
4D TeleCast: Towards Large Scale Multi-site and
Multi-view Dissemination of 3DTI Contents

Ahsan Arefin, Zixia Huang, Klara Nahrstedt, *Pooja Agarwal
Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL
*Microsoft Corporation, Redmond, WA

{marefin2, zhuang21, klara}@illinois.edu, *pooja@microsoft.com

Abstract—3D Tele-immersive systems create real-time
multi-stream and multi-view 3D collaborative contents
from multiple sites to allow interactive shared activities
in virtual environments. Applications of 3DTI include
online sports, tele-health, remote learning and collabora-
tive arts. In addition to interactive participants in 3DTI
environments, we envision a large number of passive non-
interactive viewers that (a) watch the interactive activities
in 3DTI shared environments, and (b) select views of
the activities at run time. To achieve this vision, we
present 4D TeleCast, a novel multi-stream 3D content
distribution framework for non-interactive viewers pro-
viding the functionality of multi-view selection. It ad-
dresses the following challenges: (1) supporting a large
number of concurrent multi-stream viewers as well as
multi-views, (2) preserving the unique nature of 3DTI
multi-stream and multi-view dependencies at the viewers,
and (3) allowing dynamic viewer behavior such as view
changes and large-scale simultaneous viewer arrivals or
departures. We divide the problem space into two: (1)
multi-stream overlay construction problem that aims to
minimize the cost of distribution of multi-stream contents,
and maximize the number of concurrent viewers with
sufficient viewer dynamism in terms of their resources and
availabilities, and (2) effective resource utilization problem
that aims to preserve the multi-stream dependencies in a
view considering the heterogeneous resource constraints
at the viewers. We evaluate 4D TeleCast using extensive
simulations with 3DTI activity data and PlanetLab traces.

I. INTRODUCTION

In current multimedia space, 3D Tele-immersive
(3DTI) systems focus to provide an effective platform
for multi-view immersive social interactions among ge-
ographically distributed parties (called sites). They are
much more media enriched than traditional audio-video
systems such as skype, PPLive [2], CoolStreaming [23],
LiveSky [22] and YouTube. Examples of advanced TI
systems include TEEVE [19] from UIUC, Halo from HP,
and TelePresence from Cisco. Though such technologies
have been available in the market for several years,

their applications are limited to a small number of
remote interactive participants (called content producers)
due to the pixel space limitations of the virtual world
projected on the physical display. However, we envision
the presence of a large number of passive non-interactive
content viewers that (a) watch the interactive activities
of the content producers in 3DTI shared environments,
and (b) select views of the activities at run time. Though,
current IPTV solutions [2], [22], [23] provide efficient
framework for a large scale dissemination, they do not
consider any multi-party multi-stream contents with view
change dynamics. Therefore, a live multi-stream multi-
party 3D content distribution and routing framework
supporting a large number of content viewers with func-
tionality of view selection is yet to come.

3DTI content producers are active users performing
collaborative activities in the virtual shared environment,
e.g., dancers in collaborative dancing and players in im-
mersive gaming. On the other hand, content viewers are
passive users who view the joint performance of content
producers without contributing in the virtual world with
3D contents. Examples of content viewers are audiences
of virtual collaborative dancing or viewers of online exer-
gaming. We envision hundreds-to-thousands of concur-
rent content viewers in a 3DTI session. The difference
between the traditional TV viewers and the 3DTI viewers
is that 3DTI viewers receive multiple streams at the same
time from different content producers and the viewers are
able to change views of the 3D contents. On the other
hand, TV viewers are subscribed to only one stream at
a time and they rely on the providers (e.g., ESPN) to
change views. Figure 1 shows the interaction between
the 3DTI content generation and viewing space. Each
3DTI producer site (Site-A, Site-B and Site-C in the
figure) hosts multiple cameras that capture a local scene
from various angles (represented as streams). Multiple
adjacent streams (called bundle of streams [5]) compose
a view. Content viewers request these views, which
include subset of streams from each site. The requested

streams are then disseminated over the Internet, and
aggregated (rendered together) at the viewer nodes (at the
viewer tier) to construct an integrated 3D virtual scene
(the detail models of 3DTI producers and viewers are
given in Section II).

Producer Tier

Viewer Tier
C G Viewer Camera Communication

Gateway

Internet

Site-A Site-B
Site-C

Fig. 1. 3DTI content generation and distribution spaces. Contents
are genrated from the producer participants. Viewer participants only
views the collaborative performance without participating in the
virtual environment.

However, the large scale multi-stream and multi-view
dissemination of 3DTI contents introduce several chal-
lenges. Firstly, bundles generated across the producer
sites at any point in time are highly dependent; so are
the streams inside a bundle, because they collaboratively
represent a consistent virtual scene. Such time depen-
dencies must also be preserved at the viewers due to the
same reason. However, keeping the inter-bundle skew
(delay difference between dependent bundles) or local
inter-stream skew (delay difference between dependent
streams inside a bundle) bounded in current Internet is
very difficult due to the heterogeneity of dissemination
paths taken by the dependent streams in a view. Of-
ten, in case of large inter-bundle skew or local inter-
stream skew, the lagged streams are dropped to display
a consistent scene, even though they consume network
and system resources, which causes ineffective resource
usage. Secondly, the large scale 3D multi-stream dis-
semination introduces a large demand on bandwidth.
Each 3DTI stream consumes around 400Kbps to 5Mbps
bandwidth, which is exacerbated due to the presence of
multiple streams in each view as well as the need to
stream multiple views to many viewers, one view from
each content producer site. Without proper allocation
of bandwidth, it is hard to support a large number of
concurrent views as well as viewers in this dynamic
environment. Finally, the 3DTI systems allow viewers to
dynamically change their views during run time similar
to TV channel switching. However, unlike TV channels,
views may contain overlapping streams (details are show
in Section II-B). Therefore, changing views changes the

stream subscription of the viewers. Such view dynamics
impacts the content dissemination topology and interfere
ongoing transmission of already subscribed streams. Due
to the nature of live 3DTI streaming, such inference
should be low and restored quickly.

Therefore, there is a need to construct an efficient
3D content dissemination framework that allows viewers
to subscribe to multiple streams while optimizing the
bandwidth resources and preserving the stream depen-
dencies. We present 4D TeleCast, a novel 3DTI content
dissemination framework that scales to a large number
of viewers and provides the functionality of view selec-
tion. We call it 4D TeleCast because we consider four
dimensions in the tele-immersive space: (1) height, (2)
width, and (3) depth of the tele-immersive video streams
generated by individual producer sites, and (4) composite
view of a viewer to watch these video streams from
different locations in a virtual space.

4D TeleCast adapts the hybrid dissemination tech-
niques from [20], [22] to balance the impact of central-
ized load of streaming and overhead of fully distributed
management. A CDN (Content Distribution Network) is
used to capture and distribute stream contents from the
producers with P2P routing at the edges (among content
viewers). An effective bandwidth allocation algorithm (in
Section IV-B1) is considered at the P2P layer based on
the stream priority (explained in Section II) to allocate
inbound and outbound bandwidth at the viewers. A
degree push down algorithm is used to finally build a
P2P overlay that allows maximum number of concurrent
viewers (given in Section IV-B2). Finally, to preserve
the multi-stream dependencies, a delay-based layering is
introduced below the CDN that bounds the differences in
the end-to-end delay (the delay between the point when a
frame is captured and the point when it is received at the
viewer) incurred by the streams inside a requested view.
It improves effective bandwidth usage in the system by
using delayed receive for the streams with lower end-to-
end delay.

The contributions of this paper include the following:
(1) we provide a first step towards modeling a 4D
content dissemination framework for a large number of
widely distributed multi-stream viewers, (2) a stream
priority based bandwidth allocation and overlay for-
mation scheme is used to maximize the number of
concurrently accepted views as well as viewers, (3) we
introduce a delay-based layering hierarchy to preserve
multi-party multi-stream dependencies at the viewers,
which also helps to improve effective bandwidth usage
in the system, and (4) finally we provide mathematical
and experimental analyses showing the effectiveness of
4D TeleCast.

