se - S substitution was not effective as can be 

seen from table 5.4 that only about 10 - 15 % of sulphur was replaced by selenium in both co-

evaporated and Se treated sample. However, significant Se - S substitution was achieved for 

samples annealed in low vacuum using tube furnace that was back filled with 10 mbar argon 

gas. As presented in table 5.5, about 70% of sulphur is replaced by selenium in the 400 oC 

selenisation temperature, which increase to over 90% with increase in annealing temperature. 

It is evident from table 5.5 that Sn(S,Se) film can be obtained with near stoichiometry for Sn 

and Se for the film selenised at 450 oC. This serves as one of the possible route to overcome 

the limitation of high sulphur deficiency in heat-treated SnS thin films. Elemental depth profiling 

was also performed to support EDS in assessing the Se - S substitution. The result is shown 

in figure 5.15 where the intensity of S and Se ions are plotted for selenisation temperature of 

450 and 500 oC. In comparison with the reference sample. From the figure 5.15, it is evident 

that sulphur was effectively replaced by selenium in good agreement with the EDS data.  
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Figure 5.15 Se - S substitution in SIMS elemental depth profiles of Sn(S,Se) films (tx1 and tx2 

shows change in layer thickness following selenisation at 450 and 500 oC, respectively). 

The UV-Vis-NIR spectra were recorded for the Sn(S,Se) samples in the wavelength range of 

300-1400 nm. The transmittance and reflectance spectra of the Se treated samples in low and 

high vacuum are very similar except for the layer selenised at 500 oC in the tube furnace, 

which exhibited a red shift in the absorption edge (see figure 5.16). From the Tauc plot shown 

in figure 5.16 (c and d), the plot of (αh)n vs (h) gave better fit for n = 1/2, indicating the films 

to have a direct allowed transitions. The samples exhibit lower values of energy bandgap 

range of 1.17 - 1.27 eV compared to the 1.37 eV of the as-deposited untreated SnS films due 

to the formation of Sn(S,Se), change in composition and increase in the unit cell volume. 

These values are similar to the reported optical bandgap range of 1.08-1.25 eV for 

electrodeposited and electro-synthesized Sn(S,Se) thin films [267, 268].  The reduction in the 

energy bandgap can be linked to S - Se exchange associated with the selenisation process, 

similar to its effect in chalcopyrite and kesterite materials where selenium is found to reduce 

energy bandgap in CZTS and CIGS.   
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Figure 5.16 (a and b) transmittance (solid lines) and reflectance (dotted lines), (c) and (d) 

(αh)2 versus h  of Sn(S,Se), (I, ii stands for Se coating of SnS during and after deposition, 

respectively in high vacuum). 

Figure 5.17 shows the XRD spectra of the Sn(S,Se) films. For the films selenised at high 

vacuum (see figure 5.17a), the diffraction peaks were found to match well with the 

orthorhombic SnS polycrystalline structure at 2θ values of 22.01, 26.20, 30.40, 31.54, 31.97, 

39.33, 42.59, 48.91 and 66.82o corresponding to the reflection planes of (110), (120), (101), 

(111), (040), (041), (141), (211) and (080), respectively. In contrast to this observation, the co-

evaporated SnSSe sample exhibited a modified structure with the (101) lattice plane 

appearing as the prominent peak and the (111), (040) planes appear to overlap. For the 

selenised samples in tube furnace (see figure 5.17b), the observed diffraction peaks matched 

well with the orthorhombic Sn(S,Se) diffraction pattern JCPDS 048-1225 [267]. The crystal 

structure was seen changing from randomised structure to (111) orientation with increasing 

selenisation temperature. The existence of SnS phase specifically the (040) plane after 
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selenisation cannot be ruled out, this will likely be overlapping with the (400) lattice plane of 

Sn(S,Se).  

 

Figure 5.17 XRD spectra of selenised SnS films in (a) high vacuum and (b) tube furnace with 

argon ambient. 

Tables 5.6 and 5.7 show the lattice parameters of Se treated samples in high and low vacuum, 

respectively along with the calculated unit cell volume. The lattice constants a and b are 

noticeably different for the SnS and Sn(S,Se) samples due to S - Se exchange. The lattice 

parameters for the selenised samples revealed an increase in the unit cell volume with 

increase in the selenisation temperature, which can be attributed to the recrystallisation effect. 

