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Abstract

Background: Hypertension is one of the major risk factors for cardiovascular diseases. Research on the patient
classification of hypertension has become an important topic because Traditional Chinese Medicine lies primarily in
“treatment based on syndromes differentiation of the patients”.

Methods: Clinical data of hypertension was collected with 12 syndromes and 129 symptoms including inspection,
tongue, inquiry, and palpation symptoms. Syndromes differentiation was modeled as a patient classification
problem in the field of data mining, and a new multi-label learning model BrSmoteSvm was built dealing with the
class-imbalanced of the dataset.

Results: The experiments showed that the BrSmoteSvm had a better results comparing to other multi-label
classifiers in the evaluation criteria of Average precision, Coverage, One-error, Ranking loss.

Conclusions: BrSmoteSvm can model the hypertension’s syndromes differentiation better considering the
imbalanced problem.

Background
Hypertension is one of the major risk factors of cardio-
vascular diseases. It contributes to one half of the coron-
ary heart disease and approximately two thirds of the
cerebrovascular disease burdens [1]. There are over 972
million hypertension patients in the world [2].Tradi-
tional Chinese Medicine (TCM) has been playing an
important role on treating hypertension, and it lies pri-
marily in “treatment based on syndrome differentiation
of the patients”. Traditionally, syndrome differentiation
is performed by TCM practitioner should have solid
theoretical foundation and plentiful experiences.
In the field of data mining, syndrome differentiation

can be regarded as a patient classification problem

which can be solved with specific data mining and
machine learning techniques. It has become a fast devel-
oping field with the accumulating of clinical data [3-6].
In traditional classification problems, one case would

be only classified to one category (i.e. label) which is
called single label classification. While in TCM, one
patient may have more than one syndromes which
should be multi-label classification problems in the data
mining field. Multi-label learning has been used in TCM
field and got better results comparing with conventional
learning methods. Liu et al. compared the performance
of Multi-label-KNN and KNN on a coronary heart dis-
ease dataset. Li et al. had investigated the contribution of
symptoms to syndromes diagnosis by using fusion symp-
toms with ML-KNN classifier [7]. Li et al. and Shao et al.
proposed embedded multi-label feature selection method
MEFS [8] and wrapper multi-label feature selection
method HOML [9], respectively, to get better perfor-
mance for the multi-label classification.
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Multi-label classification was mainly motivated by the
tasks of text categorization and medical diagnosis in the
past. The existing methods for multi-label classification
can be grouped into two main categories: a) problem
transformation methods, and b) algorithm adaptation
methods. The problem transformation methods trans-
form the multi-label classification problem either into
one or more single-label classification or regression pro-
blems, and there have been many learning algorithms
depending on transformation methods. The algorithm
adaptation methods could extend specific learning algo-
rithms to deal with multi-label data directly [10].
In classification, a dataset is said to be imbalanced

when the number of cases which represents one class is
much smaller than the ones from other classes [11].
Furthermore, the class with the lowest number of cases
is usually the class of interest from the point of view of
the learning task [12]. This phenomenon is of great
interest as it turns up in many real-world classification
problems, such as risk management [13], fraud detection
[14], and especially medical diagnosis [15-19].
In this study, a new classification method named

BrSmoteSvm is built for hypertension syndromes differ-
entiation. The BrSmoteSvm works on both multi-label
data and class-imbalanced problem. It is a combination
of Binary Relevance (BR), Synthetic Minority Over-sam-
pling Technique (SMOTE) [16] and Support Vector
Machine (SVM) [17]. Firstly, BR algorithm is used to
transform the multi-label classification problem into sin-
gle-label classification. And it is found class-imbalance
on the single-label situation. Then, SMOTE is applied to
decrease the effect of the class-imbalance problem. At
last, SVM is used as the binary classifier to differentiate
the syndromes.
The rest of this paper is arranged as follows. Section 2

describes the materials and the methods of this study.
Section 3 presents the results and discussion of our
experiment. Section 4 presents the conclusions.