II. SYSTEM MODEL AND ASSUMPTION

A. 3DTI Component Model

3DTI systems impose heterogeneous demands on net-
works because of the hybrid nature of participants.
The content producers (Site-A, Site-B and Site-C in
Figure 1) require very tight real-time bound on end-to-
end streaming delay due to the tight interactivity among
the participants while we envision that content viewers
can tolerate larger delays. According to [9], the time lag
in PPLive viewers for 2D live streaming varies between
20 seconds to 2 minutes depending on the channel
popularity.

(a) (b)

Reconstruction
Image Capture

Reconstruction
Image Capture

Gateway

Playback
Rendering

Gateway

Playback
Rendering

IN
T

E
R

N
E

T

3D camera

3D camera

Producer Site Viewer

Fig. 2. Model of a 3DTI (a) content producer, and (b) content
viewer.

Producer Model. Each 3DTI producer is equipped with
multiple camera components to generate 3D contents.
Figure 2(a) shows an architecture of a 3DTI producer.
All cameras are connected to a Rendezvous Point (called
gateway). Communications to/from remote producers or
viewers are done only via these gateways. A renderer
is connected to the gateway to render and display the
3D contents. Since the number of producers is limited
and static in a single 3DTI session, the randomized
dissemination algorithm [19] with adaptive end-point
synchronization [10] works well for inter-producer com-
munication.

Viewer Model. Viewers also contain the gateway
for communication and the renderer for rendering and
displaying the 3D contents. The architecture of a non-
interactive viewer is shown in Figure 2(b). Buffering
is done when the streams are received by the gateway.
For playback smoothness, another level of buffering can
be maintained inside the renderer, but for simplicity
of analysis, we only consider buffering at the gateway.
This assumption does not impact the correctness of our
evaluation rather bounds the worst case performance.

B. Stream and View Model

Each 3DTI producer hosts multiple cameras; each
captures a local scene from various angles represented as

streams. The selection criterion of streams belonging to
a view is calculated based on the stream orientation and
the local view orientation. For example, if the viewer is
currently looking at the front of a 3D object, streams
generated by the back cameras are less important and
can be dropped. [21] introduces a stream differentiation
function to calculate the priority of a stream in a view,
which indicates stream importance. Basically, let us
denote S.~w as the unit vector representing the spatial
orientation of the stream S and v.~w as the unit vector
representing the view v of viewer u. Then the differ-
entiation function (denoted as df) calculates the stream
importance inside a producer site as df(S, v) = S.~w·v.~w.
Streams are prioritized depending on their importance.
A threshold based cutoff scheme [21] over the value of
df is used to remove the less important streams from a
view. However, to compare priority of streams across
different sites, we introduce another notation (η) that
indicates the priority index of each stream inside the
local site. If a site contains two streams S1 and S2,
where df(S2, v) > df(S1, v) for view v, then ηvS1

= 2
and ηvS2

= 1. The global priorities for streams for view v
are then computed using (ηvSi

−df(Si, v)). Streams with
lower (ηvSi

− df(Si, v)) have higher priorities.

Site-A Site-B

Site-A: v1
A = [S4

A, S5
A, S6

A]

1

3

5
7

1

3 7

Vi
ew

er
 di

sp
lay

 view

Priority: S6
A > S6

B > S7
B > S5

A > S5
B > S4

A

VI
EW

ER

PRODUCER 5

Camera

v1 Site-B: v1
B= [S5

B, S6
B, S7

B]

v1 = {v1
A , v1

B} = {S4
A, S5

A, S6
A, S5

B, S6
B, S7

B }

3D streams 3D streams

4D Content

Fig. 3. Example of the 3DTI view and stream model with two
producers and one viewers. A cut-off is used to remove the low
priority streams.

When a viewer u requests a view vi in the global
virtual space, the request selects a single view (called
local view1) from each content producer site. If there
are two content producer sites, Site-A and Site-B, then
vi = {vAi , vBi }, where vAi and vBi are selected local views
from Site-A and Site-B respectively. Let us consider
that Site-A contains n streams {SA1 , SA2 , · · · , SAn } and
for view vAi , their relative priorities are SA1 > SA2 >
· · · > SAn (i.e., df(SA1 , v

A
i) > df(SA2 , v

A
i) > · · · >

df(SAn , v
A
i)). If dfth is the cut-off threshold, then vAi

1We use term “view” to indicate the global view. Local views are
termed explicitly or can be inferred from the contexts.

can be represented as vAi = {SA1 , SA2 , · · · , SAj }, where
df(SAj , v

A
i) ≤ dfth < df(SAj+1, v

A
i) and j defines the

number of streams having df below the cut-off value.
Similarly, we can define vBi . Thus, each local view
contains a composition of a subset of local 3D streams.
The composition of all local views (one from each
producer site) finally forms a global view, which we
call the 4D content. Figure 3 shows an example of 4D
composition. Considering the global view v1 in Figure 3,
the requested 3D streams from Site-A are SA4 , SA5 and
SA6 and from Site-B are SB5 , SB6 and SB7 . The 4D content
thus becomes v1 = {SA4 , SA5 , SA6 , SB5 , SB6 , SB7 }.

C. View Change Model

4D contents introduce another unique scenario, called
view change, where viewers change their views while
watching 3D contents. A viewer only observes the visual
information from one particular view at any given time
and can therefore, change views any time during a live
3DTI session. View vi is different from view vj , i.e.,
vi 6= vj if ∃S1 ∈ vi ∧ S2 ∈ vj such that S1 6= S2.
Therefore, changing views causes a viewer to discard
old streams and receive new streams of the new view.

D. Viewer Request Model

Once a viewer requests a view vi, it is translated
into multiple local views; one for each producer site
in the running 3DTI session. Each local view contains
multiple streams depending on their importance in the
current view. Global priorities are computed using η−df
value. However, further cut-off can be done in run-time
depending on the resource constraints (e.g., bandwidth
limitation). Dropping of the lower priority streams only
degrades the media quality (e.g., creates holes in the
scene). However, a viewer request is accepted only if
at least the highest priority stream of each local view
can be delivered to the viewer. Since, the cut-off is done
starting from the lower-priority stream, if at least one
stream is served from a local view, it is always be the
highest priority stream. Hence, if n is the number of
content producer sites in a 3DTI session, the number
of accepted stream (denoted by Nu

accepted) for viewer u
must be bounded as follows: Nu

accepted ≤ n.

E. Streaming Model

When a viewer requests for a stream from its parent,
the contents of the stream, called 3D frames are transmit-
ted to the viewer over the Internet. A stream Si can be
represented as a composition of incoming frames, e.g.,
Si = {f (i,n1)

t1 , f
(i,n2)
t2 , f

(i,n3)
t3 , · · · }, where t1, t2 and t3 are

capture timestamps and n1, n2 and n3 are corresponding
frame numbers. Each viewer maintains a list of these
recent frames in the cache. Therefore, the requests for
streaming eventually select the position in the cache at
the parent viewers. Subsequent frames from that position
are transmitted at the media rate.

III. SYSTEM ARCHITECTURE AND OPERATION

4D TeleCast provides a hybrid overlay dissemination
framework consisting of a CDN to transmit 4D contents
from producers to content viewers, and P2P overlays
to transmit them within the viewers. The purpose of
using hybrid dissemination architecture is that using only
CDN servers for streaming is very expensive in terms
of deployment and maintenance. On the other hand, a
P2P-based architecture requires sufficient number of seed
supplying peers to jump-start the distribution process
and offers less out-bound streaming rate compared to a
CDN server [20]. Therefore, the commercial CDN-P2P-
based live streaming system (e.g., LiveSky [22]) shows
better performance than pure P2P-based live streaming
systems [12].

A Global Session Controller (GSC) node is used to
manage the live session of 4D TeleCast content dis-
semination. To scale GSC, we divide the geographical
region into several region-based clusters and assign a
Local Session Controller (LSC) to each cluster that
manages the streaming requests of all the viewers inside
its own cluster. The GSC also continuously monitors
producers metadata (such as frame rate, frame number,
and frame size for each stream), stream priorities of
each viewer’s request, and geographical location of the
viewers. For finding the geo-location of the viewers, we
use a location detector algorithm similar to [15]. All
metadata information are available for the viewers upon
query from the GSC. Figure 4 shows the architecture of
4D TeleCast with different functional components and
their interactions. Below we explain them.