The increase in unit cell volume also correlate well with the decrease in bandgap listed in 

tables 5.4 and 5.5, which are in good agreement with the work of Makinistian and Albanesi 

[241].  
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Table 5.6 Lattice parameters of (a) as-deposited, (b) simultaneous deposition with Se and (c) 

successive Se coating at high vacuum.  

Sample Lattice parameters (Å) Cell volume 

 0.03 (Å3) a b c 

(a) 4.32 11.26 4.00 194.573 

(b) 11.07 4.21 4.23 197.138 

(c) 11.18 4.14 4.29 198.564 

Table 5.7 Lattice parameters of the selenised samples in Ar (10 mbar) for 20 min at different 

temperatures. 

Temperature (oC) Lattice parameters (Å) Cell volume 

 0.03 (Å3) a b c 

400 11.21 4.08 4.33 198.040 

450 11.23 4.07 4.35 198.822 

500 11.45 4.03 4.41 203.493 

The Raman spectra of the selenised sample Sn(S,Se) at 450 oC, which exhibited 90% S - Se 

substitution is shown in figure 5.18. The selenised sample revealed a shift in Ag and B2g modes 

by 4.0 and 9.0 cm-1, respectively towards the lower wavenumber due to the anion substitution 

with Se. The spectra also depicted a split of Ag mode for Sn(S,Se) at 181 and 192 cm-1, which 

has been reported in Se based absorber materials [269].  



142 
 

 

Figure 5.18 Raman spectra of as-deposited SnS and selenised Sn(S,Se) films. 

Figure 5.19 shows the photoluminescence (PL) emission spectra of the selenised sample 

compared with the as-deposited film with photon excitation at 532 nm.  

 

Figure 5.19 PL spectra of as-deposited and post Se annealed SnS film.  

Selenium treated SnS sample shows higher potential in carrier generation and transport, it 

equally indicates better quality of the film due to narrowing of the peak. The shift of the peak 

position of the annealed sample correlates well with the observed decrease in the energy 

bandgap. 
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5.4 Conclusions 

A simple and effective technique to considerably improve the grain growth of thermally 

evaporated SnS thin films by post-deposition heat treatment has been successfully studied. 

The films properties are found to be dependent on the annealing temperature and environment. 

Vacuum annealing were ineffective in both inducing grain growth and achieving 

recrystallisation. Nitrogen ambient revealed a recrystallised structure with slight increase in 

grain sizes and ~6% decrease in the bandgap compared to the reference 1.37 eV for the as-

grown layer due to loss of sulphur (Sn/S ratio increased from 1.00 to 1.27 following anneal). 

The incorporation of Se under argon ambient led to substantial increase in grains with an 

average grain size of ~2.0 µm compared to 0.14 µm for as-grown films, with a nearly complete 

sulphur substitution by selenium. In addition, Se incorporation minimised voids while reducing 

the bandgap to 1.28 eV and improving photoluminescence yield. 
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Chapter 6  

Role of Buffer Layer in SnS Heterojunction device   

This chapter focuses on the search for best buffer layers for the fabrication of SnS solar cells. 

After a brief introduction in section 6.1, the properties of In2S3, ZnS and ZnO buffer layers that 

can serve as a possible replacement for toxic CdS are presented in section 6.2. The band 

alignment in the SnS thin film heterostructure is given in section 6.3, which was followed by 

devices results in 6.4 and the conclusion in 6.5.  

6.1 Introduction 

The alignment of the energy bands at the semiconductor heterojunctions play a significant role 

in the performance of thin film solar cells. Investigations on the conduction band offsets of SnS 

based thin films are crucial for device fabrications as band alignments determine the electrical 

transport properties at the interface. Cadmium sulphide (CdS) is commonly used to form 

SnS/CdS heterojunction but there are evidences of non-optimal conduction band offset (CBO) 

with CdS [42, 58, 59, 181]. SnS/CdS heterojunction has a large negative CBO of -0.5 eV, 

which gives rise to an increase of interface recombination [42, 181] and reduces the open 

circuit voltage (Voc) of the solar cell. Since a small positive CBO of the range (0 eV<Ec<0.1 

eV) [181] is suitable to reduce the interface recombination, there is the need to optimize the 

use of alternative wide bandgap buffer layers such as In2S3, ZnO and ZnS. These alternative 

buffer layers have wider bandgaps than CdS, therefore devices incorporating any of these 

buffer layers are expected to show improved quantum efficiencies in the short-wavelength 

region. This can lead to a higher short-circuit current density and power conversion efficiency, 

as well as open circuit voltage if the band alignment is good.   

