21 research outputs found

    Non-disjoint Combined Unification and Closure by Equational Paramodulation (Extended Version)

    Get PDF
    Short version published in the Proceedings of FroCoS 2021Closure properties such as forward closure and closure via paramodulation have proven to be very useful in equational logic, especially for the formal analysis of security protocols. In this paper, we consider the non-disjoint unification problem in conjunction with these closure properties. Given a base theory E, we consider classes of theory extensions of E admitting a unification algorithm built in a hierarchical way. In this context, a hierarchical unification procedure is obtained by extending an E-unification algorithm with some additional inference rules to take into account the rest of the theory. We look at hierarchical unification procedures by investigating an appropriate notion of E-constructed theory, defined in terms of E-paramodulation. We show that any E-constructed theory with a finite closure by E-paramodulation admits a terminating hierarchical unification procedure. We present modularity results for the unification problem modulo the union of E-constructed theories sharing only symbols in E. Finally, we also give sufficient conditions for obtaining terminating (combined) hierarchical unification procedures in the case of regular and collapse-free E-constructed theories

    Non-disjoint Combined Unification and Closure by Equational Paramodulation

    Get PDF
    Extended version available at https://hal.inria.fr/hal-03329075International audienceClosure properties such as forward closure and closure via paramodulation have proven to be very useful in equational logic, especially for the formal analysis of security protocols. In this paper, we consider the non-disjoint unification problem in conjunction with these closure properties. Given a base theory E, we consider classes of theory extensions of E admitting a unification algorithm built in a hierarchical way. In this context, a hierarchical unification procedure is obtained by extending an E-unification algorithm with some additional inference rules to take into account the rest of the theory. We look at hierarchical unification procedures by investigating an appropriate notion of E-constructed theory, defined in terms of E-paramodulation. We show that any E-constructed theory with a finite closure by E-paramodulation admits a terminating hierarchical unification procedure. We present modularity results for the unification problem modulo the union of E-constructed theories sharing only symbols in E. Finally, we also give sufficient conditions for obtaining terminating (combined) hierarchical unification procedures in the case of regular and collapse-free E-constructed theories

    Knowledge Problems in Equational Extensions of Subterm Convergent Theories

    Get PDF
    UNIF 2018 was affiliated with the Third International Conference on Formal Structures for Computation and Deduction FSCD 2018, part of the Federated Logic Conference FLoC 2018International audienceWe study decision procedures for two knowledge problems critical to the verification of security protocols, namely the intruder deduction and the static equivalence problems. These problems can be related to particular forms of context matching and context unification. Both problems are defined with respect to an equational theory and are known to be decidable when the equational theory is given by a subterm convergent term rewrite system. In this note we extend this to consider a subterm convergent equational term rewrite system defined modulo an equational theory, like Commutativity or Associativity-Commutativity. We show that for certain classes of such equational theories, namely the shallow classes, the two knowledge problems remain decidable

    Uniqueness of Normal Forms is Decidable for Shallow Term Rewrite Systems

    Get PDF
    Uniqueness of normal forms (UN=) is an important property of term rewrite systems. UN= is decidable for ground (i.e., variable-free) systems and undecidable in general. Recently it was shown to be decidable for linear, shallow systems. We generalize this previous result and show that this property is decidable for shallow rewrite systems, in contrast to confluence, reachability and other properties, which are all undecidable for flat systems. Our result is also optimal in some sense, since we prove that the UN= property is undecidable for two superclasses of flat systems: left-flat, left-linear systems in which right-hand sides are of depth at most two and right-flat, right-linear systems in which left-hand sides are of depth at most two

    Building and Combining Matching Algorithms

    Get PDF
    International audienceThe concept of matching is ubiquitous in declarative programming and in automated reasoning. For instance, it is a key mechanism to run rule-based programs and to simplify clauses generated by theorem provers. A matching problem can be seen as a particular conjunction of equations where each equation has a ground side. We give an overview of techniques that can be applied to build and combine matching algorithms. First, we survey mutation-based techniques as a way to build a generic matching algorithm for a large class of equational theories. Second, combination techniques are introduced to get combined matching algorithms for disjoint unions of theories. Then we show how these combination algorithms can be extended to handle non-disjoint unions of theories sharing only constructors. These extensions are possible if an appropriate notion of normal form is computable

    Terminating Non-Disjoint Combined Unification

    Get PDF
    International audienceThe equational unification problem, where the underlying equational theory may be given as the union of component equational theories, appears often in practice in many fields such as automated reasoning, logic programming, declarative programming, and the formal analysis of security protocols. In this paper, we investigate the unification problem in the non-disjoint union of equational theories via the combination of hierarchical unification procedures. In this context, a unification algorithm known for a base theory is extended with some additional inference rules to take into account the rest of the theory. We present a simple form of hierarchical unification procedure. The approach is particularly well-suited for any theory where a unification procedure can be obtained in a syntactic way using transformation rules to process the axioms of the theory. Hierarchical unification procedures are exemplified with various theories used in protocol analysis. Next, we look at modularity methods for combining theories already using a hierarchical approach. In addition, we consider a new complexity measure that allows us to obtain terminating (combined) hierarchical unification procedures

    E-unification for subsystems of S4

    Get PDF
    This paper is concerned with the unification problem in the path logics associated by the optimised functional translation method with the propositional modal logics \textit{K}, \textit{KD}, \textit{KT}, \textit{KD4}, \textit{S4} and \textit{S5}. It presents improved unification algorithms for certain forms of the right identity and associativity laws. The algorithms employ mutation rules, which have the advantage that terms are worked off from the outside inward, making paramodulating into terms superfluous

    The Confluence Problem for Flat TRSs

    Get PDF
    International audienceWe prove that the properties of reachability, joinability and confluence are undecidable for flat TRSs. Here, a TRS is flat if the heights of the left and right-hand sides of each rewrite rule are at most one
    corecore