
Search–Based Amorphous Slicing

Deji Fatiregun Mark Harman Robert M. Hierons
King’s College London King’s College London Brunel University

Strand, London Strand, London Uxbridge, middlesex
WC2R 2LS, UK. WC2R 2LS, UK. UB8 3PH, UK.

fatir@dcs.kcl.ac.uk Mark@dcs.kcl.ac.uk Rob.Hierons@brunel.ac.uk

Keywords: slicing, transformation, search based software engineering

Abstract

Amorphous slicing is an automated source code extrac-
tion technique with applications in many areas of software
engineering, including comprehension, reuse, testing and
reverse engineering. Algorithms for syntax–preserving slic-
ing are well established, but amorphous slicing is harder
because it requires arbitrary transformation; finding good
general purpose amorphous slicing algorithms therefore re-
mains as hard as general program transformation.

In this paper we show how amorphous slices can be com-
puted using search techniques. The paper presents results
from a set of experiments designed to explore the applica-
tion of genetic algorithms, hill climbing, random search and
systematic search to a set of six subject programs. As a
benchmark, the results are compared to those from an exist-
ing analytical algorithm for amorphous slicing, which was
written specifically to perform well with the sorts of pro-
gram under consideration.

The results, while tentative at this stage, do give
grounds for optimism. The search techniques proved able
to reduce the size of the programs under consideration
in all cases, sometimes equaling the performance of the
specifically-tailored analytic algorithm. In one case, the
search techniques performed better, highlighting a fault in
the existing algorithm.

1 Introduction

Program slicing is a technique for extracting parts of a
program which affect a chosen set of variables of interest.
By focusing on the computation of only a few variables the
slicing process can be used to eliminate parts of the program

which cannot affect these variables, thereby reducing the
size of the program. The reduced program is called a slice.
The traditional, syntax–preserving, paradigm of computing
slices by a process of statement deletion is well studied, and
there are well established algorithms for automated syntax–
preserving slice construction [20, 34].

Amorphous slicing is a form of slicing, in which any
transformation can be applied (not merely statement dele-
tion). As a result the slice produced can be a lot smaller, but
the algorithms for computing such slices are less well de-
veloped than those which use the statement deletion trans-
formation alone. Furthermore, unlike traditional, syntax–
preserving slices, the amorphous slices do not preserve the
syntactic structure of the original program. All applica-
tions of slicing require slices to be as small as possible and
many (such as reverse engineering) do not require syntax-
preservation. For those applications where syntax preserva-
tion is unimportant, amorphous slicing is clearly attractive.

Slicing is useful in Reverse and Re- Engineering be-
cause it assists in many associated activities, for example
Comprehension[12], Salvaging [8] and Regression Testing
[1]. Amorphous Slices produces smaller slices but loses
the syntactic connection to the original. However for Re-
engineering, this loss of reduction is often inevitable and
smaller slices are highly desirable. This makes amorphous
slicing ideally suited to re-engineering.

Since amorphous slicing involves general program trans-
formation, finding good general algorithms is as hard as
finding good general transformation algorithms which is
known to be a very challenging problem [6, 26]. Although
there exist several analytic algorithms for amorphous slic-
ing (using the program dependence graph [2] and the ab-
stract syntax tree [18]), these are not general amorphous
slicing algorithms. Rather, they are constructed to apply
a specific set of transformation rules in a strategy which is

1
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

optimised to producing amorphous slices for a certain class
of programs.

This paper proposes a new method for generating amor-
phous slices for programs using search–based techniques.
It is our hypothesis that searching for a series of meaning
preserving transformations based upon an appropriate ob-
jective measure may result in the generation of good amor-
phous slices. We tackle the problem using four different
search heuristics which will be described further - a Genetic
Algorithm (GA), a Hill Climb Algorithm (HCA), a System-
atic Search Algorithm (SSA) and a pure Random Search
Algorithm (RSA).