In order to study the SnS band alignments, thin films of In2S3 and ZnS were prepared by 

thermal evaporation, while CdS was prepared using chemical bath deposition as described in 

chapter 3 subsection 3.3.1 and 3.3.4, respectively. Key optoelectronic properties of this buffer 
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layers were extracted from experimental data except ZnO, in addition to literature values to 

obtain the band alignment structures.  

6.2 Properties of CdS, In2S3 and ZnS buffer layers 

The microscopic, optical and crystallographic properties of 60  10 nm thick In2S3 and ZnS 

buffer layers deposited at 200 oC have been investigated in an attempt to replace the 

conventional CdS and ensure a cadmium-free device as well reduce the effect of lattice 

mismatch at the junction formation. The substrate of 200 oC was chosen in order to promote 

intermixing at the SnS/n-buffer layer junction, in addition to being comparable with the post-

growth heat treatment of CdS layer. Note that CdS layer was grown to a thickness of 50  

10 nm via CBD at bath temperature of 70 oC before being subjected to heat treatment at 

atmospheric pressure for 10 min at temperature of 200 oC.  

The typical EDX spectra for the CdS and In2S3 samples are shown in figure 6.1. The atomic 

composition obtained from EDX analysis showed the Cd/S, In/S and Zn/S ratio to be 1.09, 

0.64 and 1.03, respectively (see table 6.1). This indicates that the constituent elements is non-

stoichiometric for In2S3 and stoichiometric for the CdS and ZnS. This further showed that ZnS 

and In2S3 can be successfully fabricated via thermal evaporation.   

 

Figure 6.1 EDX spectra for the (a) CdS and (b) In2S3 samples. 

(a) (b)
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Table 6.1. Atomic composition of the n-buffer layers. Notes: Cd, In and Zn in column 2 heading 

respectively represent the atomic percentage of the elements in first, second and third rows 

for CdS, In2S3 and ZnS. This is same with last column.  

n-buffer Cd; In; Zn (at %) S (at %) Cd/S; In/S; Zn/S ( 0.01) 

CdS 52.2 47.8 1.09 

In2S3 39.1 60.9 0.64 

ZnS 50.8 49.2 1.03 

 

Figure 6.2 SEM micrographs (top view) of n-buffer layers. 

The surface morphology of the CdS, In2S3 and ZnS thin films are shown in figure 6.2. SEM 

images indicate that the thin films consist of CdS and ZnS nanoparticle of circular shapes, 

while that of In2S3 exhibited nano-flakes and platelet-like shape. The average grain size from 

the SEM were found to be 92, 174 and 80 nm for the CdS, In2S3 and ZnS films, respectively. 

These values are greater than the excitonic Bohr radius (rB) of 5.8 nm for CdS [270], 2.5 - 

4.1 nm for In2S3 [271] and 2.5 nm for ZnS [272] due to agglomeration and possible 

coalescence of grains.  

Figure 6.3 (a-c) shows the transmittance (solid line) and reflectance (dotted line) for the CdS, 

In2S3 and ZnS buffer layers. The layers were transparent in the visible and near infrared range, 

which are suitable for enhancing short-circuit current and device performance.  In addition, it 

CdS In2S3
ZnS

500 nm
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suggests that the films can transmit higher energy photons, which corresponds to the higher 

energy bandgaps.   

 

Figure 6.3 (a-c) transmittance (solid lines) and reflectance (dotted lines) and (c-d) Tauc plot of 

the buffer layers. Note that vertical legends in (a) and (d) remain same for (b, c) and (e, f), 

respectively.  

Figure 6.3 (d-f) shows the extrapolation of the curve (αh) 2 versus h of CdS, In2S3 and ZnS, 

respectively that give the direct energy bandgap of the films. From the Tauc plot, energy 

bandgap of CdS, In2S3 and ZnS were found to be 2.34  0.05, 2.82  0.05 and 3.20  0.05 eV, 

respectively. Recorded 2.34 eV energy band for CdS in this study is smaller than reported 

2.38 - 2.4 eV [273, 274] due to post growth heat treatment as this can cause increase in grain 

size. Increase in grain size of thin films or nanoparticle is associated with lowering of energy 

bandgap. In2S3 has a direct energy bandgap value of 2.82 eV, which is similar with the 

maximum energy bandgap value of 2.83 eV reported in literature by Rodriguez-Hernandez et 

al. [275]. The high bandgap values can be attributed to the very thin layer of films. Similarly, 

ZnS exhibited energy bandgap of 3.20 eV that is comparable to other reports [276, 277] for 

very thin layer of ZnS. These values have advantage over the commonly used CdS that has 

a narrower bandgap of 2.34 eV if they can minimise the high conduction band offsets when 
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applied to the SnS heterojunctions. The extinction coefficient (k) and refractive index (n) of the 

samples were obtained using equations (4.3) and (4.4), respectively stated in chapter 4. Figure 

6.4 shows the behaviour of the k and n for CdS, In2S3 and ZnS thin films as a function of 

wavelength.  

