14,652 research outputs found

    Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942

    No full text
    Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abundances and photophysiological parameters in the model cyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803 over a 120 hour time course of iron deprivation. The iron stress induced protein (IsiA) accumulated to high levels within 48 h of the onset of iron deprivation, reaching a molar ratio of ~42 IsiA : Photosystem I in Synechococcus PCC 7942 and ~12 IsiA : Photosystem I in Synechocystis PCC 6803. Concomitantly the iron-rich complexes Cytochrome b6f and Photosystem I declined in abundance, leading to a decrease in the Photosystem I : Photosystem II ratio. Chlorophyll fluorescence analyses showed a drop in electron transport per Photosystem II in Synechococcus, but not in Synechocystis after iron depletion. We found no evidence that the accumulated IsiA contributes to light capture by Photosystem II complexes

    Genetic instability in cyanobacteria - an elephant in the room?

    Get PDF
    Many research groups are interested in engineering the metabolism of cyanobacteria with the objective to convert solar energy, CO2, and water (perhaps also N2) into commercially valuable products. Toward this objective, many challenges stand in the way before sustainable production can be realized. One of these challenges, potentially, is genetic instability. Although only a handful of reports of this phenomenon are available in the scientific literature, it does appear to be a real issue that so far has not been studied much in cyanobacteria. With this brief perspective, I wish to raise the awareness of this potential issue and hope to inspire future studies on the topic as I believe it will make an important contribution to enabling sustainable large-scale biotechnology in the future using aquatic photobiological microorganisms

    The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly

    Get PDF
    Escherichia coli RNase E, an essential single-stranded specific endoribonuclease, is required for both ribosomal RNA processing and the rapid degradation of mRNA. The availability of the complete sequences of a number of bacterial genomes prompted us to assess the evolutionarily conservation of bacterial RNase E. We show here that the sequence of the N-terminal endoribonucleolytic domain of RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria. Furthermore, we demonstrate that the Synechocystis sp. homologue binds RNase E substrates and cleaves them at the same position as the E. coli enzyme. Taken together these results suggest that RNase E-mediated mechanisms of RNA decay are not confined to E. coli and its close relatives. We also show that the C-terminal half of E. coli RNase E is both sufficient and necessary for its physical interaction with the 3'-5' exoribonuclease polynucleotide phosphorylase, the RhlB helicase, and the glycolytic enzyme enolase, which are components of a "degradosome" complex. Interestingly, however, the sequence of the C-terminal half of E. coli RNase E is not highly conserved evolutionarily, suggesting diversity of RNase E interactions with other RNA decay components in different organisms. This notion is supported by our finding that the Synechocystis sp. RNase E homologue does not function as a platform for assembly of E. coli degradosome components

    Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterising cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialised compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterised. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and heme, is incomplete. We discuss tools that may aid characterisation of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterisation of individual proteins

    The Distinctive Regulation of Cyanobacterial Glutamine Synthetase

    Get PDF
    Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.Deutsche Forschungsgemeinschaft KL 3114/2-1Ministerio de Economía y Competitividad BIO2016-75634-PFEDER BIO2016-75634-

    Cytochrome cM decreases photosynthesis under photomixotrophy in Synechocystis sp. PCC 6803

    Get PDF
    Photomixotrophy is a metabolic state that enables photosynthetic microorganisms to simultaneously perform photosynthesis and metabolism of imported organic carbon substrates. This process is complicated in cyanobacteria, since many, including Synechocystis sp. PCC 6803, conduct photosynthesis and respiration in an interlinked thylakoid membrane electron transport chain. Under photomixotrophy, the cell must therefore tightly regulate electron fluxes from photosynthetic and respiratory complexes. In this study, we demonstrate, via characterization of photosynthetic apparatus and the proteome, that photomixotrophic growth results in a gradual inhibition of QA- reoxidation in wild-type Synechocystis, which largely decreases photosynthesis over 3 d of growth. This process is circumvented by deleting the gene encoding cytochrome cM (CytM), a cryptic c-type heme protein widespread in cyanobacteria. The ΔCytM strain maintained active photosynthesis over the 3-d period, demonstrated by high photosynthetic O2 and CO2 fluxes and effective yields of PSI and PSII. Overall, this resulted in a higher growth rate compared to that of the wild type, which was maintained by accumulation of proteins involved in phosphate and metal uptake, and cofactor biosynthetic enzymes. While the exact role of CytM has not been determined, a mutant deficient in the thylakoid-localized respiratory terminal oxidases and CytM (ΔCox/Cyd/CytM) displayed a phenotype similar to that of ΔCytM under photomixotrophy. This, in combination with other physiological data, and in contrast to a previous hypothesis, suggests that CytM does not transfer electrons to these complexes. In summary, our data suggest that CytM may have a regulatory role in photomixotrophy by modulating the photosynthetic capacity of cells