The problem of computing amorphous slices is refor-
mulated as a problem of removing redundant computations
by transformation. The search explores the space of pos-
sible transformation sequences. The fitness function re-
wards those transformations which can reduce the redun-
dancies in the program. The advantage of using search is
that the search techniques are highly adaptive, producing a
sequence of transformations tailored to the particular pro-
gram to be sliced. In this way, the overall approach is, at
once, both general and specific. It is a general approach be-
cause it can be deployed to slice arbitrary programs. How-
ever, application of the approach to each program to be
sliced is, nonetheless highly specific; the transformation se-
quence which results is tailored to the problem of slicing
that particular program.

The paper presents results from the application of the
four search techniques and compares these with results ob-
tained from the syntax-directed analytic slicing algorithm
LinIAS [18]. The results presented here come from the ap-
plication of these techniques without a significant degree
of ‘tuning’. Nonetheless, the results are very encouraging.
The search techniques were always able to reduce the size
of the original program. Since minimal slicing is not de-
cidable (even in the restricted, syntax–preserving, paradigm
[34]) any reduction in program size is useful.

The results also show that random search performs well.
This indicates that there is ‘more mileage’ yet to be gained
from the more sophisticated search techniques, such as Hill
Climbing and Systematic Search. The systematic search
also performs well, indicating that a hybrid approach which
combines elements of systematic search with genetic algo-
rithms and hill climbing may be effective.

Finally, a search-based approach was, at least on one oc-
casion able to perform better than the analytic algorithm.
This was highly surprising, because the analytic algorithm
is known to perform well for this class of programs. In this
case, the use of search revealed a bug in the algorithm used
to construct syntax–preserving slices, which was a compo-
nent of the amorphous slicing algorithm used in an imple-
mentation of the LinIAS system [18].

The primary contributions of this paper are to:

• Introduce the idea of using search heuristics to con-
struct amorphous slices.

• Present initial results indicating the feasibility of the
search-based approach to slice construction.

• Compare different search approaches for this problem,
including a systematic search technique designed
specifically for search-based transformation.

The rest of the paper is organised as follows: Section
2 describes traditional syntax–preserving slicing and amor-
phous slicing. Section 3 informs of the motivation behind
using search techniques in generating amorphous slices and
descirbes how search is applied. Section 4 describe the al-
gorithms analysed in this work. Sections 5 and 6 detail the
experiments carried out and provide a discussion of the re-
sults respectively highlighting interesting outcomes. Sec-
tion 7 describes related work in this area while Section 8
describes future areas in this research. Section 9 presents
the conclusions.

2 Slicing and Amorphous Slicing

Program Slicing is an automated source code extrac-
tion technique which produces a version of a program that
preserves a projection of the original program’s semantics
[3, 11, 30, 34]. Traditionally, this projection is defined in
terms of a subset of variables of interest and is constructed
using the sole transformation of statement deletion [34].
The slice is therefore a subprogram which preserves a sub-
computation.

Amorphous slicing can be thought of as a generalisation
of slicing: the semantic requirement is retained, but the syn-
tactic requirement is relaxed. This makes amorphous slic-
ing more like transformation than traditional slicing. Simi-
larly, amorphous slicing can be thought of as a generaliza-
tion of program transformation: the semantic requirement
to preserve the meaning of the program is relaxed to the re-
quirement that the (projected) semantics with respect to the
slicing criterion is preserved.

Transformations which tend to reduce program size are
like slices in that they preserve the (projected) semantics
of the program, but are unlike slicing because they do not
preserve syntax. On the other hand, slicing is like transfor-
mation in the way it preserves the semantics of the program
for some projection of the original semantics. Thus, amor-
phous slicing is the result of combining slicing and trans-
formation.

It is widely believed that amorphous slices tend to be
smaller than static slices because of the relaxed syntactic

2

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

requirements placed on them and the fact statements and
expressions may be transformed further using rules from
a pool available to the amorphous slicer. Figure 1 shows
an example of an amorphous slice and the possible fur-
ther reduction in slice size when compared against syntax–
preserving slices. Amorphous Slicers currently work using
analytical algorithm that reduce dependencies, transforming
program constructs. However it is also known that the prob-
lem of achieving minimal slices is undecidable. Therefore,
it may still be possible to find even smaller slices than those
being achieved by existing amorphous slicers. It is this rea-
soning that has fed the idea of a search-based approach.