Gateway

Topology
Formation

Renderer

Local SC

Viewer

G
lo

ba
l S

C

Overlay
Construction

4D TeleCast
Overlay

Producer
Sites

Distribution

Core Server

Edge Server

CDN

Stream
Subscription

Viewer
Manager

Adaptation Streaming

GSC
Manager

Monitoring LSC
Manager

Bandwidth
Allocation

Vi
ew

er
 S

C

Fig. 4. 4D TeleCast system components and their interactions.

A. Server Side Distribution

Content producers and CDNs are acted as 4D TeleCast
media and distribution servers. Several CDN providers
are available in market (e.g., Akamai [6] and Amazon
CloudFront [1]). Though they do not provide any real-
time service guarantee on content delivery, 4D TeleCast
aims to use those commercial CDNs for live 4D con-
tents streaming due to the non-immersive nature of the
viewers.

The CDN architecture usually contains a storage
(called distribution in Figure 7), where 3DTI contents
(3D media frames) are uploaded from the producers’
gateway. The core servers distribute the contents to dif-
ferent edge servers. In addition, CDN internally handles
load distribution, data replication and data availability
across the edge servers so that the viewer requests can
be served quickly [3]. Note that, 4D TeleCast uses the
CDN as a storage and first layer distribution server and
does not require any changes in architecture or software
modification inside the CDN.

B. Client Side Distribution

4D TeleCast clients are viewers. Each viewer requires
a viewer software that includes both the gateway and
the renderer (as shown in Figure 3). The gateway is
further divided into data plane (streaming) and control
plane (viewer SC). The data plane is only resonsible for
streaming using the session routing table. The control
plane helps building the routing table and keeps it
updated in case of network and viewer dynamisms.

The structure of session overlay routing table at the
viewer is shown in Table I. The session routing table
contains following fields: matching field (usually stream
ID and corresponding parent ID), forwarding address
(list of child addresses separated by comma), action list
(one for each forwarding address separated by comma),
and subscription points (one for each forwarding address
separated by comma). When a frame of a stream arrives
at a viewer, it is placed in the viewer buffer and matched
against the matching field in the routing table to get
the matching routing table entry. For each forwarding
address in the matching entry, a forwarding frame is
picked from the viewer’s buffer and cache depending on
the corresponding subscription point defined in the table
if the action list is “forward”. No forwarding is done
in case of action is “drop”. Below we discuss how the
session routing table is populated when a viewer joins
and how the streaming is done at the client side. In
this paper, we always assume to have “foward” action
in the action field. However, the future extension may

define specific compression, encoding or rate control as
different actions for the forwaring streams.

To join, the viewer manager inside the control plane
requests a join to the GSC manager at the Global Session
Controller. GSC then finds the appropriate LSC from the
monitoring component based on the viewers geograph-
ical region, and forwards the viewer’s join request to
the LSC manager to handle the join process. When LSC
replies to the viewer, the viewer sends its view request
with its inbound and outbound capacity information.
Figure 5 shows the session join protocol.

Viewer � Local SC �

 Viewer Registration �

Parent Viewer �

Join Request�

Join Request OK�

Resource
Allocation �

Overlay Information
Overlay Information

Overlay Information

Global SC �

Topology
Formation �

Viewer
Manager �

GSC �
Manager �

LSC �
Manager �

Viewer
Manager �

Join Request�

Viewer
Manager �

Create Session
Routing Table

Update/ Create
 Session Routing Table

Fig. 5. Communication protocol in viewer join in 4D TeleCast.

Depending on the view information, LSC management
computes the list of requested streams and their priorities
in the current view, and forwards them to a bandwidth
allocation component along with viewer’s inbound and
outbound capacity information. The bandwidth alloca-
tion component allocates viewer inbound and outbound
capacity for the requested streams. Due to the bandwidth
insufficiency, some of the lower priority stream requests
may be dropped. The list of accepted streams in the
view is sent to the topology formation component. It
creates the final overlay tree (i.e., defines the parents
and children) for each accepted stream considering the
bound on end-to-end delay.

Topologies are formed separately for each view group,
i.e., the topology formation component groups the view-
ers depending on the view request. The grouping ensures
that the popular view creates enough resources (or seeds)
to share and support other viewers with the same view
compared to the non-popular views, and does not get
interfered by the non-popular views. The algorithm first
tries to provision a viewer request from the available
viewers watching the same view, if failed, the request
is provisioned from the CDN (provided the CDN has
unused outbound capacity). The overlay information is
then sent to the viewer and to the parents of the viewer
to create or modify their overlay session routing tables.
The goal of bandwidth allocation and topology formation
(compositely we call them as overlay construction) is to

TABLE I
FIELD OF SESSION ROUTING TABLE

Match Field Forwarding Address Action Subscription Point
Parent Viewer:Stream ID Child Viewers drop/forward/encoding/rate Position in buffer and cache

build an optimal overlay that maximizes the number of
accepted streams in the overlay and minimizes the CDN
usage. The detail algorithms for overlay construction are
given in Section IV.

Once, the joining viewer receives the topology in-
formation (list of parents and children) with the list of
accepted and forwarded streams from the LSC, it updates
its session routing table. One entry is created for each
forwarded stream. Therefore, the matching field contains
the forwarded stream ID and the corresponding parent
ID. The forwarding address field is populated with the
corresponding child addresses.

Though the overlay structure ensures the delivery of
all accepted streams in the view request, it does not
bound the inter-stream delay inside the view, which cre-
ates the view synchronization problem. The phenomena
is explained in Figure 7(a), where the viewer u (shown
in Figure 3) is provisioned to receive streams SA6 , SB7 ,
SB6 by it LSC. Here, dbuff defines the time a frame of a
stream stays in the buffer after it is received. As we see in
the figure, when a frame of SB6 is received, the correlated
frame (captured at the same time) of SA6 is already been
discarded from the buffer. Since the end-to-end delay
between SB6 and SA6 is higher than dbuff , viewers can
not display them together at the renderer. This creates
a lower quality view at u even though the network
resources are consumed for the higher quality view.
Therefore, the effective bandwidth utilization becomes
low. This unused but allocated bandwidth can be re-
allocated to another viewer to generate high quality video
at that viewer.

To solve this view synchronization problem, the
stream subscription component in the viewer gate-
way computes the subscription point for each accepted
stream. The subscription point of a stream defines the
position at the cache of the parent viewers from where
the parents should forward the stream. It eventually
introduces delayed receive for some of the streams so
that the dependent streams are always present in the
buffer. To understand this stream subscription point in
the overlay in terms of delay, we introduce a delay
layer hierarchy. The details of delay layer hierarchy
architecture and a stream subscription algorithm to solve
the view synchronization problem are shown in Sec-
tion V. However, if the delayed receive violates the
maximum allowed end-to-end delay for a stream, the

request for that stream is dropped and the resources are
made available to use by the other viewers.

After the view synchronization is computed, the
stream subscription component at the viewer sends the
subscription point of the accepted streams to the cor-
responding parents and children. When the child view-
ers receive the subscription information, they update
their synchronization point accordingly. When the par-
ent viewer receives the stream subscription requests, it
updates the subscription point in the routing table for
each forwarded stream and starts streaming from the
subscription point of its cache for each requested stream.
Figure 6 shows the stream subscription protocol to
update the subscription point in the session routing table.
For data plane communication, we use an extension of
RTP called S-RTP proposed by our previous work [4].

Viewer � Viewer �

Subscription-Start�

Viewer �

Stream
Subscription �

Subscription-Update�

Subscription-Start�

Parent Viewer Children Viewer

S-RTP

S-RTP

Joined Viewer

Stream
Subscription �

Streaming �
Streaming �

Streaming �

Viewer
Manager �

Viewer
Manager �

Viewer
Manager �

Viewer
Manager � Viewer

Manager �

Update subscription point
In Session Routing Table Update subscription point

In Session Routing Table

Fig. 6. 4D TeleCast stream subscription communication protocol.

