424 research outputs found

    3D-LIVE : live interactions through 3D visual environments

    Get PDF
    This paper explores Future Internet (FI) 3D-Media technologies and Internet of Things (IoT) in real and virtual environments in order to sense and experiment Real-Time interaction within live situations. The combination of FI testbeds and Living Labs (LL) would enable both researchers and users to explore capacities to enter the 3D Tele-Immersive (TI) application market and to establish new requirements for FI technology and infrastructure. It is expected that combining both FI technology pull and TI market pull would promote and accelerate the creation and adoption, by user communities such as sport practitioners, of innovative TI Services within sport events

    Multi-Stream Management for Supporting Multi-Party 3D Tele-Immersive Environments

    Get PDF
    Three-dimensional tele-immersive (3DTI) environments have great potential to promote collaborative work among geographically distributed participants. However, extensive application of 3DTI environments is still hindered by problems pertaining to scalability, manageability and reliance of special-purpose components. Thus, one critical question is how to organize the acquisition, transmission and display of large volume real-time 3D visual data over commercially available computing and networking infrastructures so that .everybody. would be able to install and enjoy 3DTI environments for high quality tele-collaboration. In the thesis, we explore the design space from the angle of multi-stream Quality-of-Service (QoS) management to support multi-party 3DTI communication. In 3DTI environments, multiple correlated 3D video streams are deployed to provide a comprehensive representation of the physical scene. Traditional QoS approach in 2D and single-stream scenario has become inadequate. On the other hand, the existence of multiple streams provides unique opportunity for QoS provisioning. We propose an innovative cross-layer hierarchical and distributed multi-stream management middleware framework for QoS provisioning to fully enable multi-party 3DTI communication over general delivery infrastructure. The major contributions are as follows. First, we introduce the view model for representing the user interest in the application layer. The design revolves around the concept of view-aware multi-stream coordination, which leverages the central role of view semantics in 3D video systems. Second, in the stream differentiation layer we present the design of view to stream mapping, where a subset of relevant streams are selected based on the relative importance of each stream to the current view. Conventional streaming controllers focus on a fixed set of streams specified by the application. Different from all the others, in our management framework the application layer only specifies the view information while the underlying controller dynamically determines the set of streams to be managed. Third, in the stream coordination layer we present two designs applicable in different situations. In the case of end-to-end 3DTI communication, a learning-based controller is embedded which provides bandwidth allocation for relevant streams. In the case of multi-party 3DTI communication, we propose a novel ViewCast protocol to coordinate the multi-stream content dissemination upon an end-system overlay network

    Enabling geometry-based 3-D tele-immersion with fast mesh compression and linear rateless coding

    Get PDF
    3-D tele-immersion (3DTI) enables participants in remote locations to share, in real time, an activity. It offers users interactive and immersive experiences, but it challenges current media-streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3-D videos and on realistic rendering and reconstruction of geometry-based 3-D objects. The contribution of this paper is a real-time streaming component for 3DTI with dynamic reconstructed geometry. This component includes both a novel fast compression method and a rateless packet protection scheme specifically designed towards the requirements imposed by real time transmission of live-reconstructed mesh geometry. Tests on a large dataset show an encoding speed-up up to ten times at comparable compression ratio and quality, when compared with the high-end MPEG-4 SC3DMC mesh encoders. The implemented rateless code ensures complete packet loss protection of the triangle mesh object and a delivery delay within interactive bounds. Contrary to most linear fountain codes, the designed codec enables real-time progressive decoding allowing partial decoding each time a packet is received. This approach is compared with transmission over TCP in packet loss rates and latencies, typical in managed WAN and MAN networks, and heavily outperforms it in terms of end-to-end delay. The streaming component has been integrated into a larger 3DTI environment that includes state of the art 3-D reconstruction and rendering modules. This resulted in a prototype that can capture, compress transmit, and render triangle mesh geometry in real-time in realistic internet conditions as shown in experiments. Compared with alternative methods, lower interactive end-to-end delay and frame rates over three times higher are achieved

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Semantics-aware content delivery framework for 3D Tele-immersion

    Get PDF
    3D Tele-immersion (3DTI) technology allows full-body, multimodal interaction among geographically dispersed users, which opens a variety of possibilities in cyber collaborative applications such as art performance, exergaming, and physical rehabilitation. However, with its great potential, the resource and quality demands of 3DTI rise inevitably, especially when some advanced applications target resource-limited computing environments with stringent scalability demands. Under these circumstances, the tradeoffs between 1) resource requirements, 2) content complexity, and 3) user satisfaction in delivery of 3DTI services are magnified. In this dissertation, we argue that these tradeoffs of 3DTI systems are actually avoidable when the underlying delivery framework of 3DTI takes the semantic information into consideration. We introduce the concept of semantic information into 3DTI, which encompasses information about the three factors: environment, activity, and user role in 3DTI applications. With semantic information, 3DTI systems are able to 1) identify the characteristics of its computing environment to allocate computing power and bandwidth to delivery of prioritized contents, 2) pinpoint and discard the dispensable content in activity capturing according to properties of target application, and 3) differentiate contents by their contributions on fulfilling the objectives and expectation of user’s role in the application so that the adaptation module can allocate resource budget accordingly. With these capabilities we can change the tradeoffs into synergy between resource requirements, content complexity, and user satisfaction. We implement semantics-aware 3DTI systems to verify the performance gain on the three phases in 3DTI systems’ delivery chain: capturing phase, dissemination phase, and receiving phase. By introducing semantics information to distinct 3DTI systems, the efficiency improvements brought by our semantics-aware content delivery framework are validated under different application requirements, different scalability bottlenecks, and different user and application models. To sum up, in this dissertation we aim to change the tradeoff between requirements, complexity, and satisfaction in 3DTI services by exploiting the semantic information about the computing environment, the activity, and the user role upon the underlying delivery systems of 3DTI. The devised mechanisms will enhance the efficiency of 3DTI systems targeting on serving different purposes and 3DTI applications with different computation and scalability requirements

