147 research outputs found

    A Study on Fault Tolerant Wide-Area Controller Design to Damp Inter-Area Oscillations in Power Systems

    Get PDF
    Due to increased power supply demand, power system oscillations has become a major concern to have stable and secure system operation. One of the major concern in a power system is to damp inter-area oscillations. Lack of proper damping of oscillations may limit power transfer capability and blackouts. Power system stabilizer is used to damp local oscillations but not efficient to damp inter-area oscillations due to less observability of wide-area signals. Wide-Area Measurement Systems is used to overcome this issue and damp inter-area modes to an adequate level. In order to select feedback signals and controller location, wide-area loop selection method using geometrical measure approach is performed. However, while obtaining local and remote signals, a time-delay is introduced that may degrade the performance of system or may lead to instability. Two configurations are defined depending on feedback i.e. synchronous and non-synchronous feedback and modeled with 2nd order Pade approximation. The controller is synthesized based on H8 mixed sensitivity method with regional pole placement for a 4 machine 11 bus power system. It can be found that WDC damps out oscillations quickly and improves performance. Next problem considered is to design a controller when there is a sudden loss of remote signal. A conventional control (CC) method is used to design controller considering a local signal always available and a comparison is made in plants performance for normal and faulty conditions. It is found that conventional control method degrades performance in faulty situation and may lead to instability. To address this problem, a passive fault tolerant control (FTC) method is used where an iterative procedure is used and found that the system maintains adequate stability even in faulty conditions. For FTC method, the control effort required was more compared to CC method but FTC provides acceptable performance than CC controller

    Analysis and Compensation of Network Induced Communication Delays for Distributed Control Systems

    Get PDF
    The control of physical systems with a computer is becoming commonplace. In addition, computer networking is now used to perform spatially distributed interrelated functions. Sensors, controllers and actuators can then be interconnected via the network to form a distributed control loop. However, due to the asynchronous nature of network communications, time varying transport delays are introduced into the feedback control loop. These network induced delays significantly degrade the performance of control systems. This is illustrated and discussed in this paper. Further, different compensation strategies proposed by control researchers are reported. Finally, a procedure has been derived and exemplified to integrate time varying network induced delays within the control design method traditionally used with time invariant systems

    Robust Control of Uncertain Time -Delay Systems.

    Get PDF
    Time-delay systems are common in industries. Direct analysis and synthesis of control systems with time delays are complicated and approximation methods such as Pade approximation are usually applied. However, the issues of control system robustness with respect to model uncertainties and approximation errors have not been sufficiently addressed. This dissertation focus on robustness of time-delay systems, especially robustness with respect to time delays, which has been discussed extensively using Lyapunov second method. We propose two methods in this dissertation to reformulate the problems into standard mu or Hinfinity problems. The first method involves representing the systems in linear functional transformation (LFT) framework and approximating delays by rational transfer functions. The approximation errors are then treated as uncertainties. We show that all the well-known techniques of Hinfinity control theory can be applied to this framework. Consequently, controller design becomes a routine process. We also show that the conventional Lyapunov method is a special case in our proposed framework and our proposed method offers less conservative results. In the second method, we treat uncertain delays as uncertainties with restricted phase angles and extend structured singular value to include phase information. We show that the extended small-mu theorem can be applied to analyze stability and performance of uncertain delay systems with many other type of uncertainties, such as plant model uncertainties and parametric uncertainties. Finally, we generalize the above techniques to linear systems with feedback connected nonlinear elements. Both time invariant and time-varying nonlinearities are discussed by incorporating circle/Popov criterion with small-mu theorem

    Decentralized and Fault-Tolerant Control of Power Systems with High Levels of Renewables