However, due to the frame loss, congestion or other
network events, the inter-stream delay may change.
Therefore, an adaptation management component is used
at the viewer’s that periodically collects monitoring
information from the GSC monitor (via the viewer
management component) and updates the delay layer
hierarchies and the stream subscription layers. It also
handles overlay fault tolerance due to the viewers arrivals
and departures. Due to the space limitation, we explain
its functionality briefly in Section VI.

An example of 4D TeleCast distribution structure in
shown Figure 7(b). Viewers u1, u2 and u3 request for
view v1, which includes streams S1, S2 and S3 (with
priority S2 > S1 > S3), and viewer u4 and u5 request
for view v2, which includes streams S2, S3, S4 (with

u1

A

B

Y

X

Producer

Site-A

Site-B
Site-X

Site-Y

Distribution

Core Server

Edge Server

CDN

s2 s1 s3 s3

Viewer
u2 u2

u1

u4

u1

u3
u3

u3

u2

u5

s2

u4

u5

s4

u4 u5

s4

group for v1

group for v2

S6
A S6

B S7
B

u

dbuff
Send to
display

time

>dbuff

(a)

(b)

Fig. 7. Examples of (a) view synchronization problem, (b) 4D Tele-
Cast dissemination and streaming architecture, where u1, u2 and u3

request v1 = [S1, S2, S3] and u4 and u5 request v2 = [S2, S3, S4].

priority S3 > S2 > S4). Depending on the view request,
4D TeleCast groups u1, u2, and u3 in the same group,
and u3 and u4 in a different group. Inside each group,
individual streaming trees are created for each stream
included in the corresponding view.

View Change. When a viewer requests a view change,
to respond quickly, 4D TeleCast supports the streams
in the new view instantaneously from the CDN. There-
fore, the bandwidth allocation and topology formation
component (in Figure 4) at the LSC, when detect a
view change, initiate two parallel join processes. The
first process serves all streams in the request directly
from the CDN and the second process initiates a normal
join explained above. Once the second process is done,
the viewer is switched to the overlay constructed by
the second process. Since the second process runs on
background, the overall approach reduces the response
time for a view change. Similar algorithm is used to re-
attach the victim viewers (who get disconnected from
the streaming tree due to the view changes) into the
streaming overlay. We explain the view change process
in Section VI.

IV. MULTI-STREAM OVERLAY CONSTRUCTION

A. Overlay Construction Problem

The overlay construction problem considers three con-
straints (bandwidth, delay and number of accepted
stream constraints), and one optimization goal.

Bandwidth Constraint. Each viewer u has limited total
inbound bandwidth (Cuibw) and limited total outbound
bandwidth (Cuobw). The CDN also defines a bounded
inbound and outbound capacity (Ccdnibw and Ccdnobw, respec-
tively) that can be used in the 3DTI session. Due to
the limited number of producers sending content to the
CDN, we assume Ccdnibw bound is always met.

Delay Constraint. Even though, the viewers are not
immersed into the 3DTI space, they impose a delay

bound for live streaming. dmax defines the maximum
delay from the time when a 3D stream is captured at the
producer site until the time when it is displayed at the
viewer’s display.

Number of Accepted Stream Constraint. As we
mentioned before, to accept a viewer request, at least one
stream (i.e., the most priority stream) from each producer
site included in the view should be served to the viewer,
i.e, for n number of producer sites, Nu

accepted ≥ n.

Optimization Goal. Due to the delay and bandwidth
constraints listed above, we cannot guarantee that all
stream requests can be satisfied. The metric we wish
to maximize first is the acceptance ratio (ρ) for all
requests in the system. Suppose, the number of streams
that viewers request is Ntotal; among which Naccepted

are accepted due to the resource constraints, then we
have ρ = Naccepted

Ntotal
. However, we also want to minimize

the CDN outbound capacity usage (obwcdn) in the sys-
tem so that cost of distribution becomes less (the use
of 1GB traffic in Amazon CloudFront [1] CDN costs
$0.18). Formally, the overlay construction problem aims
to build a dissemination architecture from producers to
the viewers that maximizes the total acceptance ratio
with minimum CDN outbound capacity usage such that
Nu
accepted ≥ n, ibwu ≤ Cuibw, obwu ≤ Cuobw, duSi

≤ dmax
and ibwcdn ≤ Ccdnibw ∀u ∈ U , where ibwu and obwu are
the inbound and outbound bandwidth usage of u, duSi

is
the end-to-end delay of stream Si from the producer to u
and U is the set of all connected viewers in the overlay.

We provide a heuristic solution since an optimization
problem in multicast with two or more constraints is NP-
C [17]. We divide the solutions into two parts: bandwidth
allocation and overlay formation.

B. Proposed Solution

1) Viewer Bandwidth Allocation: The bandwidth al-
location should consider both the inbound and outbound
bandwidth allocation. Below we discuss them.

Inbound Bandwidth Allocation. The process starts
by performing bandwidth allocation on the viewer’s
inbound capacity. Streams are assigned required inbound
bandwidth at the viewer in the order of their priorities
provided that two conditions are met; 1) there is enough
inbound bandwidth left for allocation at the viewer,
and 2) the P2P layer or CDN has enough outbound
bandwidth to support the stream. If any of these two
conditions are violated, the lower priority streams are
not assigned any bandwidth and they are removed from
the view request. Suppose, a viewer u requests for view
vm = {S1, S2, · · ·Sn} containing n stream from the

participating producer sites with priority S1 > S2 >
· · · > Sn, abwvmSi is the current available outbound
bandwidth for stream Si for vm and bwSi

is its re-
quired network bandwidth. To allocate viewer’s inbound
bandwidth, LSC assigns bandwidth bwSi

to stream Si if
bwSi

≤ abwvmSi
for first j streams in the order of their

priorities such that
∑j

i=1 bwSi
≤ Cuibw <

∑j+1
i=1 bwSi

.
Hence, the list of accepted streams in vm becomes
S1, S2, · · ·Sj . If j = n, then all streams are accepted.

If the number of accepted streams is less than the
total number of participating site (i.e., at least one stream
from each site), then the viewer’s request is rejected.
Otherwise, the LSC performs bandwidth allocation on
the viewer’s outbound capacity.

Outbound Bandwidth Allocation. Once the inbound
bandwidth is allocated, the LSC allocates outbound
bandwidth only for the set of streams accepted in the
previous step. The outbound allocation is critical be-
cause if we assign outbound bandwidth to only the
highest priority stream of each site, we can support
maximum number of viewers but with lower media
quality. However, if we assign bandwidth equally to all
streams, we get limited number of viewers but with better
media quality. The phenomena is shown in Figure 8(a).
Overlay-1 supports less number of viewers but with
better view quality (higher number of accepted streams),
while Overlay-2 suports higher number of viewers with
lower media quality (lower number of accepted streams).
Therefore, we need a tradeoff in the outbound bandwidth
assignment, where we can support sufficient number
of viewers with good quality. Figure 8(b) shows the
corresponding tradeoff among media quality, number of
concurrent accepted viewers, outbound assignment and
the number of concurrent accepted streams. Our goal is
to maintain the overlay in the middle of the tradeoff lines
(shown dotted). Though, the problem is complicated, It
truns out that using a round-robin allocation of outbound
bandwidth in the order of stream priority can solve it.
Below we discuss the algorithm for outbound bandwidth
allocation.

The outbound allocation starts with allocating the
bandwidth for S1 and continues until Sj similar to
inbound allocation, but it rounds up, i.e., it starts al-
locating from S1 again if there is enough bandwidth left
after assigning the outbound bandwidth to other lower
priority streams. It ensures that even with the bandwidth
limitation, the highest priority streams in a view has
higher probability to be served compared to the lower
priority streams. Basically, if Si > Sj for a view vm,
then at any point in time abwvmSi

≥ abwvmSj
.

If obwuSi
is the allocated outbound bandwidth for

S2
S1 S1

S2

S1 S2

S1
S1 S1

S1 S2

Less viewers

More viewers

Better quality

Poor quality

A B

of concurrent viewers

of unique concurrent streams

Quality of Video

Highest Priority
Stream

Random
assignment

Outbound Assignment

HIGH LOW

MIN MAX

MIN MAX U

A B C D
S1

U

Overlay-1

Overlay-2

(a)

(b)

Fig. 8. (a) Example of different outbound allocations, (b) Tradeoffs
among different paramters impacted by the outbound bandwidth
allocation.

stream Si at viewer u, the out-degree link for Si at u
is computed by oDeguSi

= bobw
u
Si

bwSi

c. After the bandwidth
allocation, the allocated out-degree is used to connect
the viewers to the streaming tree.

