1,535 research outputs found

    Secure Precise Clock Synchronization for Interconnected Body Area Networks

    Get PDF
    Secure time synchronization is a paramount service for wireless sensor networks (WSNs) constituted by multiple interconnected body area networks (BANs). We propose a novel approach to securely and efficiently synchronize nodes at BAN level and/or WSN level. Each BAN develops its own notion of time. To this effect, the nodes of a BAN synchronize with their BAN controller node. Moreover, controller nodes of different BANs cooperate to agree on a WSN global and/or to transfer UTC time. To reduce the number of exchanged synchronization messages, we use an environmental-aware time prediction algorithm. The performance analysis in this paper shows that our approach exhibits very advanced security, accuracy, precision, and low-energy trade-off. For comparable precision, our proposal outstands related clock synchronization protocols in energy efficiency and risk of attacks. These results are based on computations

    Wireless distributed intelligence in personal applications

    Get PDF
    Tietokoneet ovat historian kuluessa kehittyneet keskustietokoneista hajautettujen, langattomasti toimivien järjestelmien suuntaan. Elektroniikalla toteutetut automaattiset toiminnot ympärillämme lisääntyvät kiihtyvällä vauhdilla. Tällaiset sovellukset lisääntyvät tulevaisuudessa, mutta siihen soveltuva tekniikka on vielä kehityksen alla ja vaadittavia ominaisuuksia ei aina löydy. Nykyiset lyhyen kantaman langattoman tekniikan standardit ovat tarkoitettu lähinnä teollisuuden ja multimedian käyttöön, siksi ne ovat vain osittain soveltuvia uudenlaisiin ympäristöälykkäisiin käyttötarkoituksiin. Ympäristöälykkäät sovellukset palvelevat enimmäkseen jokapäiväistä elämäämme, kuten turvallisuutta, kulunvalvontaa ja elämyspalveluita. Ympäristöälykkäitä ratkaisuja tarvitaan myös hajautetussa automaatiossa ja kohteiden automaattisessa seurannassa. Tutkimuksen aikana Seinäjoen ammattikorkeakoulussa on tutkittu lyhyen kantaman langatonta tekniikkaa: suunniteltu ja kehitetty pienivirtaisia radionappeja, niitten ohjelmointiympäristöä sekä langattoman verkon synkronointia, tiedonkeruuta ja reititystä. Lisäksi on simuloitu eri reititystapoja, sisäpaikannusta ja kaivinkoneen kalibrointia soveltaen mm. neurolaskentaa. Tekniikkaa on testattu myös käytännön sovelluksissa. Ympäristöälykkäät sovellusalueet ovat ehkä nopeimmin kasvava lähitulevaisuuden ala tietotekniikassa. Tutkitulla tekniikalla on runsaasti uusia haasteita ihmisten hyvinvointia, terveyttä ja turvallisuutta lisäävissä sovelluksissa, kuten myös teollisuuden uusissa sovelluksissa, esimerkiksi älykkäässä energiansiirtoverkossa.The development of computing is moving from mainframe computers to distributed intelligence with wireless features. The automated functions around us, in the form of small electronic devices, are increasing and the pace is continuously accelerating. The number of these applications will increase in the future, but suitable features needed are lacking and suitable technology development is still ongoing. The existing wireless short-range standards are mostly suitable for use in industry and in multimedia applications, but they are only partly suitable for the new network feature demands of the ambient intelligence applications. The ambient intelligent applications will serve us in our daily lives: security, access control and exercise services. Ambient intelligence is also adopted by industry in distributed amorphous automation, in access monitoring and the control of machines and devices. During this research, at Seinäjoki University of Applied Sciences, we have researched, designed and developed short-range wireless technology: low-power radio buttons with a programming environment for them as well as synchronization, data collecting and routing features for the wireless network. We have simulated different routing methods, indoor positioning and excavator calibration using for example neurocomputing. In addition, we have tested the technology in practical applications. The ambient intelligent applications are perhaps the area growing the most in information technology in the future. There will be many new challenges to face to increase welfare, health, security, as well as industrial applications (for example, at factories and in smart grids) in the future.fi=vertaisarvioitu|en=peerReviewed

    A wireless sensor networks MAC protocol for real-time applications.

    Get PDF
    Wireless Sensor Networks (WSN) are designed for data gathering and processing, with particular requirements: low hardware complexity, low energy consumption, special traffic pattern support, scalability, and in some cases, real-time operation. In this paper we present the Virtual TDMA for Sensors (VTS) MAC protocol, which intends to support the previous features, focusing particularly on real-time operation. VTS adaptively creates a TDMA arrangement with a number of timeslots equal to the actual number of nodes in range. Thus, VTS achieves an optimal throughput performance compared to TDMA protocols with fixed size of frame. The frame is set up and maintained by a distributed procedure, which allows sensors to asynchronously join and leave the frame. In addition, duty cycle is increased or decreased in order to keep latency constant below a given deadline. Therefore, a major advantage of VTS is that it guarantees a bounded latency, which allows soft real-time applications.This work has been cofunded by the Economy, Industry and Innovation Council, with the SOLIDMOVIL project (2I04SU044), supported by Fundacion Seneca, from the Region of Murcia with the ARENA Project (00546/PI/04), with the ARPaq project (TEC2004-05622-C04-02/TCM) by the Spanish Research Council and the CSI-RHET project (TEC2005-08068-C04-01/TCM)

    Biology Inspired Approach for Communal Behavior in Sensor Networks

    Get PDF
    Research in wireless sensor network technology has exploded in the last decade. Promises of complex and ubiquitous control of the physical environment by these networks open avenues for new kinds of science and business. Due to the small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors working in concert. Although the reduction in size has been phenomenal it results in severe limitations on the computing, communicating, and power capabilities of these devices. Under these constraints, research efforts have concentrated on developing techniques for performing relatively simple tasks with minimal energy expense assuming some form of centralized control. Unfortunately, centralized control does not scale to massive size networks and execution of simple tasks in sparsely populated networks will not lead to the sophisticated applications predicted. These must be enabled by new techniques dependent on local and autonomous cooperation between sensors to effect global functions. As a step in that direction, in this work we detail a technique whereby a large population of sensors can attain a global goal using only local information and by making only local decisions without any form of centralized control

    A survey: Issues and challenges of communication technologies in WBAN

    Get PDF
    Wireless Body Area Network (WBAN) refers to a group of small intelligent electronic devices placed on the human body to monitor its vital signals. It provides a continuous health monitoring of a patient without any constraint on his/her normal daily life activities through the health care applications. Due to the strong heterogeneous nature of the applications, data rates will vary strongly, ranging from simple data at a few Kbits/s to the video stream of several Kbits/s. Data can also be sent in bursts, which means that it is sent at a higher data rate during the bursts. This study covers the main requirements of communication technologies that are used in WBAN comprise of two major parts. The first part, which presents the short-range classification, gives a specialized outline of a few standard wireless technologies that are short-ranged. These are introduced as contenders for intra-BAN communications for communications inside a Body Area Network (BAN) and between the elements
    corecore