    Effect of crowding on the electron transfer process from plastocyanin and cytochrome c6 to photosystem I: a comparative study from cyanobacteria to green algae

    Get PDF
    Plastocyanin and cytochrome c 6, the alternate donor proteins to photosystem I, can be acidic, neutral or basic; the role of electrostatics in their interaction with photosystem I vary accordingly for cyanobacteria, algae and plants. The effect of different crowding agents on the kinetics of the reaction between plastocyanin or cytochrome c 6 and photosystem I from three different cyanobacteria, Synechocystis PCC 6803, Nostoc PCC 7119 and Arthrospira maxima, and a green alga, Monoraphidium braunii, has been investigated by laser flash photolysis, in order to elucidate how molecular crowding affects the interaction between the two donor proteins and photosystem I. The negative effect of viscosity on the interaction of the two donors with photosystem I for the three cyanobacterial systems is very similar, as studied by increasing sucrose concentration. Bovine serum albumin seems to alter the different systems in a specific way, probably by means of electrostatic interactions with the donor proteins. Ficoll and dextran behave in a parallel manner, favouring the interaction by an average factor of 2, although this effect is somewhat less pronounced in Nostoc. With regards to the eukaryotic system, a strong negative effect of viscosity is able to overcome the favourable effect of any crowding agent, maybe due to stronger donor/photosystem I electrostatic interactions or the structural nature of the eukaryotic photosystem I-enriched membrane particles.Spanish Ministry of Innovation and Science BFU2006-01361Andalusian Government PAI BIO-02

    Isolation of Ribosomal Particles from the Unicellular Cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    Isolation of ribosomal particles is an essential step in the study of ribosomal components as well as in the analysis of trans-acting factors that interact with the ribosome to regulate protein synthesis and modulate the expression profile of the cell in response to different environmental conditions. In this protocol, we describe a procedure for the isolation of 70S ribosomes from the unicellular cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We have successfully used this protocol in our study of the cyanobacterial ribosomal-associated protein LrtA, which is a homologue of bacterial HPF (hibernation promoting factor) (Galmozzi et al., 2016).España, Junta de Andalucía grant P07-CVI-02792 and group BIO-284España, MINECO y Fondo Social Europeo grant BFU2013-41712-

    Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria

    Get PDF
    BACKGROUND: Hydrogenases catalyze the simplest of all chemical reactions: the reduction of protons to molecular hydrogen or vice versa. Cyanobacteria can express an uptake, a bidirectional or both NiFe-hydrogenases. Maturation of those depends on accessory proteins encoded by hyp-genes. The last maturation step involves the cleavage of a ca. 30 amino acid long peptide from the large subunit by a C-terminal endopeptidase. Until know, nothing is known about the maturation of cyanobacterial NiFe-hydrogenases. The availability of three complete cyanobacterial genome sequences from strains with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102), only the bidirectional (Synechocystis PCC 6803) or both NiFe-hydrogenases (Anabaena PCC 7120) prompted us to mine these genomes for hydrogenase maturation related genes. In this communication we focus on the presence and the expression of the NiFe-hydrogenases and the corresponding C-terminal endopeptidases, in the three strains mentioned above. RESULTS: We identified genes encoding putative cyanobacterial hydrogenase specific C-terminal endopeptidases in all analyzed cyanobacterial genomes. The genes are not part of any known hydrogenase related gene cluster. The derived amino acid sequences show only low similarity (28–41%) to the well-analyzed hydrogenase specific C-terminal endopeptidase HybD from Escherichia coli, the crystal structure of which is known. However, computational secondary and tertiary structure modeling revealed the presence of conserved structural patterns around the highly conserved active site. Gene expression analysis shows that the endopeptidase encoding genes are expressed under both nitrogen-fixing and non-nitrogen-fixing conditions. CONCLUSION: Anabaena PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific C-terminal endopeptidases but only one set of hyp-genes. Thus, in contrast to the Hyp-proteins, the C-terminal endopeptidases are the only known hydrogenase maturation factors that are specific. Therefore, in accordance with previous nomenclature, we propose the gene names hoxW and hupW for the bidirectional and uptake hydrogenase processing endopeptidases, respectively. Due to their constitutive expression we expect that, at least in cyanobacteria, the endopeptidases take over multiple functions
    corecore