Methods
Materials
The study dataset originated from the hypertension
patients who visited the in-patient and out-patient
departments of Internal Medicine, Nerve Internal Medi-
cine and Health Management Center of the Guangdong
Provincial Hospital of Chinese Medicine and Li Wan
District Community Hospital in Guangzhou of China
during November 2006 to December 2008. This study
was approved by the ethics committee of the Guang-
dong Provincial Hospital of Chinese Medicine, China.
Informed written consent was obtained from each parti-
cipant prior to data collection. In total, 908 cases were
collected with 13 syndromes and 129 TCM symptoms

from inspection symptoms, tongue symptoms, inquiry
symptoms, palpation symptoms and other symptoms.
Four cases were excluded from the analysis because

of missing answers on features. And one syndrome
were excluded because of its nonnumeric value to
make sure the smooth application of data mining
methods. Finally, we got 904 cases with 12 syndromes
and 129 symptoms. Table 1 shows the number of
cases (D); the number of features (M); the number of
labels (|L|); the Label Cardinality (LC), which is the
average number of single-labels associated with each

example defined by LC(D) =
1

|D|
∑|D|

i=1 |Yi| ; the Label

Density (LD), which is the normalized cardinality

defined by LC(D) =
1

|D|
∑|D|

i=1
|Yi|
L

, L =
⋂|D|

i=1 Yi ; the

number of Distinct Combinations (DC) of labels. |D|
represents the number of examples and |Yi| represents
the label number of the i case.

Computational methods
In multi-label classification, each case could have several
syndromes. The cases are associated with a subset of
labels Y⊆L where L is the set of possible labels. Follow-
ing is a brief introduction of the algorithms used in this
study.
1) SMOTE
SMOTE is used to decease the influence of the class-

imbalanced problem. It is an over-sampling approach in
which the minority class is over-sampled by creating
“synthetic” examples. The main idea of SMOTE can be
described as follows.
Step 1: Compute the k nearest neighbors for each

minority class instance. Randomly choose N of the k
nearest neighbors of each minority class instance saved
as Populate.
Step 2: Take the difference of the feature vector

between each minority class instance and its nearest
neighbors in Populate. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature
vector of each minority class instance.
The synthetic examples generated by SMOTE cause

the classifier to create larger and less specific decision
regions rather than smaller and more specific regions.
More general regions are now learned for the minority
class samples rather than those being subsumed by the
majority class samples around them.

Table 1. Description of the datasets

Dataset Domain N M |L| LC LD DC

hypertension medical 904 129 12 0.86 0.07 57
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2) SVM
SVM is used as the binary classifier in BR. The original

SVM algorithm was invented by Vladimir N. Vapnik and
the current standard incarnation (soft margin) was pro-
posed by Vapnik and Corinna Cortes in 1995. The basic
SVM takes a set of input data and related label, and for
each given input, two possible classes forms the output,
making it a non-probabilistic binary linear classifier.
Given a set of training instances, each marked as belong-
ing to one of two classes, an SVM training algorithm
builds a model that can assign new instances into one
class or the other. An SVM model is a representation of
the instances as points in space, mapped so that the
instances of the separate classes are divided by a clear
gap and the gap is as wide as possible. The test instances
are then mapped into that same space and predicted to
belong to a class based on which side of the gap they fall
on. The above describes that SVM performs a linear clas-
sification. In addition, SVM can also efficiently perform a
non-linear classification using what is called the kernel
trick, implicitly mapping their inputs into high-dimen-
sional feature spaces.
3) BrSmoteSvm
The main idea of BrSmoteSvm is described as follows.

In each fold of the 10-fold cross validation, BR, a problem
transformation method is used. The basic idea of BR is to
decompose the multi-label learning problem into q inde-
pendent binary classification problems, where q is the
number of label and each binary classification problem
corresponds to a possible label in the label space [18].
Therefore, for any multi-label training example, each
instance will be involved in the learning process of q bin-
ary classifiers. Then SMOTE is applied to training data
to decrease effect of the class-imbalanced problem. In
the end, SVM is used as the binary classifier. After the
10-fold cross validation, we get the predicted label set.
Experimental design and evaluation
In our experiment, 10-fold cross validation is utilized to
test the accuracy of the classification. Let 700 cases of the
data be training set, and 204 cases be testing set. In order
to validate performance of BrSmoteSvm, it is compared
with other popular multi-label classifiers.