 

Figure 6.4 Extinction coefficient and refractive index of CdS, In2S3 and ZnS buffer layers.  

As shown in figure 6.4, all samples exhibited low extinction coefficient (< 0.4) while, the 

refractive index values of 1.13, 1.22 and 1.6 are obtained for the ZnS, In2S3 and CdS 

respectively. The refractive index value for ZnS is low compared to that of In2S3 and CdS 

making this sample better buffer layer choice for making SnS-based solar cells. Refractive 

index of buffer should be as low as possible in order to minimise reflection of light entering the 

absorber layer and prevent losses in the solar cell efficiency. This is because the working 

efficiency of solar cells are restrained by high refractive index. For instance in silicon (Si) solar 

cells with high refractive index of 3.4, more than 40% of the incident light is reflected and 

generates losses, which significantly lessens the efficiency of the device [278, 279]. 

Figure 6.5 shows the XRD diffraction patterns of the CdS, In2S3 and ZnS thin films. CdS layer 

was subsequently annealed at 200 oC following deposition.  
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Figure 6.5 (a-c). XRD spectra of the buffer layers. 

Figure 6.5 (a) shows that the CdS film has a polycrystalline structure with main characteristics 

reflections matching well with the JCPDS card no. 77-2306. Noticeable peaks are assigned to 

the (002), (102), (201) and (203) planes of the cadmium sulphide possessing hexagonal 

crystal structure. The relatively stronger peak along the (102) plane indicates that the CdS film 

is oriented along the ‘c’ axis. Such orientation will likely lead to significant mismatch at the 

interface with the SnS. Similarly, the reflections in 6.5 (b) were identified to be the tetragonal 

-In2S3 phase matching well with JCPDS 25-0390. Notice that the layers are also 

polycrystalline with noticeable peaks assigned to the (103), (109) and (309) planes. Similar 

behaviour of In2S3 films has been reported in literature [280, 281]. Similar to CdS the layer is 

highly oriented along ‘c’ axis. On the other hand, ZnS thin film (see figure 7.3c) exhibited a 

noticeable amorphous broadening in the spectra, verifying the poor crystallinity of the film due 

to its being very thin and visibly high transparent. 
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6.3 SnS band alignment studies 

Band alignment properties are critical in understanding the current-voltage mechanism of 

heterojunction solar cells. Few reports on the SnS band-alignments exist in the literature 

probably due to the novelty of this material. In heterojunction solar cells, band alignments 

mostly affect the electronic transport properties by acting as barriers to the charge carriers at 

the interface thereby limiting the power conversion efficiency. The energy band structure of 

the thin film heterojunction in principle depends on electron affinities, energy bandgaps and 

work functions of the two semiconductor layers forming the junction. In this study, the potential 

use of In2S3, ZnS and ZnO to replace the toxic CdS as buffer layer for SnS solar cell fabrication 

was explored. The energy band diagram was used to estimate the band offsets of both valence 

band (Ev) and the conduction band (Ec) through Anderson rule [282]. Optoelectronic 

parameters of SnS, ZnS , In2S3, CdS and ZnO were listed in chapter 3.  

Since all the electron affinities are known (see table 3.1 in chapter 3), the CBO can be 

calculated using the Anderson model of which the shape of the band bending once the two 

semiconductors are at intimate contact has been predicted [24, 282]. The conduction band 

offset values are estimated to be -0.50, -0.35, -0.25 and 0.10 eV for the SnS/CdS, SnS/ZnO , 

SnS/In2S3 and SnS/ZnS heterostructures, respectively. The knowledge of these conduction 

band offset values give a good insight about the potential performance of ZnS, In2S3 and ZnO 

thin films as alternative buffer layers in SnS-based solar cells. From the  calculated CBO 

values, a positive EC indicates that a conduction band of buffer layer is above that of SnS 

while, negative EC shows that a conduction band of the buffer layer is below that of SnS. The 

EC should be zero or small positive ( 0.1) for optimum performance of solar cells. Positive 

EC will make the photo-generated carrier to be blocked thereby reducing the FF, while 

negative EC will lead to lowering of FF and Voc because of carrier recombination at the 

interface [283, 284] 
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The band alignment at the interface of the SnS/n-buffer heterostructures are obtained at 

thermodynamic equilibrium. The plots of which before and after intimate contact are shown in 

figure 6.6 and 6.7, respectively, where Eo, Ec, Ev and Ef are the vacuum energy level, 

conduction band minima, valence band maxima and Fermi level, respectively.  