    4D TeleCast: Towards Large Scale Multi-site and Multi-view Dissemination of 3DTI Contents

    Full text link

    4D TeleCast: Towards Large Scale Multi-site and Multi-view Dissemination of 3DTI Contents

    Get PDF
    3D Tele-immersive systems create real-time multi-stream and multi-view 3D collaborative contents from multiple sites to allow interactive shared activities in virtual environments. Applications of 3DTI include online sports, tele-health, remote learning and collaborative arts. In addition to interactive participants in 3DTI environments, we envision a large number of passive non-interactive viewers that (a) watch the interactive activities in 3DTI shared environments, and (b) select views of the activities at run time. To achieve this vision, we present 4D TeleCast, a novel multi-stream 3D content distribution framework for non-interactive viewers providing the functionality of multi-view selection. It addresses the following challenges: (1) supporting a large number of concurrent multi-stream viewers as well as multi-views, (2) preserving the unique nature of 3DTI multi-stream and multi-view dependencies at the viewers, and (3) allowing dynamic viewer behavior such as view changes and large-scale simultaneous viewer arrivals or departures. We divide the problem space into two: (1) multi-stream overlay construction problem that aims to minimize the cost of distribution of multi-stream contents, and maximize the number of concurrent viewers with sufficient viewer dynamism in terms of their resources and availabilities, and (2) effective resource utilization problem that aims to preserve the multi-stream dependencies in a view considering the heterogeneous resource constraints at the viewers. We evaluate 4D TeleCast using extensive simulations with 3DTI activity data and PlanetLab traces.published or submitted for publicationis peer reviewe

    3D-LIVE : live interactions through 3D visual environments

    Get PDF
    This paper explores Future Internet (FI) 3D-Media technologies and Internet of Things (IoT) in real and virtual environments in order to sense and experiment Real-Time interaction within live situations. The combination of FI testbeds and Living Labs (LL) would enable both researchers and users to explore capacities to enter the 3D Tele-Immersive (TI) application market and to establish new requirements for FI technology and infrastructure. It is expected that combining both FI technology pull and TI market pull would promote and accelerate the creation and adoption, by user communities such as sport practitioners, of innovative TI Services within sport events

    A Methodological Approach to User Evaluation and Assessment of a Virtual Environment Hangout

    Get PDF
    Innovation in virtual reality and motion sensing devices is pushing the development of virtual communication platforms towards completely immersive scenarios, which require full user interaction and create complex sensory experiences. This evolution influences user experiences and creates new paradigms for interaction, leading to an increased importance of user evaluation and assessment on new systems interfaces and usability, to validate platform design and development from the users’ point of view. The REVERIE research project aims to develop a virtual environment service for realistic inter-personal interaction. This paper describes the design challenges faced during the development process of user interfaces and the adopted methodological approach to user evaluation and assessment

    Proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013)

    Get PDF
    "This book contains the proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET) 2013 which was held on 16.-17.September 2013 in Paphos (Cyprus) in conjunction with the EC-TEL conference. The workshop and hence the proceedings are divided in two parts: on Day 1 the EuroPLOT project and its results are introduced, with papers about the specific case studies and their evaluation. On Day 2, peer-reviewed papers are presented which address specific topics and issues going beyond the EuroPLOT scope. This workshop is one of the deliverables (D 2.6) of the EuroPLOT project, which has been funded from November 2010 – October 2013 by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission through the Lifelong Learning Programme (LLL) by grant #511633. The purpose of this project was to develop and evaluate Persuasive Learning Objects and Technologies (PLOTS), based on ideas of BJ Fogg. The purpose of this workshop is to summarize the findings obtained during this project and disseminate them to an interested audience. Furthermore, it shall foster discussions about the future of persuasive technology and design in the context of learning, education and teaching. The international community working in this area of research is relatively small. Nevertheless, we have received a number of high-quality submissions which went through a peer-review process before being selected for presentation and publication. We hope that the information found in this book is useful to the reader and that more interest in this novel approach of persuasive design for teaching/education/learning is stimulated. We are very grateful to the organisers of EC-TEL 2013 for allowing to host IWEPLET 2013 within their organisational facilities which helped us a lot in preparing this event. I am also very grateful to everyone in the EuroPLOT team for collaborating so effectively in these three years towards creating excellent outputs, and for being such a nice group with a very positive spirit also beyond work. And finally I would like to thank the EACEA for providing the financial resources for the EuroPLOT project and for being very helpful when needed. This funding made it possible to organise the IWEPLET workshop without charging a fee from the participants.
    • …
    corecore