1) ML-KNN. The number of neighbors is set to 10
and the smoothing factor is set to 1 as recommended.
2) Random k-Labelsets (RAKEL) [19]. J48 is used as
the base learner; the number of models is set to 5;
the size of subsets is set to 8.
3) Instance-based learning and logistic regression
(IBLR) [20]. The number of nearest neighbors is set
to 10.
4) Ensemble of Classifier Chains (ECC). J48 is used
as the base learner for each Classifier Chains model;
the number of models is set to 10.

5) A lazy multi-label classification method based on
the KNN (BRKNN) [21]. The number of the nearest
neighbors is set to 10.

At last, for SMOTE, N is set to fixed value 10, and k
is chosen from {10, 12, 14, 16, 18, and 20}; then, k is set
to fixed value 16, and N is chosen from {6, 8, 10, 12, 14,
and 16} to evaluate the robustness of our method.
Let × denote the domain of cases and let Y={1,2,...,Q}

be the set of labels. The purpose of the learning system
is to output a multi-label classifier h: X®2y for the
given training set through optimizing some specific eva-
luation metric. In other word, a successful learning sys-
tem would output larger values for labels in Yi than
those not in Yi for the given instance xi and its label set
Yi. For example, f (xi,yi)>f (xi,yj) for any yi in Yi and yj
not in Yi.
The real-value function f (.,.) can be transformed to a

ranking function rank(.,.), which maps the outputs of f
(xi,y) for any y in Y to {1,2,...,Q} such that if f (xi,yi) >f
(xi,yj) then rank(xi,yi) <rank(xi,yj). For a test set S={(x1,
Y1),(x2,Y2),...,(xp,Yp)}, the following criteria are used in
this study:
1) Hamming loss: defined as:

hamming loss (h) =
1
p

p∑
i=1

1
Q

|h (xi)�Yi|

where Δ stands for the symmetric difference between
two sets. Note that when | Yi | = 1 for all instances, a
multi-label system is in fact a multi-class single-label
one and the hamming loss is 2/Q times the usual classi-
fication error. Hamming loss is used to evaluate how
many times an instance-label pair is misclassified. The
smaller the value of Hamming loss (h), the better the
performance.
2) One-error: defined as:

one error
(
f
)
=
1
p

p∑
i=1

[[
argmax

y∈Y
f
(
xi, y

)]
/∈ Yi

]
.

Note that, for single-label classification problems, the
one-error is identical to ordinary classification error.
One-error is used to evaluate how many times the top-
ranked label is not in the set of proper labels of the
instance. The smaller the value of one-error ( f ), the bet-
ter the performance.
3) Coverage: defined as:

coverage
(
f
)
=
1
p

p∑
i=1

max
y∈Yi

rankf
(
xi, y

) − 1,

evaluates how far we need, on the average, to go down
the list of labels in order to cover all the proper labels of
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the instance. It is loosely related to precision at the level
of perfect recall. The smaller the value of coverage ( f ),
the better the performance.
4) Ranking loss: defined as:

ranking loss
(
f
)
=
1
p

p∑
i=1

|D|
|Yi|

∣∣Yi
∣∣ ,

D = {(y1, y2)f (xi, y1) ≤ f (xi, y2), (y1, y2) ∈ Yi × Yi},
where Y denotes the complementary set of Y in y.

Ranking loss is used to evaluate the average fraction of
label pairs that are reversely ordered for the instance.
The smaller the value of ranking loss ( f ), the better the
performance.
5) Average precision: defined as:

average precision
(
f
)
=
1
p

p∑
i=1

1
|Yi|

∑
y∈Yi

|Li|
rankf

(
xi, y

) ,

Li =
{
y′|rankf

(
xi, y′

) ≤ rankf
(
xi, y

)
, y′ ∈ Yi

}
,

which is used to evaluate the average fraction of labels
ranked above a particular label y∈Y which actually are
in Y. The bigger the value of average precision ( f ), the
better the performance.

