26 research outputs found

    Yield-Aware Leakage Power Reduction of On-Chip SRAMs

    Get PDF
    Leakage power dissipation of on-chip static random access memories (SRAMs) constitutes a significant fraction of the total chip power consumption in state-of-the-art microprocessors and system-on-chips (SoCs). Scaling the supply voltage of SRAMs during idle periods is a simple yet effective technique to reduce their leakage power consumption. However, supply voltage scaling also results in the degradation of the cells’ robustness, and thus reduces their capability to retain data reliably. This is particularly resulting in the failure of an increasing number of cells that are already weakened by excessive process parameters variations and/or manufacturing imperfections in nano-meter technologies. Thus, with technology scaling, it is becoming increasingly challenging to maintain the yield while attempting to reduce the leakage power of SRAMs. This research focuses on characterizing the yield-leakage tradeoffs and developing novel techniques for a yield-aware leakage power reduction of SRAMs. We first demonstrate that new fault behaviors emerge with the introduction of a low-leakage standby mode to SRAMs. In particular, it is shown that there are some types of defects in SRAM cells that start to cause failures only when the drowsy mode is activated. These defects are not sensitized in the active operating mode, and thus escape the traditional March tests. Fault models for these newly observed fault behaviors are developed and described in this thesis. Then, a new low-complexity test algorithm, called March RAD, is proposed that is capable of detecting all the drowsy faults as well as the simple traditional faults. Extreme process parameters variations can also result in SRAM cells with very weak data-retention capability. The probability of such cells may be very rare in small memory arrays, however, in large arrays, their probability is magnified by the huge number of bit-cells integrated on a single chip. Hence, it is critical also to account for such extremal events while attempting to scale the supply voltage of SRAMs. To estimate the statistics of such rare events within a reasonable computational time, we have employed concepts from extreme value theory (EVT). This has enabled us to accurately model the tail of the cell failure probability distribution versus the supply voltage. Analytical models are then developed to characterize the yield-leakage tradeoffs in large modern SRAMs. It is shown that even a moderate scaling of the supply voltage of large SRAMs can potentially result in significant yield losses, especially in processes with highly fluctuating parameters. Thus, we have investigated the application of fault-tolerance techniques for a more efficient leakage reduction of SRAMs. These techniques allow for a more aggressive voltage scaling by providing tolerance to the failures that might occur during the sleep mode. The results show that in a 45-nm technology, assuming 10% variation in transistors threshold voltage, repairing a 64KB memory using only 8 redundant rows or incorporating single error correcting codes (ECCs) allows for ~90% leakage reduction while incurring only ~1% yield loss. The combination of redundancy and ECC, however, allows to reach the practical limits of leakage reduction in the analyzed benchmark, i.e., ~95%. Applying an identical standby voltage to all dies, regardless of their specific process parameters variations, can result in too many cell failures in some dies with heavily skewed process parameters, so that they may no longer be salvageable by the employed fault-tolerance techniques. To compensate for the inter-die variations, we have proposed to tune the standby voltage of each individual die to its corresponding minimum level, after manufacturing. A test algorithm is presented that can be used to identify the minimum applicable standby voltage to each individual memory die. A possible implementation of the proposed tuning technique is also demonstrated. Simulation results in a 45-nm predictive technology show that tuning standby voltage of SRAMs can enhance data-retention yield by an additional 10%−50%, depending on the severity of the variations

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Reliable Software for Unreliable Hardware - A Cross-Layer Approach

    Get PDF
    A novel cross-layer reliability analysis, modeling, and optimization approach is proposed in this thesis that leverages multiple layers in the system design abstraction (i.e. hardware, compiler, system software, and application program) to exploit the available reliability enhancing potential at each system layer and to exchange this information across multiple system layers

    Center for Space Microelectronics Technology

    Get PDF
    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents

    System-level power optimization:techniques and tools

    Get PDF
    This tutorial surveys design methods for energy-efficient system-level design. We consider electronic sytems consisting of a hardware platform and software layers. We consider the three major constituents of hardware that consume energy, namely computation, communication, and storage units, and we review methods of reducing their energy consumption. We also study models for analyzing the energy cost of software, and methods for energy-efficient software design and compilation. This survery is organized around three main phases of a system design: conceptualization and modeling design and implementation, and runtime management. For each phase, we review recent techniques for energy-efficient design of both hardware and software

    The development of subsidiary technological capability: network linkages and subsidiary autonomy

    Get PDF
    This research contributes to the literature on subsidiary evolution by exploring the developments of subsidiary technological capabilities. It has been widely acknowledged that subsidiaries have unique in-house capabilities that are embedded in two contexts: 1) the internal technology sources including the headquarter ("HQ") and affiliated-units, such as the research and development ("R&D") centres; 2) the external technology sources comprised of local, regional or global entities, such as local universities. This study examines the relationship between subsidiary capability and autonomy and the mediating effects of communication systems, by linking internal and external networks through which the subsidiary both exploits and creates particular technological capabilities, and through which the parent company HQ, exercises its control. Through a synthesis of the international business and innovation management literature review, a set of measures of technological capability, autonomy and communication have been drawn. A capability taxonomy configured for the semiconductor industry by Ernst et al. (1998) was adapted to specifically examine integrated circuit ("IC") design, production and marketing capabilities amongst five different Taiwan-based foreign wholly-owned subsidiaries in the electronics industry (particular in the integrated circuits sector). These are compared using quantitative and qualitative measures on factors such as the types and levels of technological capabilities, the degree of autonomy and the intensity of communication they have developed. The findings demonstrated that the heart of subsidiary technological-capability creating lies in exploiting the parent company's core- competitive assets and capabilities and creating its capability development using local knowledge systems, and regional and global cooperative partners. The extent to which such developments of subsidiary technological capabilities are dispersed throughout and leveraged on the multinational enterprise ("MNE")'s differentiated network, depends on the intensity of internal and external communication systems for assimilating information or knowledge. Moreover, single subsidiaries have different degrees of decision-making autonomy, which influence both the nature of the internal NINE network, and the extent of influence of the internal and external network linkages on the developments of subsidiary technological capabilities. Overall, this research concludes that subsidiary autonomy is a cyclical process between the parent company and subsidiary, which is affected by the development of a subsidiary's technological capability. The capability- creating of a subsidiary is driven by the interactions between internal and external leverages which broaden the level and types of technological capabilities (namely, marketing-, design-and production-related) in terms of the scope of responsibility, in-house capability and the capacity for assimilation and creation of 4new' technology

    ULTRA ENERGY-EFFICIENT SUB-/NEAR-THRESHOLD COMPUTING: PLATFORM AND METHODOLOGY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    Get PDF
    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results
    corecore