390 research outputs found

    Combining Artificial Intelligence with Traditional Chinese Medicine for Intelligent Health Management

    Get PDF
    The growth of artificial intelligence (AI) is being referred to as the beginning of "the fourth industrial revolution". With the rapid development of hardware, algorithms, and applications, AI not only provides a new concept and relevant solutions to solve the problem of complexity science but also provides a new concept and method to promote the development of traditional Chinese medicine (TCM). In this study, based on the research and development of AI technology applications in biomedical and clinical diagnosis and treatment, we introduce AI technologies in current TCM research. This can have applications in intelligent clinical information acquisition, intelligent clinical decision, and efficacy evaluation of TCM; intelligent classification management, intelligent prescription, and drug research in Chinese herbal medicine; and health management. Furthermore, we propose a framework of "intelligent TCM" and outline its development prospects

    Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coronary heart disease (CHD) is a common cardiovascular disease that is extremely harmful to humans. In Traditional Chinese Medicine (TCM), the diagnosis and treatment of CHD have a long history and ample experience. However, the non-standard inquiry information influences the diagnosis and treatment in TCM to a certain extent. In this paper, we study the standardization of inquiry information in the diagnosis of CHD and design a diagnostic model to provide methodological reference for the construction of quantization diagnosis for syndromes of CHD. In the diagnosis of CHD in TCM, there could be several patterns of syndromes for one patient, while the conventional single label data mining techniques could only build one model at a time. Here a novel multi-label learning (MLL) technique is explored to solve this problem.</p> <p>Methods</p> <p>Standardization scale on inquiry diagnosis for CHD in TCM is designed, and the inquiry diagnostic model is constructed based on collected data by the MLL techniques. In this study, one popular MLL algorithm, ML-kNN, is compared with other two MLL algorithms RankSVM and BPMLL as well as one commonly used single learning algorithm, k-nearest neighbour (kNN) algorithm. Furthermore the influence of symptom selection to the diagnostic model is investigated. After the symptoms are removed by their frequency from low to high; the diagnostic models are constructed on the remained symptom subsets.</p> <p>Results</p> <p>A total of 555 cases are collected for the modelling of inquiry diagnosis of CHD. The patients are diagnosed clinically by fusing inspection, pulse feeling, palpation and the standardized inquiry information. Models of six syndromes are constructed by ML-kNN, RankSVM, BPMLL and kNN, whose mean results of accuracy of diagnosis reach 77%, 71%, 75% and 74% respectively. After removing symptoms of low frequencies, the mean accuracy results of modelling by ML-kNN, RankSVM, BPMLL and kNN reach 78%, 73%, 75% and 76% when 52 symptoms are remained.</p> <p>Conclusions</p> <p>The novel MLL techniques facilitate building standardized inquiry models in CHD diagnosis and show a practical approach to solve the problem of labelling multi-syndromes simultaneously.</p