 

Figure 6.6 Energy band diagram of SnS and n-buffer films before the formation of the p-n 

heterojunction (all numbers in eV).  
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Figure 6.7 Energy band diagrams for SnS thin film heterojunction in equilibrium condition 

with (a) SnS/CdS, (b) SnS/ZnO, (c) SnS/ In2S3and (d) SnS/ZnS interface. All numbers in eV. 

As shown in figure 6.7, there exists electron barrier in all the interfaces that can potentially 

limit the photovoltaic performance of the devices. The SnS/CdS interface (see figure 6.7a) has 

a staggered type II heterostructure and a high conduction band offset of -0.50 eV with a spike-

like barrier that in theory will block the drift of photo-generated electron across the interface 

and lead to the degraded collection efficiency. Similar value and type II structure at SnS/CdS 

has been reported in the literature for SnS/CdS heterojunction [59, 132, 181]. 

Similarly, SnS/ZnO and SnS/In2S3 junctions (see figure 6.7b and 6.7c) exhibited staggered 
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performance. In this kind of structure, most of the carrier may tend to recombine around the 

interface. Therefore, it can be suggested that the SnS/CdS, SnS/In2S3 and SnS/ZnO hetero-

structures cannot get desirable photovoltaic performances. On the other hand, the SnS/ZnS 

interface (see figure 6.7d) tends to form a straddled type I structure with a small EC of 0.1 eV 

suggesting the effectiveness of this junction to reduce the interface recombination in the SnS-

based solar cell.  

Further analysis of the SnS band alignment with n-buffer layer was performed using solar cell 

capacitance simulator (SCAPS), which is a dedicated software for photovoltaic device analysis 

[177]. Key input simulation parameters were listed in chapter 3. Figure 6.8 show the simulated 

energy band diagrams of the SnS/CdS, SnS/ZnO , SnS/In2S3 and SnS/ZnS heterostructures.  

 

Figure 6.8 Simulated energy band diagrams of SnS heterojunctions.  
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As shown in figure 6.8, the simulated energy band diagrams show similar features to the 

theoretical structures shown in figure 6.7. For the cliff like band alignment in the CBO of 

SnS/In2S3 and SnS/ZnO where the band edge of In2S3 and ZnO are below that of SnS, the 

potential difference that can be generated between the quasi-Fermi levels at the interface 

under illumination will be limited. This barrier can lead to increase of recombination between 

majority carriers that can result in reduction of the open circuit voltage and fill factor [285].  The 

spike like alignment structure in the CBO of SnS/CdS and SnS/ZnS can be less detrimental 

to open circuit voltage. However, the high EC of the SnS/CdS (-0.5 eV) interface will block 

the photo-generated electrons from crossing over the spike barrier while that of SnS/ZnS 

(0.1 eV) can easily allow drift of photo-generated electrons [285, 286]. Therefore, selection of 

suitable n-buffer layer is crucial in realising good efficiencies, using SnS absorber layer and 

ZnS could be one of the potential buffer layers for fabricating SnS-based photovoltaic solar 

devices. ZnS is therefore the preferable buffer layer for fabrication of SnS solar cells due to its 

optimal EC of 0.1 eV.  

6.4 SnS device properties  

The solar cell device in substrate configuration were characterised using an illuminated current 

density-voltage (J-V) characteristics under a simulated (Air Mass 1.5) spectrum. For the 

simulated device, the governing principle of SCAPS software and characterisation processes 

are stated in chapter 3, experimental section. The simulation is done to access the optimal 

performance of SnS based solar cell with alternative buffer layers of ZnS, In2S3 and ZnO to 

replace the conventional CdS. The main input simulation parameters are stated in the 

experimental section, chapter 3 in table 3.1 and by introducing these into SCAPS for the buffer 

layers, changes in the values of efficiency (), open circuit voltage (VOC), short circuit current 

(JSC) and fill factor (FF) were observed. Figure 6.9 shows the current-voltage characteristics 

of the SnS/n-buffer heterojunction under illumination, while the corresponding VOC, JSC, FF 

and  are listed in table 6.2.  
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Figure 6.9 Current density - voltage curves of simulated SnS/n-buffer layer heterojunctions 

under standard AM 1.5 illumination. 