    Get PDF
    Inter-area oscillations have been identified as a major problem faced by most power systems and stability of these oscillations are of vital concern due to the potential for equipment damage and resulting restrictions on available transmission capacity. In recent years, wide-area measurement systems (WAMSs) have been deployed that allow inter-area modes to be observed and identified.Power grids consist of interconnections of many subsystems which may interact with their neighbors and include several sensors and actuator arrays. Modern grids are spatially distributed and centralized strategies are computationally expensive and might be impractical in terms of hardware limitations such as communication speed. Hence, decentralized control strategies are more desirable.Recently, the use of HVDC links, FACTS devices and renewable sources for damping of inter-area oscillations have been discussed in the literature. However, very few such systems have been deployed in practice partly due to the high level of robustness and reliability requirements for any closed loop power system controls. For instance, weather dependent sources such as distributed winds have the ability to provide services only within a narrow range and might not always be available due to weather, maintenance or communication failures.Given this background, the motivation of this work is to ensure power grid resiliency and improve overall grid reliability. The first consideration is the design of optimal decentralized controllers where decisions are based on a subset of total information. The second consideration is to design controllers that incorporate actuator limitations to guarantee the stability and performance of the system. The third consideration is to build robust controllers to ensure resiliency to different actuator failures and availabilities. The fourth consideration is to design distributed, fault-tolerant and cooperative controllers to address above issues at the same time. Finally, stability problem of these controllers with intermittent information transmission is investigated.To validate the feasibility and demonstrate the design principles, a set of comprehensive case studies are conducted based on different power system models including 39-bus New England system and modified Western Electricity Coordinating Council (WECC) system with different operating points, renewable penetration and failures

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio

    Integrated Robust Optimal Design (IROD) via sensitivity minimization

    Get PDF
    A novel Integrated Robust Optimal Design (IROD) methodology is presented in this work which combines a traditional sensitivity theory with relatively new dvancements in Bilinear Matrix Inequality (BMI) constrained optimization problems. IROD provides the least conservative approach for robust control synthesis. The proposed methodology is demonstrated using numerical examples of integrated control-structure design problem for combine harvester header and excavator linkages. The IROD methodology is compared with the state of the art sequential design method using the two application examples, and the results show that the proposed methodology provides a viable alternative for robust controller synthesis and often times offers even a better performance than competing methods. Although this method requires linearization of nonlinear system at each system parameter optimization step, a technique to linearized Differential Algebraic Equations (DAE) is presented which allows use of symbolic approach for linearization. This technique avoids repetitive linearizations. For the nonlinear systems with parametric uncertainties which can not be linearized at operating points, a new methodology is proposed for robust feedback linearization using sensitivity dynamics-based formulation. The feedback linearization approach is used for systems with augmented sensitivity dynamics and used to refine control input to improve robustness. The method is demonstrated using an example of a position tracking control of a hydraulic actuator. The robustness of controller design is demonstrated by considering variations in fluid density parameter. The results show that the proposed methodology improves robustness of the feedback linearization to parametric variations

    Optimal control and robust estimation for ocean wave energy converters

    No full text
    This thesis deals with the optimal control of wave energy converters and some associated observer design problems. The first part of the thesis will investigate model predictive control of an ocean wave energy converter to maximize extracted power. A generic heaving converter that can have both linear dampers and active elements as a power take-off system is considered and an efficient optimal control algorithm is developed for use within a receding horizon control framework. The optimal control is also characterized analytically. A direct transcription of the optimal control problem is also considered as a general nonlinear program. A variation of the projected gradient optimization scheme is formulated and shown to be feasible and computationally inexpensive compared to a standard nonlinear program solver. Since the system model is bilinear and the cost function is not convex quadratic, the resulting optimization problem is shown not to be a quadratic program. Results are compared with other methods like optimal latching to demonstrate the improvement in absorbed power under irregular sea condition simulations. In the second part, robust estimation of the radiation forces and states inherent in the optimal control of wave energy converters is considered. Motivated by this, low order H∞ observer design for bilinear systems with input constraints is investigated and numerically tractable methods for design are developed. A bilinear Luenberger type observer is formulated and the resulting synthesis problem reformulated as that for a linear parameter varying system. A bilinear matrix inequality problem is then solved to find nominal and robust quadratically stable observers. The performance of these observers is compared with that of an extended Kalman filter. The robustness of the observers to parameter uncertainty and to variation in the radiation subsystem model order is also investigated. This thesis also explores the numerical integration of bilinear control systems with zero-order hold on the control inputs. Making use of exponential integrators, exact to high accuracy integration is proposed for such systems. New a priori bounds are derived on the computational complexity of integrating bilinear systems with a given error tolerance. Employing our new bounds on computational complexity, we propose a direct exponential integrator to solve bilinear ODEs via the solution of sparse linear systems of equations. Based on this, a novel sparse direct collocation of bilinear systems for optimal control is proposed. These integration schemes are also used within the indirect optimal control method discussed in the first part.Open Acces
    corecore