8,667 research outputs found

    Search-based amorphous slicing

    Get PDF
    Amorphous slicing is an automated source code extraction technique with applications in many areas of software engineering, including comprehension, reuse, testing and reverse engineering. Algorithms for syntax-preserving slicing are well established, but amorphous slicing is harder because it requires arbitrary transformation; finding good general purpose amorphous slicing algorithms therefore remains as hard as general program transformation. In this paper we show how amorphous slices can be computed using search techniques. The paper presents results from a set of experiments designed to explore the application of genetic algorithms, hill climbing, random search and systematic search to a set of six subject programs. As a benchmark, the results are compared to those from an existing analytical algorithm for amorphous slicing, which was written specifically to perform well with the sorts of program under consideration. The results, while tentative at this stage, do give grounds for optimism. The search techniques proved able to reduce the size of the programs under consideration in all cases, sometimes equaling the performance of the specifically-tailored analytic algorithm. In one case, the search techniques performed better, highlighting a fault in the existing algorith

    Trustworthy Refactoring via Decomposition and Schemes: A Complex Case Study

    Get PDF
    Widely used complex code refactoring tools lack a solid reasoning about the correctness of the transformations they implement, whilst interest in proven correct refactoring is ever increasing as only formal verification can provide true confidence in applying tool-automated refactoring to industrial-scale code. By using our strategic rewriting based refactoring specification language, we present the decomposition of a complex transformation into smaller steps that can be expressed as instances of refactoring schemes, then we demonstrate the semi-automatic formal verification of the components based on a theoretical understanding of the semantics of the programming language. The extensible and verifiable refactoring definitions can be executed in our interpreter built on top of a static analyser framework.Comment: In Proceedings VPT 2017, arXiv:1708.0688

    Amorphous procedure extraction

    Get PDF
    The procedure extraction problem is concerned with the meaning preserving formation of a procedure from a (not necessarily contiguous) selected set of statements. Previous approaches to the problem have used dependence analysis to identify the non-selected statements which must be 'promoted' (also selected) in order to preserve semantics. All previous approaches to the problem have been syntax preserving. This work shows that by allowing transformation of the program's syntax it is possible to extract both procedures and functions in an amorphous manner. That is, although the amorphous extraction process is meaning preserving it is not necessarily syntax preserving. The amorphous approach is advantageous in a variety of situations. These include when it is desirable to avoid promotion, when a value-returning function is to be extracted from a scattered set of assignments to a variable, and when side effects are present in the program from which the procedure is to be extracted

    Amorphous procedure extraction

    Get PDF
    The procedure extraction problem is concerned with the meaning preserving formation of a procedure from a (not necessarily contiguous) selected set of statements. Previous approaches to the problem have used dependence analysis to identify the non-selected statements which must be 'promoted' (also selected) in order to preserve semantics. All previous approaches to the problem have been syntax preserving. This work shows that by allowing transformation of the program's syntax it is possible to extract both procedures and functions in an amorphous manner. That is, although the amorphous extraction process is meaning preserving it is not necessarily syntax preserving. The amorphous approach is advantageous in a variety of situations. These include when it is desirable to avoid promotion, when a value-returning function is to be extracted from a scattered set of assignments to a variable, and when side effects are present in the program from which the procedure is to be extracted

    VADA: A transformation-based system for variable dependence analysis

    Get PDF
    Variable dependence is an analysis problem in which the aim is to determine the set of input variables that can affect the values stored in a chosen set of intermediate program variables. This paper shows the relationship between the variable dependence analysis problem and slicing and describes VADA, a system that implements variable dependence analysis. In order to cover the full range of C constructs and features, a transformation to a core language is employed Thus, the full analysis is required only for the core language, which is relatively simple. This reduces the overall effort required for dependency analysis. The transformations used need preserve only the variable dependence relation, and therefore need not be meaning preserving in the traditional sense. The paper describes how this relaxed meaning further simplifies the transformation phase of the approach. Finally, the results of an empirical study into the performance of the system are presented

    Connectionism, Analogicity and Mental Content

    Get PDF
    In Connectionism and the Philosophy of Psychology, Horgan and Tienson (1996) argue that cognitive processes, pace classicism, are not governed by exceptionless, “representation-level” rules; they are instead the work of defeasible cognitive tendencies subserved by the non-linear dynamics of the brain’s neural networks. Many theorists are sympathetic with the dynamical characterisation of connectionism and the general (re)conception of cognition that it affords. But in all the excitement surrounding the connectionist revolution in cognitive science, it has largely gone unnoticed that connectionism adds to the traditional focus on computational processes, a new focus – one on the vehicles of mental representation, on the entities that carry content through the mind. Indeed, if Horgan and Tienson’s dynamical characterisation of connectionism is on the right track, then so intimate is the relationship between computational processes and representational vehicles, that connectionist cognitive science is committed to a resemblance theory of mental content

    Source Code Verification for Embedded Systems using Prolog

    Full text link
    System relevant embedded software needs to be reliable and, therefore, well tested, especially for aerospace systems. A common technique to verify programs is the analysis of their abstract syntax tree (AST). Tree structures can be elegantly analyzed with the logic programming language Prolog. Moreover, Prolog offers further advantages for a thorough analysis: On the one hand, it natively provides versatile options to efficiently process tree or graph data structures. On the other hand, Prolog's non-determinism and backtracking eases tests of different variations of the program flow without big effort. A rule-based approach with Prolog allows to characterize the verification goals in a concise and declarative way. In this paper, we describe our approach to verify the source code of a flash file system with the help of Prolog. The flash file system is written in C++ and has been developed particularly for the use in satellites. We transform a given abstract syntax tree of C++ source code into Prolog facts and derive the call graph and the execution sequence (tree), which then are further tested against verification goals. The different program flow branching due to control structures is derived by backtracking as subtrees of the full execution sequence. Finally, these subtrees are verified in Prolog. We illustrate our approach with a case study, where we search for incorrect applications of semaphores in embedded software using the real-time operating system RODOS. We rely on computation tree logic (CTL) and have designed an embedded domain specific language (DSL) in Prolog to express the verification goals.Comment: In Proceedings WLP'15/'16/WFLP'16, arXiv:1701.0014

    Towards a General Framework for Formal Reasoning about Java Bytecode Transformation

    Full text link
    Program transformation has gained a wide interest since it is used for several purposes: altering semantics of a program, adding features to a program or performing optimizations. In this paper we focus on program transformations at the bytecode level. Because these transformations may introduce errors, our goal is to provide a formal way to verify the update and establish its correctness. The formal framework presented includes a definition of a formal semantics of updates which is the base of a static verification and a scheme based on Hoare triples and weakest precondition calculus to reason about behavioral aspects in bytecode transformationComment: In Proceedings SCSS 2012, arXiv:1307.802
    corecore