Table 6.2. The photovoltaic properties of different simulated SnS heterojunction solar cells 

Heterojunction VOC  10 (mV) JSC  2 (mAcm-2) FF  5.0(%)   0.2 (%) 

SnS/CdS  537 32.6 60.93 6.92 

SnS/In2S3 562  32.8  54.92 7.35  

SnS/ZnS 578  35.0  58.77 7.81 

SnS/ZnO 682 21.0 48.91 5.62 

Note that interface defects are introduced in the simulation in order to bring the simulation 

results closer to the physical experiments. These defect states normally degrade the 

photovoltaic properties of the cells by acting as a carrier recombination centre thereby limiting 

the photo-generated carrier. 
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The CdS buffer layer was prepared using chemical bath deposited described in section 3.3.4, 

ZnO deposited with pulse DC magnetron sputtering stated in section 3.3.2 while, ZnS and 

-0.2 0.0 0.2 0.4 0.6
-40

-30

-20

-10

0

10

20

30

40

C
u
rr

en
t 

d
en

si
ty

 (
m

A
cm

-2
)

Voltage (V)

 SnS/CdS

 SnS/In
2
S

3

 SnS/ZnS

 SnS/ZnO

 

 



156 
 

In2S3 deposited using similar method stated in section 4.2. The detailed device fabrication 

processes are given in chapter three (section 3.5). Figure 6.10 (a) and (b) shows a typical 

cross-sectional SEM image and a photo of the completed device in substrate configuration.  

 

Figure 6.10 (a) cross sectional SEM image of a fabricated device and (b) top-view photo of a 

typical fabricated solar cell in substrate configuration with nine 0.16 cm2 devices.  

The data from the J-V measurements were used to extract the photovoltaic properties such 

as the open circuit voltage, short circuit current, fill factor and efficiency. The J-V curves of the 

different heterojunction devices are shown in figure 6.11 with the device parameters extracted 

from the data summarised in table 6.3.  

 

Figure 6.11 J-V curves of fabricated SnS/n-buffer layer heterojunctions under standard AM 

1.5 illumination. 
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Table 6.3 Photovoltaic properties of different fabricated SnS heterojunction solar cells 

Heterojunction VOC  2 (mV) JSC  0.5 (mAcm-2) FF  2.0(%)   0.01 (%) 

SnS/CdS  31 8.1 25.7 0.17 

SnS/ZnS 32 8.0 32.7 0.20 

SnS/ In2S3 10 8.5 21.2 0.02 

SnS/ZnO 10 13.0 32.2 0.04 

Notice from table 6.3 that the devices were inefficient with the SnS/CdS and SnS/ZnS devices 

showing similar photovoltaic characteristics of open circuit voltage, short circuit current, fill 

factor, efficiency of 31 mV, 8.1 mAcm-2, 25.7%, 0.17% and 32 mV, 8.0 mAcm-2, 32.7%, 0.20%, 

respectively. However, the device incorporating ZnS exhibited improved conversion efficiency 

and fill factor compared to devices using CdS, ZnO and In2S3 buffer layer. These values are 

within the range reported in the literature with similar technique [287]. This shows that SnS 

based thin films solar cell devices free of cadmium is feasible with ZnS. Quantum efficiencies 

were not measured as the devices are inefficient. The low open circuit voltage recorded across 

the device structures are due to high carrier recombination through defects at the p-SnS/n-

buffer interface resulting in very low efficiency.  

However, attempt was also made to improve device performance by incorporating selenium 

in the post-deposition annealing treatment. Note that at selenisation temperature of 450 oC for 

20 min under 10 mbar argon pressure led to near complete S-Se substitution and 

stoichiometric Sn/Se atomic composition. From the Schockley-Queisser efficiency limits 

shown in literature (chapter 2, figure 2.4), S-Se cation exchange has been found to increase 

the efficiency of devices such as CZTS and CIGS. For examples 11.0% efficiency of CZTS 

was increased to 12.6% by S-Se substation [14]. J-V curves of one of the SnS devices 

fabricated following S-Se substitution and incorporation ZnS buffer layer is shown in figure 

6.12.  
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Figure 6.12 J-V curves of devices incorporating selenium.   