2) Topology Formation: For building the overlay
topology for each accepted stream in a view, LSC only
considers the viewers with the similar view request as the
peers of the P2P layer. A degree push down algorithm
is used over the allocated inbound and outbound band-
width. The goal is to improve the depth of the tree by
constructing a flatter tree. Also, it maximizes the number
of viewer nodes that can be accepted in the tree within
the fixed height by pushing higher out-degree viewers
towards the root (flatter trees).

Algorithm 1 Degree Push Down Algorithm
Input: u, oDeguSi

Algorithm:
set Q1 = {root};
repeat
Q2 = Q1;
for all z ∈ Q2 do

if (oDeguSi
> oDegzSi

) or (oDeguSi
== oDegzSi

and Cuobw > Czobw) then
replace z by u;
Childu

Si
= Childu

Si
∪ z.; return 1;

end if
Q1.dequeue(z);
for all each child ch ∈ Childz

Si
do

Q1.enqueue(ch)
end for

end for
until (Q1 is empty)
return 0;

Algorithm 1 explains the 4D TeleCast degree push
down algorithm. The algorithm is executed for each

accepted stream in the view request. It uses the viewer id
u and its out-degree oDeguSi

(computed in the previous
section) as inputs. We use two priority queues Q1 and
Q2 that store the viewers in ascending order of their out-
degrees at each level of the streaming tree. Childu

Si

defines the set of child viewers for stream Si at u.
For empty child we put out-degree −1. Starting from
the root, the algorithm looks for viewers z such that
(oDeguSi

> oDegzSi
) or (oDeguSi

== oDegzSi
and

Cuobw > Czobw). If found, it is replaced by u (which
also updates Childu

Si
) and the replaced viewer is added

as another child of u. If the algorithm returns 0 for a
stream, the stream is requested from the CDN provided
that current usage of the CDN is less than the maximum
capacity allowed, otherwise the stream is rejected. An
example of 4D overlay formation is shown in Figure 9.

u LSC	

Viewer Registration
View Angle V1,
Resources<Cibw

u
 ,Cobw

u>

ODeg(S1) = 2 bins
ODeg(S2) = 2 bins
ODeg(S3) = 1 bin

3

12

01

1

0

S1

3

20 0

S3

4

00 0

S2

-1

-1

-1 -1

-1

3

2

01

1

0

S1

3

20 1

S3
4

00 0

S2

1
2

-1 -1
-1 -1

-1

0

Viewer pushed-down Joining viewer

(a) (b)

(c)

2

V1 = StreamID< S1, S2, S3>

Fig. 9. (a) Multi-stream overlay before viewer u joins, (b) u
sends join request to LSC and LSC computes the out-degree for the
accepted streams, and (c) finally the overlay is formed by pushing
lower-degree nodes down in the overlay.

The overlay ensures that viewers with higher outbound
bandwidth receive streams with lower end-to-end delay,
which provides an incentive to the viewers to engage
more bandwidth in their session. The property can be
described as follows.

Overlay property: If viewers u1 and u2 request for
the same view v = [S1, S2, · · ·Sn] under the same
LSC, then if u1 is in higher layer than u2 in the same
streaming tree for one stream, then it is in higher layer
compared to u2 for all other streams.

We can easily prove it. Since, the outbound band-
width is allocated in a round-robin manner in order
of stream priorities and the priorities are always fixed
inside a group (defined by view), the viewer with higher
bandwidth always assigns higher outbound bandwidth
to a stream compared to the other viewers with lower
bandwidth inside the same view group. Moreover, the
degree push down algorithm always puts the viewer with

higher bandwidth closer the root. Therefore, for a certain
view group, the viewers with higher out-degree becomes
closer to the root compared to the viewers with lower
out-degree and this is true for all the streaming trees
they are subscribed to.

Once the topology construction is completed for all
accepted streams, LSC sends the set of accepted streams
and the overlay information back to the viewer. The
overlay information includes the parent (ParentuSi

) and
children (Childu

Si
) IDs along with their end-to-end

delay and layer information for each accepted stream.

V. VIEW SYNCHRONIZATION

A. View Synchronization Problem

The goal of view synchronization is to preserve the
multi-stream dependencies at the viewer with the given
bandwidth constraints. If the dependencies can not be
preserved for a stream, then the bandwidth used by that
stream should be made available to be used by other
viewers. Suppose, at viewer u, the set of accepted stream
in the request vm is {S1, S2, · · ·Sj}. duSi

is the end-
to-end delay of stream Si at u perceived by the over-
lay structure. Though, the overlay construction problem
bounds duSi

(where duSi
<< dmax), it does not provide

any bound on |duSi
− duSk

| (1 ≤ i, k ≤ j). If the viewer
maintains a buffer of length dbuff for each requested
stream, to represent a synchronous view, the following
constraint must be fulfilled: |duSi

−duSk
| ≤ dbuff +dskew,

where dskew defines visually allowed maximum inter-
stream skew (i.e., the maximum unnoticeable inter-
stream skew at the display). For ease of explanation, we
use dskew = 0.

B. Proposed Solution

To solve view synchronization problem, viewers first
need to understand the stream end-to-end delay for the
list of accepted streams after joining into the streaming
overlay. Therefore, we introduce delay layer hierarchy
in the P2P dissemination layer. We modify the viewer
buffer architecture to support this layer hierarchy, and
finally we show how we use stream subscription to solve
the view synchronization problem.

1) Delay Layer Hierarchy: The purpose of delay
layering is to understand the streams’ position at the
viewer in terms of end-to-end delay in the overlay. Each
layer is identified by the delay value and bounded by
a delay duration called τ . We define τ = dbuff

κ , where
κ ≥ 2. κ defines the layer width. Viewers at the higher
layers (with lower layering index) for a stream receive
frames with lower delay and the viewers at the lower
layers (with higher layering index) receive frames with

higher delay. A viewer can be in multiple layers; one
layer for each requested stream. Therefore, the layering
architecture can be represented as several concentric
circles (one for each layer) with the producer and the
CDN in the center as shown in Figure 10(a).

u2

u1

CDN

Producer

La
ye

r-
0

Layer-1

La
ye

r-
j

(a) (b)

CDN

A

B

Y

X
Site-A

Site-B
Site-X

Site-Y

Layer-0

Layer-1

Layer-2

τ

Δ
en

d-
to

-e
nd

 de
lay

Pr
od

uc
er

τ

τ
Δ

ft (1, n)

[n-Δr, n-(Δ+τ)r)

[n-(Δ+τ)r, n-(Δ+2τ)r)

[n-(Δ+2τ)r, n-(Δ+3τ)r)

u1 u1

u2 u2

u3 u3

u3

s2 s1 s3

Fig. 10. (a) Tele-Cast layering architecture, (b) Example of delay
layering showing the distribution of frame numbers at different layers
at time t.

Definition of Delay Layer. To define formally, suppose,
∆ indicates the maximum delay a frame takes to get
delivered at any viewer via CDN after it is captured
at the producer. Therefore, according to the delay layer
architecture, the viewers at Layer-y receive streams with
end-to-end delay bounded by [∆ + yτ,∆ + (y + 1)τ),
where y ≥ 0. Continuing the example shown in Figure 7,
an example of delay layer hierarchy for viewers u1,
u2, and u3 requesting v1 is shown in Figure 10(b).
Depending on the end-to-end delay, u3 is in Layer-1 for
stream S1 and S2, but in Layer-3 for stream S3.