That given a similar set of domain specific transforma-
tion rules as is available to an existing amorphous slicing
system and an appropriate objective metric (slice size re-
duction), that the search heuristics may find sequences and
combinations of the rules to return smaller slice sizes.

Researchers such as Tip [30], and Binkley and Gallagher
[3] and De Lucia [11] have all provided surveys of Program
Slicing: techniques and applications and slicing paradigms.
Binkley and Harman [4] present a survey of empirical re-
sults on program slicing.

3 Amorphous Slicing as Search-Based Trans-
formation

Inherent in the idea of amorphous slicing, is the appli-
cation of transformation rules such as constant propagation,
statement deletion, etc., in unfolding expressions. These
specific transformation rules are selected from a pool using
an appropriate selection strategy. Typically if the pool of
transformation rules is sufficiently large, then the number
of combinations of rules which may be applied at any node
in the program is exponential.

The search space is thus wide enough for any number of
heuristic search methods applied to explore the possibilities
for finding sequences of good meaning–preserving transfor-
mation rules that would generate smaller program slices.

3.1 Reformulating Amorphous Slicing as a Re-
dundancy Removal Problem

In order to compute valid amorphous slices that preserve
the computation for a single variable of interest using a
search–based approach, we re–formulate the problem as a
redundancy removal problem by appending killing assign-
ment statements to the program and then optimise by re-
moving (transforming out) these redundant statements.

Given a variable x captured by our slicing criterion and
a set of defined variables V in a program, such that, V ′ =
V - x, to obtain a slice S which represents a projection of
the semantics of a program P with respect to x in the slicing

criterion, we need to ensure that our algorithm preserves the
existence of x in S.

For all variables v in V ′, we append killing assignments
such that: v = C (where C is some arbitrary constant value).
Figure 2 illustrates the reformulation as redundancy re-
moval by the addition of killing assignments. [13] describes
the idea of search-based transformations and the mapping
between a sequence of transformation rules and the encod-
ing system used in this work.

3.2 Fitness Measure

Subsequent to the reformulation of the problem as one
of redundancy removal through the inclusion of the killing
assignment statements to the statements, we select an ap-
propriate fitness measure which our search procedure would
optimise. The optimisation problem is to minimise the size
of the amorphous slice computed, that is, the smaller the
slice size obtained, the better the solution.

The fitness measure for our algorithms minimises the
size of the source program (LoC) and is computed by sub-
tracting the size of the slice computed from the size of the
original program:

fitness of individual = length of original program - length
of slice produced by individual

4 Search Algorithms

4.1 Genetic Algorithm

A Genetic Algorithm (GA) is a population-based search
procedure, which starts with an initial random solutions
(represented as chromosomes) called the population and
evolves over several iterations or generations, such that the
individuals (solutions) in successive generations have better
or at least of no worse fitness values than those in preceding
generations. An optimised individual is one which presents
a more desirable solution to the given problem.

GAs imitate the natural process of evolution and use evo-
lutionary operators such as crossover and mutation to alter
the population across several generations toward optimality.

We employ a GA to evolve the sequences of transforms
that would result in the best possible program. Our ap-
proach is to use the transformation sequence to be applied
to the program as the individual to be optimised. Using the
transformation sequence as the individual makes it possible
to define crossover relatively easily. In our implementation,
we combine two sequences of transformations using a sin-
gle point crossover, selecting a point at random along the
chromosome and swapping adjacent sides. The result is a
valid transformation sequence and since all transformation
rules are meaning preserving, so are all sequences of trans-
formation rules.

3
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

D := 2*r; D := 2*r; slice:=2*pi*r*r+h*pi*2*r;
FaceArea := pi*r*r; FaceArea := pi*r*r;
C := pi*D; C := pi*D;
TempArea := pi * FaceArea; SArea := 2*FaceArea+h*C;
SArea := 2*FaceArea+h*C; slice := SArea;
slice := SArea;
Original Syntax-Preserving slice Amorphous slice

Figure 1. Illustrative example showing Amorphous Slicing Producing Thinner Slices by Removing
Syntactic Restrictions. Slice computed w.r.t. variable slice at end.