The photovoltaic parameters can be derived from the figure 6.12 which include Voc = 110  

2 mV, Jsc = 13.1  0.5 mAcm-2, FF = 33.5  2% and  = 0.43  0.01%. All devices fabricated 

following selenisation at temperature of 450 oC showed similar photovoltaic characteristics.  

The device is still inefficient but the improvement in the open circuit voltage shows that 

selenising SnS absorber layer can lead to good intermixing at the junction and reduce interface 

recombination. Further improvement in this direction can guarantee enhancement of 

photovoltaic performance of SnS solar cells.  

6.5 Conclusions  

The energy band discontinuities for the SnS/CdS, SnS/In2S3, SnS/ZnO and SnS/ZnS 

heterojunctions and their influence on the photovoltaic properties was investigated. The 

estimated conduction band offsets were -0.50, -0.35, -0.25 and 0.10 eV, while the valence 

band offsets were 1.53, 2.28, 1.83 and 1.88 eV for the SnS/CdS, SnS/ZnO , SnS/In2S3 and 

SnS/ZnS heterostructures, respectively. The high negative values of the conduction band 

offsets will block the collection of photo-generated carrier, which has negative effect on the 

photovoltaic properties. From the input parameters and device fabrication, SnS/ZnS 

heterojunction exhibits the highest conversion efficiency of 7.81 and 0.20% for the simulated 

and fabricated device, respectively. Therefore, ZnS has potential to replace CdS in the SnS-
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based solar cell devices and further optimising the quality of the ZnS layer to minimise the 

interface defects can lead to improved photovoltaic performance.   
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Chapter 7  

Conclusions 

This chapter summarises the work done during this study with suggestions for further work to 

develop SnS solar absorbing thin films into a more efficient technology. 

7.1 Thesis summary 

This thesis details the deposition and optimisation of SnS solar absorbing thin films. This study 

specifically investigated the effect of three aspects of deposition parameters on thermally 

evaporated SnS solar absorbers. These were (a) the role of the SnS layer thickness, (b) the 

control of stoichiometry via change in substrate temperature and (c) the type of substrate 

material, which may alter the quality of the SnS films. In addition, emphasis was placed on 

promoting further recrystallisation in the SnS thin film via post-annealing treatments and 

sulphur-selenium substitution. A brief description of the range of deposition and 

characterisation methods used were explained in chapter 3.  

In chapter 4, following numerical simulation to provide improved insight on the absorber layer 

thickness, SnS thin films were successfully deposited to thickness range of 100 - 3500 nm at 

constant substrate temperature of 100 oC. The SnS films had randomly oriented needle and 

rice-like grains, which showed a progressive increase in grain size with increasing film 

thickness from 100 to 1500 nm. Above the 1500 nm thickness no further visible increase in 

the grains can be seen. The layer atomic composition showed a marginal difference for film 

thickness  800 nm, thereafter it varied with a considerable difference. All the layers had p-

type conductivity except the ultrathin 100 nm layer, which showed n-type conductivity. For all 

the thicknesses, the SnS films depicted a high absorption coefficient (> 104 cm-1) in the visible 

light region. Films grown to a thickness of 800 nm was found to be near stoichiometry with 

optimum energy bandgap compared to the thinner or thicker films.   



161 
 

In addition, the effect of substrate temperature on the microscopic, optical and crystallographic 

properties of SnS films were systematically investigated. The temperature dependent study 

revealed that higher substrate temperatures led to an increase in adatoms mobility, which 

promoted coalescences of smaller grains to form bigger grains. The increase in grain size with 

substrate temperature however stagnated after 350 oC such that further increase in 

temperature added no impact. As the substrate temperature increases, the Sn/S atomic 

composition range of 0.89 - 1.10 showed that the SnS absorber layer became poorer in 

sulphur. Secondary phases such as SnS2 and Sn2S3 are formed at lower substrate 

temperatures (< 200 oC), while temperatures greater than 200 oC had only polycrystalline SnS 

phase. The energy bandgap of films were significantly influenced by the changing atomic 

composition. Only the SnS film deposited at 350 oC substrate temperature was stoichiometric 

(Sn/S = 1.00) and had energy bandgap of 1.37 eV. The crystallography of the films revealed 

that (111) diffraction plane is more likely associated with the substrate temperatures  300 oC 

while, the (040) diffraction plane is related to higher substrate temperatures (350 oC). 

Photoluminescence measurement demonstrated that controlling the film composition and 

optical bandgap to some extent is critical to produce a film that will luminesce, a requisite for 

any implementation in solar devices. 