If the frame rate is r for stream SA1 , according to the
layer architecture, at time t, viewers at Layer-y receive
frames with frame numbers between [n1, n2), where n
is the latest captured frame number at the producer for
stream SA1 , n1 = n−(∆+yτ)r, n2 = n−(∆+(y+1)τ)r.
Figure 10(b) shows the corresponding layering hierarchy
for y ∈ {0, 1, 2}.
How to Compute Delay Layer for a Stream. When
a viewer is added into the dissemination overlay, the
layer (i.e., the lowest layer index) of the viewer for a
requested stream (interchangeably we term it as the layer
of the requested stream) is computed using the end-to-
end delay of that stream at its parent in the overlay
(from which the viewer receives the requested stream),
the processing delay inside the parent (due to internal
processing and buffering) and the network propagation
delay from the parent to the viewer. If dprop defines
the network propagation delay between u and its parent
(ParentuSi

) for stream Si, d
ParentuSi

Si
is the end-to-end

delay of stream Si at ParentuSi
, and δ indicates the

processing delay at the parent, then the layer of viewer
u for stream Si (LayeruSi

) is computed as follows:

LayeruSi
= b

d
ParentuSi

Si
−∆ + dprop + δ

τ
c (1)

In our evaluation, we assume dCDNSi
+ dprop + δ = ∆

for the viewers with CDN parents, i.e., the summation of
end-to-end delay from the producers to the CDN and the
CDN to its first children take approximately the constant
time for each stream and it is equal to ∆. Therefore, the
viewers who receive streams directly from the CDN can
always achieve the highest layer, Layer-0. However, this
constraint can be easility relaxed by considering separete
∆ value for each producers’ stream. We skip the details
here.
How to Modify Delay Layer for a Stream. Layer
modification at the viewer for a particular stream can be
done simply by requesting frames back in time or ahead
in time from the parents. However, due to the bound on
the propagation and processing delay from the parents,
the viewers cannot decrease the layer indexes (i.e., move
to the higher layer) from the value measured by Equation
1. If a viewer is at Layer-y for stream Si, at any time t, it
can switch to Layer-x by requesting the streams starting
from the frame number n′ from its parent, where n′ is
defined as follows:
n′ = n− (∆ + (x+ 1)τ)r + (dprop + δ)r + dpropr + <

(2)

Here n is the latest frame number at the producer at
time t (collected from the GSC monitoring), r defines
the frame rate (also collected from the GSC monitoring
component) and < generates an offset between [0, τr].
Using <, we can chose viewers’ position inside the
desired layer boundary. The term (dprop+δ)r in Equation
2 considers the total propagation delay from the parent
and the third term dpropr is added since the request to
update the stream layer takes additional dprop time to get
delivered to the parent. The parent then streams at the
media rate starting from n′.

Since, the change in delay layer requests frames of
different time period from the parents of the overlay
tree, viewers needs to modify their buffering structure
to cache 3D frames. Below we discuss the 4D TeleCast
viewer buffer architecture.

2) Extension of Viewer Buffer: We extend the single-
stream based buffering architecture [8], [9], [11] used
in PPLive and CoolStreaming for multi-stream scenario.
Each viewer maintains a local buffer at the gateway.
For simplicity, we consider separate local buffers for
different streams. The architecture of a viewer’s local
buffer is shown in Figure 11, where the viewer is
subscribed to a view with two media streams: S1, and
S2. At the Media Playback Point (MPP) in the Figure,
the renderer picks up the synchronized frames (where
the difference between the origin timestamps is less
than dskew) of S1 and S2 from the respective buffers
(between MPP and buffer end) and sends them to the
display. There can be a separate playback buffer inside

the display for smooth playback, which we ignore in our
analysis. This is a rather conservative assumption that
underestimates the system performance. For the rest of
the paper, we use the term “buffer” to indicate the part of
the local buffer from buffer end to the MPP and “cache”
to indicate the part from MPP to the buffer head. dcache
is the caching delay and dbuff << dcache.

discard

MPP (Media Playback Point) Buffer Head Buffer End

Buffer Cache

MPP

discard

Renderer

Buffer End Buffer Head

S1

S2

Buffer

Fig. 11. Viewer’s local buffer architecture in 4D TeleCast.

The frames stored in the buffer and cache are both
available to support other viewers, while the frames
stored in the buffer are only used in local media playback
at the renderer. At this point, we propose our first
property about the delay layer hierarchy.

Layer Property 1: A viewer u with end-to-end de-
lay duSi

for stream Si can share streams of Layer-

bd
u
Si
−∆+dprop+δ

τ c to Layer-bd
u
Si−∆+dprop+dcache+dbuff+δ

τ c
to any child viewer at distance dprop.

In case of CDN parents, the distribution storage is
very large and hence we assume that the CDN can share
any layers of streams to its direct children. This layer
property can be easily proved by the definition of delay
layer hierarchy.

For simplicity, in our current work, we assume
dcache = dmax−∆−dbuff . Since, dmax is the maximum
possible end-to-end delay at the viewers, the value of
maximum acceptable layer index is bounded by dmax−∆

τ .
Therefore, this value of dcache ensures that any viewer
can support any acceptable layers of its child viewers
into the TeleCast overlay streaming tree.

3) Stream Subscription: The stream subscription pro-
cess works locally at each viewer after it joins into
the overlay. It includes two steps: 1) finding the layer
index for each accepted stream, and 2) bounding the
differences in layer indexes so that the delay differences
are bounded by dbuff . At this point, we present our
second property about the delay layer hierarchy.

Layer Property 2: A viewer (u) can render dependent
streams (S1, S2, · · ·Sn) synchronously at the display if
the differences in the layering indexes for those streams
are less than or equal to κ, i.e., |LayeruSi

−LayeruSk
| ≤

κ, where i, k = 1, 2, · · ·n.

We can easily prove this property. According to the
layer definition, if |LayeruSi

− LayeruSk
| ≤ κ, the dif-

ference between the end-to-end delay of stream Si (duSi
)

and the end-to-end delay of stream Sk (duSk
) at u must be

bounded by κτ (where τ is the size of each layer). Also,
we define τ = dbuff

κ . Therefore, by combining these two
equations,

|duS/−i − d
u
Sk
| ≤ κτ ≤ dbuff

As we mentioned before, if the inter-stream delay can
be bounded by dbuff , then the renderer can pick the
dependent frames from the respective buffers and display
a consistent virtual space.

After a viewer joins the overlay structures for
j streams, it computes the minimum layer indexes
LayeruSi

for each stream Si using Equation 1 (1 ≤
i ≤ j). If |LayeruSi

− LayeruSk
| > κ, then

|duSi
− duSk

| > dbuff , which violates the view syn-
chronization constraint. To bound the differences by
κ, the viewer first finds the maximum layer in-
dex Layerumin = max(LayeruS1

, LayeruS2
, · · ·LayeruSj

).
The updated layer index of each stream Si is then
computed as: LayeruSi

= max(LayeruSi
, Layerumin−κ).

We call this process as a layer push-down. In case of the
layer push-down of a stream, the request for streaming
are sent to the parent by computing the frame number
using Equation 2, otherwise the parents are requested to
send frames from their buffer end.

Next, the viewer sends the end-to-end delays to each
child in Childu

Si
for each forwarded stream Si. Once

the child viewer ch receives this information, it computes
the delay layer index (x) that it can achieve using Equa-
tion 1. If x > Layerchmin (the maximum layer index in
ch), a new subscription process is started since the delay
bound may be violated. However, if x ≤ Layerchmin, then
no layer subscription process is required, beacuse the
parent viewer is still able to support ch with its current
layer index of the stream.

It is important to note that the layer modification
(if any) in the push-down process at the child viewer
also needs to be propagated to its children, who may
initiate another subscription process. Therefore, when a
new viewer joins, the overlay may initiate a chain of
subscription processes. Figure 12 shows an example of
layer modification in viewer u2 when a new viewer u4

joins. Due to the layer modification, the layer bound
(κ = 2) is violated. So, a layer push-down is required for
stream S2 in u2. However, we can easily prove that due
to the nature of overlay construction, it will not create
any cyclic impact, which means that if a viewer u1 starts
the initial subscription process in the chain, it does not
receive the layer update request along this chain.

u1

u2

u1

u2

u3

s2 s1

u3

Layer-0	

Layer-1	

Layer-2	

Layer-3	

CDN	

u1

u2

u1

u4

u3

s1

u3

u2

s2

Layer-4	

Before u4 joins After u4 joins

Fig. 12. Example of layer push-down in u2 when a new viewer u4

joins.