    Diagnostic accuracy of pattern differentiation algorithm based on Chinese medicine theory: a stochastic simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical practice of Chinese medicine requires little information for differentiation of <it>Zang-fu </it>patterns. This study is to test the impact of information amount on the diagnostic accuracy of pattern differentiation algorithm (PDA) using stochastic simulation of cases.</p> <p>Methods</p> <p>A dataset with 69 <it>Zang-fu </it>single patterns was used with manifestations according to the Four Examinations, namely inspection (Ip), auscultation and olfaction (AO), inquiry (Iq) and palpation (P). A variable quantity of available information (<it>N</it><sub>%</sub>) was randomly sampled to generate 100 true positive and 100 true negative manifestation profiles per pattern to which PDA was applied. Four runs of simulations were used according to the Four Examinations: Ip, Ip+AO, Ip+AO+Iq and Ip+AO+Iq+P. The algorithm performed pattern differentiation by ranking a list of diagnostic hypotheses by the amount of explained information <it>F</it><sub>%</sub>. Accuracy, sensitivity, specificity and negative and positive predictive values were calculated.</p> <p>Results</p> <p>Use the Four Examinations resulted in the best accuracy with the smallest cutoff value (<it>N</it><sub>% </sub>= 28.5%), followed by Ip+AO+Iq (33.5%), Ip+AO (51.5%) and Ip (52.0%). All tested combinations provided concave-shaped curves for accuracy, indicating an optimal value subject to <it>N</it><sub>%-<it>cutoff</it></sub>. Use of <it>N</it><sub>%-cutoff </sub>as a secondary criterion resulted in 94.7% (94.3; 95.1) accuracy, 89.8% (89.1; 90.6) sensitivity, and 99.5% (99.3; 99.7) specificity with the Four Examinations.</p> <p>Conclusion</p> <p>Pattern differentiation based on both explained and optimum available information (<it>F</it><sub>% </sub>and <it>N</it><sub>%-<it>cutoff</it></sub>) is more accurate than using explained and available information without cutoff (<it>F</it><sub>% </sub>and <it>N</it><sub>%</sub>). Both <it>F</it><sub>% </sub>and <it>N</it><sub>%-<it>cutoff </it></sub>should be used as PDA's objective criteria to perform <it>Zang-fu </it>single pattern differentiation.</p

    HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy

    Get PDF
    AIM: To develop a classifier for traditional Chinese medicine (TCM) syndrome differentiation of diabetic retinopathy (DR), using optimized machine learning algorithms, which can provide the basis for TCM objective and intelligent syndrome differentiation. METHODS: Collated data on real-world DR cases were collected. A variety of machine learning methods were used to construct TCM syndrome classification model, and the best performance was selected as the basic model. Genetic Algorithm (GA) was used for feature selection to obtain the optimal feature combination. Harris Hawk Optimization (HHO) was used for parameter optimization, and a classification model based on feature selection and parameter optimization was constructed. The performance of the model was compared with other optimization algorithms. The models were evaluated with accuracy, precision, recall, and F1 score as indicators. RESULTS: Data on 970 cases that met screening requirements were collected. Support Vector Machine (SVM) was the best basic classification model. The accuracy rate of the model was 82.05%, the precision rate was 82.34%, the recall rate was 81.81%, and the F1 value was 81.76%. After GA screening, the optimal feature combination contained 37 feature values, which was consistent with TCM clinical practice. The model based on optimal combination and SVM (GA_SVM) had an accuracy improvement of 1.92% compared to the basic classifier. SVM model based on HHO and GA optimization (HHO_GA_SVM) had the best performance and convergence speed compared with other optimization algorithms. Compared with the basic classification model, the accuracy was improved by 3.51%. CONCLUSION: HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR. It provides a new method and research idea for TCM intelligent assisted syndrome differentiation

    Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    Get PDF
    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification

    An approach to syndrome differentiation in traditional chinese medicine based on neural network

    Get PDF
    Although the traditional knowledge representation based on rules is simple and explicit, it is not effective in the field of syndrome differentiation in Traditional Chinese Medicine (TCM), which involves many uncertain concepts. To represent uncertain knowledge of syndrome differentiation in TCM, two methods were presented respectively based on certainty factors and certainty intervals. Exploiting these two methods, an approach to syndrome differentiation in TCM was proposed based on neural networks to avoid some limitations of other approaches. The main advantage of the approach is that it may realize uncertain inference of syndrome differentiation in TCM, whereas it doesn't request experts to provide all possible combinations for certainty degrees of symptoms and syndromes. Rather than Back Propagation (BP) algorithm but its modification was employed to improve the capability of generalization of neural networks. First, the standard feedforward multilayer BP neural network and its modification were introduced. Next, two methods for knowledge representation, respectively based on certainty factors and certainty intervals, were presented Then, the algorithm was proposed based on neural network for the uncertain inference of syndrome differentiation in TCM. Finally, an example was demonstrated to illustrate the algorithm
    corecore