The substrate dependent experiments included in chapter 4 demonstrated that films properties 

are strongly influenced by the type of substrate material used. Films on SLG, quartz and ITO 

exhibited strong (040) preferred orientation, while those on Mo coated SLG and quartz showed 

(111) preferred orientation. On the other hand, for the films deposited on FTO, the crystal 

structure became randomised. No secondary phase was detected across the substrates. A 

slight increase of about 3% was measured for the energy bandgap of films deposited on Na-

free substrate of quartz, ITO and FTO compared to the reference 1.37 eV for the film deposited 

on SLG. SEM analysis reveals randomly oriented rice and flake-like small grains in the films 

deposited on SLG and Mo coated SLG, while the grain shape changed to flakes and platelet-

like structure when grown on ITO and FTO with noticeable grain growth. The films on both 
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quartz and Mo coated quartz substrates showed uniformly distributed bigger grains with less 

void over the substrate surface. Unlike kesterite or chalcopyrite materials, the absence of Na 

in the substrate induces a significant grain growth in SnS thin films with the average grain size 

increasing from 0.14 μm on SLG to ~0.32 μm on quartz, ITO and FTO. 

Chapter 5 focused on optimisation of the films via post-annealing treatments in diverse 

environment. The as-deposited 800 nm thick film at 350 oC were subjected to heat treatment 

in diverse environments such as vacuum, N2 and Se for temperatures greater than the growth 

temperature. The crystallographic, optical and microscopic properties of the films were found 

to be dependent on the annealing temperature and environment. Vacuum annealing were 

ineffective in both inducing grain growth and achieving recrystallisation. N2 ambient revealed 

a recrystallised structure with slight increase in grain sizes and a 6% decrease in the energy 

bandgap compared to the reference 1.37 eV for the as-grown layer due to loss of sulphur 

(Sn/S ratio increased from 1.00 to 1.27 following anneal). The incorporation of Se led to 

substantial increase in grains with an average grain size of 2.0 µm compared to 0.14 µm for 

as-grown films, with a nearly complete sulphur substitution by selenium {(Se/(S+Se) = 0.92)}. 

In addition, Se incorporation minimised voids while reducing the bandgap to 1.28 eV and 

improving photoluminescence yield. 

Finally, the search for best buffer layers to replace the traditional CdS for the fabrication of 

SnS solar cells is presented in chapter 6. This was followed by band alignment studies and 

numerical simulation of J-V characteristics using SCAPS. To achieve this, properties of 

thermally evaporated In2S3 and ZnS are investigated. Atomic composition ratio of 1.07 and 

0.64 for Zn/S and In/S showed that a good quality ZnS and In2S3 thin film buffer layers, 

respectively can be obtained via thermal evaporation. The higher energy bandgap values of 

3.35 and 2.85 eV gave ZnS and In2S3, respectively advantage over the commonly used CdS 

that has a narrower energy bandgap of 2.4 eV. CBO calculations showed that only the 

SnS/ZnS interface had small postive value (EC = 0.1 eV), since high negative CBO can block 

the collection of photo-generated carrier, which has negative effect on the photovoltaic 
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properties, it can be said that ZnS is the best choice. SnS/ZnS heterojunction also exhibited 

the highest conversion efficiency of 7.81% for the simulated device and a device with this 

strutcure was fabricated. Therefore, ZnS has potential to replace CdS in the SnS-based solar 

cell devices and further optimising the quality of the ZnS layer to minimise the interface defects 

can lead to improved photovoltaic performance. 

7.2 Suggestions for future works 

Following the work presented in this thesis, a number of research challenges remain and more 

investigation is required to further improve the quality and performance of SnS thin films and 

devices. The following experiments can be further explored: 

 Develop suitable surface etching for SnS solar absorber layer to passivate the surface, 

reduce interface and surface recombination effects in SnS solar cells. 

 The influence of the post-deposition annealing treatments on electrical and electronic 

properties, as well as the possible diffusion of impurities to the SnS solar absorber 

layer can be further investigated.  

 Notice chlorine treatment led to recrystallised layers but too aggressive as it caused 

deep fractures, further investigations should be carried out using different 

concentrations of SnCl2 or MgCl2. This can also be extended to SnS/ZnS layer stack.  

 Optimising the alternative buffer layers studied in this work via variation of their 

constituent elements (ZnxSy) and (InxSy). The buffer layer, if optimised, can lower the 

CBO, give good band alignment and enhance the transport of photo-generated carriers.  

 Further post-deposition annealing studies in selenium environment is needed to fully 

optimise its influence of lowering interface recombination.  
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