Also during the layer push-down using Equation 2,
we apply < = τr (i.e., position the children at the top
of the modified layer boundary) so that the push-down
fades out (reduce the number of layer modification) in
the subsequent children.

VI. SYSTEM ADAPTATION

View Change Adaptation. When a viewer requests for
a view change, there is a change in the list of streams
the viewer requested before. Let us continue the example
shown in Figure 7(b). In case of a view change from v1

to v2 by u2, the viewer u2 needs to leave the streaming
tree of S1, S2 and S3 inside the group for v1 and
join the streaming tree of S2, S3, and S4 inside the
group for v2 under the same LSC. Since, the joining
process takes time (up to several seconds), to allow
quicker view change, TeleCast streams the new requests
from the CDN (i.e., after the view change request, u2

receives S2, S3 and S4 from CDN inside the group
for v2), while the traditional joining process (bandwidth
allocation + overlay formation + stream subscription) is
performed in background. Once the joining process is
done, the streams are served according to the join overlay
structure. Similar algorithm is used in LiveSky [22] for
changing channels in live streaming.

However, the view change may create victim viewers.
For example, in Figure 7(b), when u2 switches view, u3

becomes victim for stream S3. To recover quickly, the
victim viewers are also supported from the CDN at their
current delay layer, while the LSC finds the positions
for them into the overlay using the degree push down
algorithm. The other portions of the overlay remains
same (e.g., if u3 has a child viewer in stream tree S3, it
will still be connected as the child of u3). 4D TeleCast
uses same algorithm to recover the victim viewers in
case of failures (due to viewers departure or failures).

Delay Layer Adaptation. Before any layer push-down
happens, if the layer index of any stream at the viewer
is higher than the maximum allowed layer index in the
system, the viewer drops the subscription of that stream
provided that the parent of the stream is CDN. However,
if the parent is another viewer, then LSC first tries to

provision the stream from the CDN provided that the
CDN has available bandwidth.

Due to the network dynamism, viewers also peri-
odically monitor the end-to-end delay of all streams
in the requested view and updates their layer indexes
accordingly using Equation 1. If κ bound is violated
at any point in time, the stream subscription process is
initiated to bound the view synchronization. Each viewer
also continuously monitors the layers of its parents for
all accepted streams. If the parent layers for all streams
move up, the viewer also move up the subscription of
all streams. This ensures that the viewers continue to
watch requested streams as quickly as possible keeping
the dependencies preserved.

VII. EVALUATION OF 4D TELECAST

We evaluate 4D Tele-Cast using a discrete event
simulator. For the experimental setup, we use config-
urations of system and application components from
TEEVE [19], an advanced 3DTI system. We use 2
producers with 8 camera streams at each site representing
the content producers. We simulate a CDN that creates
minimum e2e delay of 60sec (i.e., ∆ = 60sec) from
producers to the viewers. The number of viewers are
varied from 10 to 1000. The delay between them are
obtained from 4−hours PlanetLab traces [14].

For each producer stream, we use traces collected from
a TEEVE session [18], where two remote participants
virtually fight with each other using light sabers. Each
stream is bounded by 2Mbps bandwidth requirement.
Each viewer requests a view that includes 6 streams;
3 from each producer. We assume each viewer has
12Mbps inbound bandwidth, but the outbound bandwidth
(Cuobw) varies from 0 to 14Mbps. The acceptable end-
to-end delay at the viewer is bounded by 65 sec (i.e.,
dmax = 65sec). The buffer size is 300msec and the cache
size to allow peer sharing is 25sec. We fix κ = 2.

Performance of Overlay Construction. The goal of
solving overlay construction problem is to maximize
the acceptance ratio (ρ) and minimize the CDN usage.
We change the viewers outbound bandwidth from 0 to
14Mbps. For different values of outbound bandwidth,
Figure 13(a) shows the CDN bandwidth requirements to
support all requested streams (i.e., to achieve ρ = 1).
When the viewers do not provide any outbound band-
width, all requests are served from the CDN (case when
Cuobw = 0). Most of the cases, the joining viewers
provide some bandwidth to allow forwarding. As the
figure shows, even if the viewers contribute about 0 to
12Mbps bandwidth uniformly, the required bandwidth
from the CDN to support all requests using the hybrid

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000

C
D

N
 B

an
d

w
id

th
 (

M
b

p
s)

Number of viewers

Cobw=0 Cobw=6 Cobw=10

Cobw=0-12 Cobw=2-10 Cobw=4-14

Cobw
u=0 Cobw

u=6 Cobw
u=10

Cobw
u=4-14 Cobw

u=2-10 Cobw
u=0-12

(a) CDN bandwidth requirements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

Fr
ac

ti
o

n
 o

f
st

re
am

s
se

rv
ed

 b
y

C
D

N

Number of Viewers
outbound_bw=0 outbound_bw=2 outbound_bw=4

outbound_bw=6 outbound_bw=8 outbound_bw=10

outbound_bw=0-12 outbound_bw=2-10 outbound_bw=4-14

Cobw
u=0

Cobw
u=6

Cobw
u=0-12

Cobw
u=2

Cobw
u=8

Cobw
u=0-10

Cobw
u=4

Cobw
u=10

Cobw
u=4-14

(b) Fraction of requests served by CDN

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

A
cc

ep
ta

n
ce

 r
at

io

Number of viewers
outbound_bw=0 outbound_bw=2 outbound_bw=4

outbound_bw=6 outbound_bw=8 outbound_bw=10

outbound_bw=0-12 outbound_bw=2-10 outbound_bw=4-14

Cobw
u=0

Cobw
u=6

Cobw
u=0-12

Cobw
u=2

Cobw
u=8

Cobw
u=0-10

Cobw
u=4

Cobw
u=10

Cobw
u=4-14

(c) Request acceptance ratio

Fig. 13. Performance of 4D TeleCast overlay construction and content distribution. CDN capacity is bounded to 6000Mbps in (b) and (c).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fr
ac

ti
o

n
 o

f
vi

ew
er

s

Maximum layer of accepted streams

(a) Layers of viewers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

Fr
ac

ti
o

n
 o

f
vi

ew
er

s

Number of streams a viewer receives

(b) Number of accepted streams

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000 1200 1400

Fr
ac

ti
o

n
 o

f
jo

in
 o

r
vi

ew
 c

h
an

ge

Join or view change delay (ms)

View change

Viewer join

(c) 4D Telecast overhead

Fig. 14. (a) The distribution of layers of accepted streams at the viewers, (b) The distribution of the number of accepted streams at the
viewers, and (c) The overhead of 4D TeleCast for viewer join and view change.

structure is around 6000Mbps. We allocate this amount
of outbound bandwidth to the CDN for rest of the
experiments.

To understand how much savings in cost we make
in 4D TeleCast due to the priority based bandwidth
allocation and degree push down based overlay construc-
tion, we plot the fraction of requests served by CDN
while varying the viewers outbound bandwidth in Fig-
ure 13(b). When the viewers’ bandwidth varies between
4 to 14Mbps or each viewer allocate at least 8Mbps
outbound bandwidth, about 55% or higher requests are
served from the P2P.

If we bound the CDN capacity, some of the viewer
requests may not go through due to the lack of bandwidth
availability. To understand the performance of the 4D
TeleCast in terms of the number of accepted requests
with Ccdnobw = 6000Mbps, we plot the acceptance ratio
in Figure 13(c). When the viewers do not provide any
outbound bandwidth the acceptance ratio becomes low.
When the viewers contribute outbound bandwidth, in
most of the cases, the acceptance ratio is very high.
The system achieves perfect acceptance ratio when the
viewers’ bandwidth varies between 4 to 14Mbps or each
viewer allocates at least 8Mbps outbound bandwidth.

Performance of Stream Subscription. In this section,
we show the performance of view synchronization using
the delay layer hierarchy. We uniformly assign each

viewer an outbound bandwidth between 0 to 12Mbps.
The minimum subscription layer of the accepted streams
at each viewer is shown in Figure 14(a). About 30% of
the viewers are in Layer-0 and 80% of the viewers are
watching the contents in Layer-4 or less. However, not
all viewers receive 6 streams requested in the view. In
case of bandwidth limitation, the lower priority streams
are dropped. However, the inter-stream delay among the
accepted streams are always less than 300msec due to
the bound on the layering.