D := 2*r; D := 2*r;
FaceArea := pi*r*r; FaceArea := pi*r*r;
C := pi*D; C := pi*D;
SArea := 2*FaceArea+h*C; SArea := 2*FaceArea+h*C;
slice := SArea; C := 1;

FaceArea := 1;
D := 1;
slice := SArea;

Source Program: slicing criterion is Re–Constructed Program with killing
variable slice at end-of-program assignments appended to end-of-program

Figure 2. Re–structuring Source Program for Search–Based Transformations

4.2 Hill Climb Algorithm

In a local search method such as the Hill–Climbing algo-
rithm (HC), one guesses a solution within the solution space
and then moves toward a better solution closer to the goal.

We implemented a HC algorithm to find good transfor-
mation sequences. In our implementation, an initial se-
quence is generated randomly and serves as our starting
point. The fitness of this individual is computed. The al-
gorithm iterates through each neighbour to the current po-
sition and when a better individual is found, this individual
replaces the old one as the current best individual. This
process is repeated and if no better neighbour is found, we
assume we have arrived at the top of the hill and the current
solution remains our best.

The algorithm is restarted several times using a random
sequence as the starting individual each time. The aim is
that this would divert the algorithm from any local optima
and increase the chances of finding a global solution.

4.3 Systematic Search Algorithm

In this section, we describe a Systematic Search Algo-
rithm (SSA), which we implemented to optimize the search
for an amorphous slice. In the SSA, we do not have any

notion of an individual but each transformation rule (gene)
is applied iteratively to a node in the program. If a partic-
ular rule is successful at that point, then it is repeated at
the next node, otherwise a new rule is tried out at the spec-
ified node. This process is repeated until all the rules are
examined per node and the program cursor reaches the end
of source–code. The entire process may be restarted again
over several iterations.

5 Experiment

The objective of the experiment was to determine
whether search–based techniques could be used to compute
valid amorphous slices. The algorithms presented were im-
plemented in the Wide Spectrum Language (WSL) using
transformation rules from the fermaT transformation work-
bench [31]. [13] lists some of the transformations rules im-
plemented in the fermaT system and used in this work.

5.1 Experimental Set-Up

We examined the application of search–based methods
to find transformations which would optimize programs to
generate amorphous slices with respect to a given slicing
criterion. The research included comparing the results from

4
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

four search methods: Genetic Algorithm, Hill–Climb Algo-
rithm, Systematic Search Algorithm and Random Search.

To apply our search methods, there is the need to dis-
tinguish the slicing criterion from other asssigned variables
within the source by restructuring the program by way of
adding killing assignments to the source (as described in
section 3). For the individual based search methods, we de-
fine arbitrarily a fixed length of 20 genes per individual for
the transformation sequences.

We implemented a standard Genetic Algorithm using
single point crossover, a mutation rate of 7% and the tourna-
ment selection strategy for choosing mating parents. Each
combination of genetic material between the parents results
in the creation of a single offspring which may replace the
parent with a worse fitness value. We define a constant pop-
ulation size of 50 and run the algorithm over 100 genera-
tions. The individual with the best fitness score is replicated
across successive generations.

The experiment with the hill–climb algorithm was set up
with multiple restarts, keeping track of the best individual
across the different restarts. The HC Algorithm uses a first
ascent technique. A neighbouring individual is analysed
and its fitness value computed. If the fitness of the neigh-
bour is better than that of our current position, the neigh-
bour becomes our new current best position. Neighbour-
hood in our hill–climb algorithm is described as the muta-
tion of a single gene in an individual (all other genes remain
unchanged). The algorithm is restarted 10 times with a new
random individual each time.

With the Systematic Search Algorithm, each transforma-
tion rule is applied iteratively at each node in the program.
Because the algorithm works with single genes rather than
individuals, a collection of sequences is built up as the al-
gorithm progresses through each program node.

Lastly, we implemented a random search for transfor-
mation sequences, also using a fixed length sequence of 20
transformation rules per individual. The experiment is ter-
minated after a fixed number of iterations and the individual
with the best fitness score is recorded.

The results presented are averaged over 10 runs for each
algorithm.