Results and discussion
Comparison with other multi-label classifiers
The 10-fold cross validation was applied to test the
accuracy of classification in which BrSmoteSvm was
compared with other five multi-label classifiers. Results
of 10-fold cross validation are shown in Table 2. In
Table 2, the Average precision of BrSmoteSvm is 0.66,
which is much higher than the results of other methods.
For Coverage, One-error and Ranking loss, BrSmoteSvm
also performs better than other methods. While, for
Hamming loss, BrSmoteSvm is 0.09, which performs
worse than other methods.
The reason of the large number of Hamming loss

might be serious imbalance of the dataset. For most
labels, there are only 20 to 70 positive cases, which

means the ratio of the negative and positive cases is
very high. On the other side, for the low number of the
positive case, the classifier would be trained insuffi-
ciently producing bad performance of the testing data.
Performance of machine learning methods is typically
evaluated using predictive accuracy. It would be inap-
propriate when the data set is imbalance or the cost of
different errors vary significantly. So, the simple predic-
tive accuracy is inappropriate in this situation. In this
study, SMOTE is applied to decrease the effect of the
imbalance problem. The rate of detection positive cases
would be improved, while the error rate for the negative
cases be increased.
Another reasons could be that SMOTE might not be

the best method dealing with the imbalance of the data-
set, and the parameters for the algorithms used were not
optimal. Further studies could focus on how to deal with
the imbalanced problem and optimize the algorithms.
Furthermore, an experiment was conducted to com-

pare the results with SMOTE and without SMOTE.
The results are shown in Table 3. BrSmoteSvm
+SMOTE represents with SMOTE, and BrSmoteSvm-
SMOTE represents without SMOTE. It shows that the
results with SMOTE are better than the results with-
out SMOTE.

Stability of BrSmoteSvm
Two experiments were designed to validate the stability
of BrSmoteSvm. The first one set N fixed as 10, and k
was from {10, 12, 14, 16, 18, and 20} for SMOTE. The
second one set k fixed as 16, and N was from {6, 8, 10,
12, 14, and 16}. The results of the two experiments are
shown in Figure 1 and 2 using the evaluation criteria of
Average precision, Hamming loss, Coverage, One-error
and Ranking loss.
Figure 1 and 2 illustrate that:

1) The results of BrSmoteSvm vary with different k
and N, but the change is small, indicating BrSmo-
teSvm is stable.
2) Whatever k and N values, BrSmoteSvm performs
better than other methods in the evaluation of Aver-
age precision, Coverage, One-error and Ranking loss
except for Hamming loss.

Table 2. Results of BrSmoteSvm and other multi-label
classifiers using 10-fold cross validation

BrSmoteSvm MLKNN BRKNN ECC IBLR RAKEL

Average
precision

0.66 0.53 0.51 0.51 0.51 0.46

Hamming loss 0.09 0.07 0.07 0.07 0.07 0.09

Coverage 1.11 2.21 2.46 2.41 2.34 2.89

One-error 0.47 0.75 0.75 0.76 0.76 0.78

Ranking loss 0.16 0.16 0.18 0.18 0.17 0.22

Table 3. Results of BrSmoteSvm with and without SMOTE

BrSmoteSvm+SMOTE BrSmoteSvm-SMOTE

Average precision 0.66 0.58

Hamming loss 0.09 0.07

Coverage 1.11 1.36

One-error 0.47 0.59

Ranking loss 0.16 0.19
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3) When k and N are both set to 10, BrSmoteSvm
obtains the best performance.

Conclusions
Pattern classification is important in TCM for specific
disease like hypertension. However, there are multi-
labels of syndromes in patients, and the numbers of
patients under each syndromes are so skew that clas-
sification performance is reduced. BrSmoteSvm is
proposed by combining multi-label learning and
SMOTE, to help overcome the effects of multi-labels
and skew numbers of patients of syndromes. Results

of experiments showed that BrSmoteSvm improves
the performance of the previous works. Multi-label
learning and imbalance learning techniques are
necessary to process the medical data sets with above
problems.
Further work may focus on novel combination of

multi-label learning and imbalance learning techniques
to improve the accuracy of classification.

Abbreviations used
BR: Binary Relevance
SMOTE: Synthetic Minority Over-sampling Technique
SVM: Support Vector Machine

Figure 1 Results of BrSmoteSvm with different k values and fixed N value for SMOTE.

Figure 2 Results of BrSmoteSvm with fixed k value and different N values for SMOTE.
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