To evaluate the quantity of the accepted streams at
each viewer, we plot the CDF of the viewers in terms of
the number of accepted streams with similar setup. The
result is shown in Figure 14(b). As the figure shows,
most of the viewers (above 70%) receive all streams
requested in a view with CDN capacity of 6000Mbps.
Only 15% viewers do not receive any requested streams
due to the bandwidth limitation.

4D TeleCast Overhead. The overhead of 4D TelCast
comes from the overlay construction and the stream
subscription processes. The join of a viewer goes through
three steps: bandwidth allocation, overlay construction
and stream subscription. Hence, the joining delay in-
cludes the network delay and the processing delay at
each of these steps. Figure 14(c) shows the joining delay
in terms of the CDF of the number of viewers. The value
varies up to 1.5sec. The value shown in the Figure 14(c)

does not include the buffering delay.

4D TeleCast improves the view change latency by
serving the new streams due to the view changes di-
rectly from the CDN, while in the background, the new
requests are added into the overlay using normal join
steps. Therefore, the view change is satisfied quickly
within 500msec.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Ac
ce

pt
an

ce
 ra

tio

Outgoing bandwidth per viewer (Mbps)

Random

TeleCast

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000

Ac
ce

pt
an

ce
 ra

tio

Number of viewers

Random

TeleCast

(b)
Fig. 15. Comparison of TeleCast with Random routing scheme: (a)
Varying outbound bandwidth per viewer, and (b) Scaling number of
viewers.

Comparison with Random Dissemination. We eval-
uate our scheme against random routing scheme [19],
which works well inside the communication among
the producers. In Random routing, a joining node is
randomly attached to another node, which can serve
the request of the joining node. No clustering or pre-
allocation of outgoing bandwidth of the node is done
in the random routing scheme. We perform two sets
of experiments. In the first experiment, we vary the
amount of total outgoing bandwidth at each viewer
node from 0 to 10Mbps for 1000 viewers, and in the
second set, we increase the number of viewers joining
the system having 2-14Mbps bandwidth. The results are
shown in Figure 15. It can be seen from Figure 15(a)
that our approach increases the acceptance percentage
by 20% as compared to the random scheme. Also from
Figure 15(b), TeleCast achieves very high acceptance
ratio even under large number of viewers, 98% to 99%
as compared to Random routing scheme (typically 80%
to 88%)

VIII. RELATED WORK

Nahrstedt et al. [13] first envisioned an Internet In-
teractive Television, where viewers can select multiple
contents they want to watch together in a smart room and
the contents are generated from different heterogeneous
sources (e.g. mobile device, TV camera, etc.) by different
entities distributed over the world. Each content is a
single 2D stream and may not be semantically correlated
to each other. However, in 4D TeleCast, single 4D
content includes multiple 3D streams and they are highly
correlated; therefore, needs to be synchronized to display
a consistent high quality view. There are some prior
works on 3DTI content dissemination. [21] considers
the communication among producer sites. The contents
usually are distributed in a mesh. Therefore, it supports
very limited number of content producers. Later, Wu
et al. [19] solves this problem using several tree based
heuristic algorithms. However, the solutions consider that
all producers (or viewers) are available when the session
starts. This assumption is violated in case of widely
distributed content viewers.

There are many IPTV solutions [2], [23] that work
well for large scale dissemination, but none of them
consider view change dynamics with multi-party com-
positions. Therefore, the challenges are different. This is
also true to for other CDN-P2P based streaming solutions
such as [9], [20] and [22].

Multicast routing algorithms have been well studied in
[16]. [16] and [17] also point out that constructing a tree
that optimize multiple metrics is an NP-complete prob-
lem. However, conventional tree based multicast may
lead to a lower acceptance ratio([19], [7]). [10] considers
path delays of the requested streams for constructing the
3DTI dissemination overlay. The solution works well for
preserving the interactivity among the content producers,
but does not create optimal overlay for supporting large
number of concurrent viewers.

IX. CONCLUSION

We propose 4D TeleCast, a novel multi-stream content
dissemination framework. It supports a large number of
concurrent views as well as viewers while preserving the
unique nature of 3DTI multi-stream dependencies by en-
suring maximum effective resource utilization and view
change capabilities. Our research results are significant
for next-generation multi-stream and multi-view content
distribution.

Acknowledgement. This material is based upon work
supported by NSF Grant NetTS 0964081, and NeTSE
1012194.

REFERENCES

[1] Amazon CloudFront. http://aws.amazon.com/cloudfront/.
[2] PPLive. http://www.pptv.com/.
[3] M. Afergan, J. Wein, and A. LaMeyer. Experience with

some principles for building an internet-scale reliable
system. In Proc. of WORLDS, 2005.

[4] P. Agarwal, R. Rivas, W. Wu, and A. Arefin et al. SAS
Kernel: streaming as a service kernel for correlated multi-
streaming. In Proc. of ACM NOSSDAV, 2011.

[5] P. Agarwal, R. Rivas, and W. Wu et al. Bundle of
streams: Concept and evaluation in distributed interactive
multimedia environments. In Proc. of ISM, 2011.

[6] Akamai. http://www.akamai.com/.
[7] M. Castro, P. Druschel, and A. Kermarrec et al. Split-

Stream: high-bandwidth multicast in cooperative environ-
ments. In Proc. of SOSP, 2003.

[8] Y. Chen, C. Chen, and C. L. A measurement study of
cache rejection in P2P live streaming system. In Proc. of
ICDCS, 2008.

[9] X. Hei, C. Liang, and J. Liang et al. Design and
deployment of a hybrid CDN-P2P system for live video
streaming. In IEEE Transactions on Multimedia, 2007.

[10] Z. Huang, W. Wu, and K. Nahrstedt et al. Tsync: a
new synchronization framework for multi-site 3d tele-
immersion. In Proc. of ACM NOSSDAV, 2010.

[11] J. Kuo, C. Shih, and Y. Chen. A dynamic self-adjusted
buffering mechanism for peer-to-peer real-time stream-
ing. In Journal of Intelligent Systems and Application,
2011.

[12] B. Li, Y. Qu, Y. Keung, and S. Xie et al. Inside
the new CoolStreaming: principles, measurements and
performance implications. In Proc. of INFOCOM, 2008.

[13] K. Nahrstedt and B. Yu et al. Hourglass multimedia
content and service composition framework for smart
room environments. In Elsevier Journal on Pervasive
and Mobile Computing, 2005.

[14] PlanetLab 4hr traces. http://www.eecs.harvard.edu/
syrah/nc/sim/pings.4hr.stamp.gz.

[15] S. Ratnasamy and Mark Handley et al. Topologically-
aware overlay construction and server selection. In Proc.
of Infocom, 2002.

[16] B. Wang and J. Hou. Multicast routing and its QoS
extension: problems, algorithms, and protocols. In IEEE
Network, 2000.

[17] Z. Wang and J. Crowcroft. Quality of service routing
for supporting multimedia applications. In IEEE Journal
Selected Areas in Communications, 1996.

[18] W. Wu, A. Arefin, and Z. Huang et al. I’m the Jedi!
- A case study of user experience in 3D tele-immersive
gaming. In Proc. of ISM, 2011.

[19] W. Wu, Z. Yang, and K. Nahrstedt et al. Towards multi-
site collaboration in 3D tele-immersive environments. In
Proc. of ICDCS, 2008.

[20] D. Xu, S. S. Kulkarni, and C. Rosenberg et al. A
CDN-P2P hybrid architecture for cost-effective streaming
media distribution. 2004.

[21] Z. Yang, W. Wu, and K. Nahrstedt et al. Enabling multi-
party 3D tele-immersive environments with viewcast. In
ACM Transactions on Multimedia Computing, Commu-
nications and Applications, 2010.

[22] H. Yin, X. Liu, and T. Zhan et al. Design and deployment
of a hybrid CDN-P2P system for live video streaming:
Experiences with LiveSky. In Proc. of ACM MM, 2009.

[23] X. Zhang, J. Liu, and B. Li et al. CoolStreaming/DONet:
a data-driven overlay network for peer-to-peer live media
streaming. In Proc. of INFOCOM, 2005.