5.2 Test Programs

During the experiment, each of the algorithms described
was tested using 6 subject programs including 2 from a large
industrial automobile company: a simple odd and evens
programs, a simplified UK tax program, a program comput-
ing student marks on a given course, a calendar program, a
rear-end window defroster and a braking system controller.

An amorphous slice was computed for each test program
w.r.t. every assigned variable in the source code. The num-

Search Technique
%

Program Size GA SS HC RS LinIAS
(LoC)

OddEven 41 74 79 82 74 87
Tax 77 30 33 31 30 34
Calendar 87 26 51 27 26 53
Defroster 123 72 77 74 71 78
Marking 155 48 55 53 48 61
Braking Cllr. 326 60 70 59 59 72

Figure 3. Results of executing different
search techniques to compute amorphous
slice and the analytic amorphous slicing sys-
tem showing average percentage reduction in
slice size

ber of slices generated per technique ranged from 4 slices to
over 60 slices computed for the braking system controller.

We observe two outputs from each simulation of the al-
gorithms: the amorphous slice and the number of lines of
code for the slice. In the implementation, we keep the
source program static. This means that each new applica-
tion of an individual is applied to the same original source
program. The effects on a program of previous applications
of transformation seqeuences are discarded before the next
sequence is applied.

6 Discussion

Figures 4–9 shows the results of applying different
heuristic search approaches to amorphous slicing and are
compared against the analytic-based system. On each box
plot, each box represents the distribution of the resulting
slice sizes when slicing the subject program w.r.t. all as-
signed variables in the source code. Each chart shows the
different amorphous slicing techniques on the x-axis and
the resulting slice size in number of lines of code (LoC)
on the y-axis. Each result shows at least one of the search
techniques perform quite comparable on the average with
the results of the slices computed by LinIAS.

We observe that the search heuristic achieved success in
slicing the program under test with respect to the slicing
criterion, returning in some cases, slice sizes that matched
those returned by LinIAS. However, there are variations in
the results obtained from the various search techniques. The
Hill–Climb Algorithm performed better with the OddEven
program than it did with the Tax test program while the
Systematic Search Algorithm performed more consistently
across the various tests. This perhaps suggests that a hybrid

5
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

Figure 4. Results of executing different search techniques to compute amorphous slices and the analytic slicing system on the
OddsEven subject program

Figure 5. Results of executing different search techniques to compute amorphous slices and the analytic slicing system on the
Calendar subject program

algorithm may combine the best of each of these individual
approaches to produces even better results.

Figure 8, which illustrates the results from the test on the
rear-end window controller, shows the Systematic Search
technique considerably reducing the program size to a level
almost comparable to LinIAS. Encouragingly, the average
size for slices produced by search techniques are better than
those returned by Random Search. Figures 4, 5, 7 and 9
all show the Systematic Search and \ or the Hill-Climb
Algorithm perform significantly better than Random. In
Figure 3, we observe the average reductions in slice sizes
and notice in one case an over 80% reduction in the origi-
nal program size. Statistically we observe positive correla-
tion between the results achieved by the various search ap-
proaches and those from LinIAS for each test program with
the search techniques performing well for test cases where
LinIAS performs well and vice versa.

Furthermore, we also observe that in the simplified UK
Tax test case results in Figure 6 and in the OddsEven pro-
gram in Figure 4, examining specifically four slicing crite-
ria, that the Hill–Climb computed smaller amorphous slices
than LinIAS w.r.t these four variables.

Disappointingly however, we notice across the results
that whilst the Genetic Algorithm computed valid amor-
phous slices that were smaller in size than the original pro-
gram, the size of the slices tended to be comparable to those
returned by Random Search. This might either be due to the
GA simply being naı̈ve or the problem better suited to local
and more directed search heuristics.

Significantly, although the LinIAS system on average re-
turns smaller slices than the search–based approaches, it
has a seemingly unfair advantage. It uses as one of its
transformations, a traditional syntax-preserving static slicer,
which the search methods did not have available to within

6
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

Figure 6. Results of executing different search techniques to compute amorphous slices and the analytic slicing system on the Tax
subject program

Figure 7. Results of executing different search techniques to compute amorphous slices and the analytic slicing system on the
Marks subject program

their pool of transformations. The presence of such a tradi-
tional slicing transformation rule in the pool of transforma-
tion rules available to the search algorithms may result in
dramatically improved results than those already observed.
The good of this work is to see whether transformation can
be formulated as a search problem and to investigate the
differences between various search algorithms. However,
it is very encouraging that these techniques are able to re-
turn good and occassionally competitive results despite this
handicap.

6.1 A Surprising Result

It has been widely observed that search techniques are
good at producing unexpected answers. This happens be-
cause the techniques are not hindered by implicit human
assumptions. One example is the discovery of a patented

digital filter using a novel evolutionary approach [28]. An-
other example is the discovery of patented antenna designs
[22] which are available commercially. The human for-
malises their (explicit) assumptions as a fitness function.
The machine uses this fitness function to guide the search.
Should the search produce unexpected results then this re-
veals some implicit assumptions and/or challenges the hu-
man’s intuition about the problem.

Unlike human–based search, automated search tech-
niques carry with them no bias. They automatically scour
the search space for the solutions which best fit the (stated)
human assumptions in the fitness function. This is one of
the central strengths of the approach.

In a small way, this insight-yielding advantage of search
was observed in our experiments on search–based amor-
phous slicing. For one of the examples — (tax program) in
Figure 6 — the amorphous slice found by the search tech-

7
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

Figure 8. Results of executing different search techniques to compute amorphous slices and the analytic slicing system on the
Rear-End Window Controller subject program

Figure 9. Results of executing different search techniques to compute amorphous slices and the analytic slicing system on the
Braking Controller subject program

niques was smaller than that produced by the analytic algo-
rithm. This seemed impossible at first because the analytic
algorithm is designed to produce excellent results with pre-
cisely the type of programs under study. Closer examination
revealed that the syntax–preserving slices had a weakness
in it. It produced an over–large slice, which fed into the
amorphous slicing algorithm used by LinIAS. For the par-
ticular program and slicing criterion it missed a chunk of
code which could be deleted.

7 Related Work

Slicing was introduced by Mark Weiser in 1979 [33] and
has been the subject of extensive study since then. However
studies [25, 20, 21, 7] carried out from then through to the
early 90s employed statement deletion as the sole simplify-
ing transformation used to create slices.

Several authors have indicated that the syntactic subset
requirement of syntax-preserving slicing has been a hin-
drance to the computation of small slices [9]. Indeed, in his
thesis, Weiser immediately recognized and acknowledged
([33], page 6) that it would not always be possible for a slice
to be constructed as a purely faithful subset of the original
program’s syntax.

Many other authors have suggested ways of combin-
ing slicing and transformation for a variety of applica-
tions including refining the precision of syntax-preserving
slicing[29], assisting testing [16], identifying unobservable
components in optimising task scheduling [14] and register-
allocation optimisation [24].

Amorphous slicing was first introduced by Harman and
Danicic [17], and has been developed by Binkley [2] and
Harman, Binkley and Danicic [15] and by Ward [32]. Bink-
ley’s approach uses the System Dependence Graph [20],

8
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

while Ward’s approach uses a novel syntax–preserving slic-
ing algorithm,which is currently under development into an
augmented system for producing semantic slices [32],which
are closely related to amorphous slices. Binkley et al.
[5, 15] have shown that amorphous slicing aids program
comprehension. Hierons, Harman and Danicic [19] have
shown how amorphous slices can be used to (partly) ame-
liorate the equivalent mutant problem for mutation testing.

Search–Based transformation have been researched by
several authors: Fatiregun et al. [13] examined using search
based techniques to (fully) automate program transforma-
tion at source–code level. Cooper et al. [10] examined us-
ing biased random sampling search means to find ideal se-
quences for perfoming compiler optimisations. Nisbet [23]
focused on using GAs to find program restructuring trans-
formations for FORTRAN programs to execute on parallel
architectures and Ryan [27] worked on using search tech-
niques to automate parallelisation for super–computers.

8 Future Work

The following issues will be addressed in future work.
First, research into the scalability of this approach by ap-
plying the techniques proposed for very large-scale subject
programs.

Secondly, in the present study, the search–based ap-
proaches were implemented independently. We propose ex-
perimenting with other search–based heuristic and imple-
menting a hybrid algorithm, for example, we could use sys-
tematic search to produce a set of transformations, which
will then be used to seed a hill–climbing algorithm. The
results of ‘different versions’ of the systematic search/hill–
climb may then be used as an initial population for a GA
and then finally hill–climb on the results of the GA.

Thirdly, the current approach with the search algorithms
is to keep the program under test fixed (static) for each ap-
plication of an individual transformation sequence. For al-
gorithms that require transformation sequence as unique in-
dividuals such as the GA and HC, each application of an
individual transforms an old copy of the original program
under consideration. We propose to dynamically change
the program under consideration each time a tansformation
sequence is applied and returns a smaller slice of the orig-
inal. That way, subsequent sequences act upon improved
versions of the program under consideration and should ul-
timately produce much smaller slices.

9 Conclusion

This paper introduces the idea of using search–based ap-
proaches to compute amorphous slices. By reformulating
the amorphous slicing problem as a redundancy removal

problem, we are able to apply transformations capable of
eliminating redundancies and simplifying dependencies to
reduce the size of program slices and preserve the compu-
tations for a particular variable of interest.

We implement a Genetic Algorithm, Hill–Climb and
System Search Algorithm to traverse the search space for
transformation sequences and report that all three algo-
rithms produce valid amorphous slices that are smaller in
size than the original program under study and present a
case where a search–based approach performs better than a
dedicated analytic amorphous slicing system.

References

[1] D. W. Binkley. The application of program slicing to regres-
sion testing. In M. Harman and K. Gallagher, editors, Infor-
mation and Software Technology Special Issue on Program
Slicing, volume 40, pages 583–594. Elsevier Science B. V.,
1998.

[2] D. W. Binkley. Computing amorphous program slices using
dependence graphs and a data-flow model. In ACM Sympo-
sium on Applied Computing, pages 519–525, The Menger,
San Antonio, Texas, U.S.A., 1999. ACM Press, New York,
NY, USA.

[3] D. W. Binkley and K. B. Gallagher. Program slicing. In
M. Zelkowitz, editor, Advances in Computing, Volume 43,
pages 1–50. Academic Press, 1996.

[4] D. W. Binkley and M. Harman. A survey of empirical re-
sults on program slicing. Advances in Computers, 62:105–
178, 2004.

[5] D. W. Binkley, M. Harman, L. R. Raszewski, and C. Smith.
An empirical study of amorphous slicing as a program com-
prehension support tool. In 8th IEEE International Workshop
on Program Comprehension (IWPC 2000), pages 161–170,
Limerick, Ireland, June 2000. IEEE Computer Society Press,
Los Alamitos, California, USA.

[6] T. Bull. Software maintenance by program transformation in
a wide spectrum language. PhD thesis, University of Durham,
UK, School of Engineering and Computer Science, 1994.

[7] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-
gram slicing. In M. Harman and K. Gallagher, editors, Infor-
mation and Software Technology Special Issue on Program
Slicing, volume 40, pages 595–607. Elsevier Science B. V.,
1998.

[8] G. Canfora, A. Cimitile, A. De Lucia, and G. A. D. Lucca.
Software salvaging based on conditions. In International
Conference on Software Maintenance (ICSM’96), pages 424–
433, Victoria, Canada, Sept. 1994. IEEE Computer Society
Press, Los Alamitos, California, USA.

[9] J. Choi and J. Ferrante. Static slicing in the presence of goto
statements. ACM Transactions on Programming Languages
and Systems, 16(4):1097–1113, July 1994.

[10] K. D. Cooper, P. J. Schielke, and D. Subramanian. Opti-
mising for reduced code space using genetic algorithms. In
Proceedings of the 1999 Workshop on Languages, Compilers
and Tools for Embedded Systems (LCTES), May 1999.

9
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

[11] A. De Lucia. Program slicing: Methods and applications.
In 1st IEEE International Workshop on Source Code Analy-
sis and Manipulation, pages 142–149, Florence, Italy, 2001.
IEEE Computer Society Press, Los Alamitos, California,
USA.

[12] A. De Lucia and M. Munro. Program comprehension in a
reuse reengineering environment. In M. Munro, editor, 1st

Durham workshop on program comprehension, Durham Uni-
versity, UK, July 1995.

[13] D. Fatiregun, M. Harman, and R. Hierons. Evolving trans-
formation sequences using genetic algorithms. In 4th Inter-
national Workshop on Source Code Analysis and Manipula-
tion (SCAM 04), pages 65–74, Chicago, Illinois, USA, Sept.
2004. IEEE Computer Society Press, Los Alamitos, Califor-
nia, USA.

[14] R. Gerber and S. Hong. Slicing real-time programs for en-
hanced schedulability. ACM Transactions on Programming
Languages and Systems, 19(3):525–555, May 1997.

[15] M. Harman, D. W. Binkley, and S. Danicic. Amorphous pro-
gram slicing. Journal of Systems and Software, 68(1):45–64,
Oct. 2003.

[16] M. Harman and S. Danicic. Using program slicing to sim-
plify testing. Software Testing, Verification and Reliability,
5(3):143–162, Sept. 1995.

[17] M. Harman and S. Danicic. Amorphous program slicing.
In 5th IEEE International Workshop on Program Compren-
hesion (IWPC’97), pages 70–79, Dearborn, Michigan, USA,
May 1997. IEEE Computer Society Press, Los Alamitos, Cal-
ifornia, USA.

[18] M. Harman, L. Hu, M. Munro, X. Zhang, D. W. Binkley,
S. Danicic, M. Daoudi, and L. Ouarbya. Syntax-directed
amorphous slicing. Journal of Automated Software Engineer-
ing, 11(1):27–61, Jan. 2004.

[19] R. M. Hierons, M. Harman, and S. Danicic. Using pro-
gram slicing to assist in the detection of equivalent mutants.
Software Testing, Verification and Reliability, 9(4):233–262,
1999.

[20] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions on Pro-
gramming Languages and Systems, 12(1):26–61, 1990.

[21] B. Korel and J. Laski. Dynamic program slicing. Information
Processing Letters, 29(3):155–163, Oct. 1988.

[22] D. S. Linden. Innovative antenna design using genetic algo-
rithms. In D. W. Corne and P. J. Bentley, editors, Creative
Evolutionary Systems, chapter 20. Elsevier, Amsterdam, The
Netherland, 2002.

[23] A. Nisbet. GAPS: A compiler framework for genetic algo-
rithm (GA) optimised parallelisation. In HPCN Europe, pages
987–989, 1998.

[24] C. Norris and L. L. Pollock. The design and implementation
of RAP: A PDG-based register allocator. Software Practice
and Experience, 28(4):401–424, Apr. 1998.

[25] K. J. Ottenstein and L. M. Ottenstein. The program depen-
dence graph in software development environments. SIG-
PLAN Notices, 19(5):177–184, 1984.

[26] H. A. Partsch. The Specification and Transformation of
Programs: A Formal Approach to Software Development.
Springer, 1990.

[27] C. Ryan. Automatic re-engineering of software using genetic
programming. Kluwer Academic Publishers, 2000.

[28] T. Schnier, X. Yao, and P. Liu. Digital filter design using
multiple pareto fronts. Soft Computing, 8(5):332–343, April
2004.

[29] F. Tip. Generation of Program Analysis Tools. PhD thesis,
Centrum voor Wiskunde en Informatica, Amsterdam, 1995.

[30] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[31] M. Ward. Assembler to C migration using the FermaT trans-
formation system. In IEEE International Conference on Soft-
ware Maintenance (ICSM’99), Oxford, UK, Aug. 1999. IEEE
Computer Society Press, Los Alamitos, California, USA.

[32] M. Ward. Program slicing via FermaT transformations.
In 26th IEEE Annual Computer Software and Applications
Conference (COMPSAC 2002), pages 357–362, Oxford, UK,
Aug. 2002. IEEE Computer Society Press, Los Alamitos, Cal-
ifornia, USA.

[33] M. Weiser. Program slices: Formal, psychological, and
practical investigations of an automatic program abstraction
method. PhD thesis, University of Michigan, Ann Arbor, MI,
1979.

[34] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

10
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:07 from IEEE Xplore. Restrictions apply.

