41 research outputs found

    A wearable biofeedback device to improve motor symptoms in Parkinson’s disease

    Get PDF
    Dissertação de mestrado em Engenharia BiomédicaThis dissertation presents the work done during the fifth year of the course Integrated Master’s in Biomedical Engineering, in Medical Electronics. This work was carried out in the Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) at the MicroElectroMechanics Center (CMEMS) established at the University of Minho. For validation purposes and data acquisition, it was developed a collaboration with the Clinical Academic Center (2CA), located at Braga Hospital. The knowledge acquired in the development of this master thesis is linked to the motor rehabilitation and assistance of abnormal gait caused by a neurological disease. Indeed, this dissertation has two main goals: (1) validate a wearable biofeedback system (WBS) used for Parkinson's disease patients (PD); and (2) develop a digital biomarker of PD based on kinematic-driven data acquired with the WBS. The first goal aims to study the effects of vibrotactile biofeedback to play an augmentative role to help PD patients mitigate gait-associated impairments, while the second goal seeks to bring a step advance in the use of front-end algorithms to develop a biomarker of PD based on inertial data acquired with wearable devices. Indeed, a WBS is intended to provide motor rehabilitation & assistance, but also to be used as a clinical decision support tool for the classification of the motor disability level. This system provides vibrotactile feedback to PD patients, so that they can integrate it into their normal physiological gait system, allowing them to overcome their gait difficulties related to the level/degree of the disease. The system is based on a user- centered design, considering the end-user driven, multitasking and less cognitive effort concepts. This manuscript presents all steps taken along this dissertation regarding: the literature review and respective critical analysis; implemented tech-based procedures; validation outcomes complemented with results discussion; and main conclusions and future challenges.Esta dissertação apresenta o trabalho realizado durante o quinto ano do curso Mestrado Integrado em Engenharia Biomédica, em Eletrónica Médica. Este trabalho foi realizado no Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) no MicroElectroMechanics Center (CMEMS) estabelecido na Universidade do Minho. Para efeitos de validação e aquisição de dados, foi desenvolvida uma colaboração com Clinical Academic Center (2CA), localizado no Hospital de Braga. Os conhecimentos adquiridos no desenvolvimento desta tese de mestrado estão ligados à reabilitação motora e assistência de marcha anormal causada por uma doença neurológica. De facto, esta dissertação tem dois objetivos principais: (1) validar um sistema de biofeedback vestível (WBS) utilizado por doentes com doença de Parkinson (DP); e (2) desenvolver um biomarcador digital de PD baseado em dados cinemáticos adquiridos com o WBS. O primeiro objetivo visa o estudo dos efeitos do biofeedback vibrotáctil para desempenhar um papel de reforço para ajudar os pacientes com PD a mitigar as deficiências associadas à marcha, enquanto o segundo objetivo procura trazer um avanço na utilização de algoritmos front-end para biomarcar PD baseado em dados inerciais adquiridos com o dispositivos vestível. De facto, a partir de um WBS pretende-se fornecer reabilitação motora e assistência, mas também utilizá-lo como ferramenta de apoio à decisão clínica para a classificação do nível de deficiência motora. Este sistema fornece feedback vibrotáctil aos pacientes com PD, para que possam integrá-lo no seu sistema de marcha fisiológica normal, permitindo-lhes ultrapassar as suas dificuldades de marcha relacionadas com o nível/grau da doença. O sistema baseia-se numa conceção centrada no utilizador, considerando o utilizador final, multitarefas e conceitos de esforço menos cognitivo. Portanto, este manuscrito apresenta todos os passos dados ao longo desta dissertação relativamente a: revisão da literatura e respetiva análise crítica; procedimentos de base tecnológica implementados; resultados de validação complementados com discussão de resultados; e principais conclusões e desafios futuros

    Design and Assessment of Vibrotactile Biofeedback and Instructional Systems for Balance Rehabilitation Applications.

    Full text link
    Sensory augmentation, a type of biofeedback, is a technique for supplementing or reinforcing native sensory inputs. In the context of balance-related applications, it provides users with additional information about body motion, usually with respect to the gravito-inertial environment. Multiple studies have demonstrated that biofeedback, regardless of the feedback modality (i.e., vibrotactile, electrotactile, auditory), decreases body sway during real-time use within a laboratory setting. However, in their current laboratory-based form, existing vibrotactile biofeedback devices are not appropriate for use in clinical and/or home-based rehabilitation settings due to the expense, size, and operating complexity of the instrumentation required. This dissertation describes the design, development, and preliminary assessment of two technologies that support clinical and home-based balance rehabilitation training. The first system provides vibrotactile-based instructional motion cues to a trainee based on the measured difference between the expert’s and trainee’s motions. The design of the vibrotactile display is supported by a study that characterizes the non-volitional postural responses to vibrotactile stimulation applied to the torso. This study shows that vibration applied individually by tactors over the internal oblique and erector spinae muscles induces a postural shift of the order of one degree oriented in the direction of the stimulation. Furthermore, human performance is characterized both experimentally and theoretically when the expert–trainee error thresholds and nature of the control signal are varied. The results suggest that expert–subject cross-correlation values were maximized and position errors and time delays were minimized when the controller uses a 0.5 error threshold and proportional plus derivative feedback control signal, and that subject performance decreases as motion speed and complexity increase. The second system provides vibrotactile biofeedback about body motion using a cell phone. The system is capable of providing real-time vibrotactile cues that inform corrective trunk tilt responses. When feedback is available, both healthy subjects and those with vestibular involvement significantly reduce their anterior-posterior or medial-lateral root-mean-square body sway, have significantly smaller elliptical area fits to their sway trajectory, spend a significantly greater mean percentage time within the no feedback zone, and show a significantly greater A/P or M/L mean power frequency.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91546/1/channy_1.pd

    Assisting Human Motion-Tasks with Minimal, Real-time Feedback

    Get PDF
    Teaching physical motions such as riding, exercising, swimming, etc. to human beings is hard. Coaches face difficulties in communicating their feedback verbally and cannot correct the student mid-action; teaching videos are two dimensional and suffer from perspective distortion. Systems that track a user and provide him real-time feedback have many potential applications: as an aid to the visually challenged, improving rehabilitation, improving exercise routines such as weight training or yoga, teaching new motion tasks, synchronizing motions of multiple actors, etc. It is not easy to deliver real-time feedback in a way that is easy to interpret, yet unobtrusive enough to not distract the user from the motion task. I have developed motion feedback systems that provide real-time feedback to achieve or improve human motion tasks. These systems track the user\u27s actions with simple sensors, and use tiny vibration motors as feedback devices. Vibration motors provide feedback that is both intuitive and minimally intrusive. My systems\u27 designs are simple, flexible, and extensible to large-scale, full-body motion tasks. The systems that I developed as part of this thesis address two classes of motion tasks: configuration tasks and trajectory tasks. Configuration tasks guide the user to a target configuration. My systems for configuration tasks use a motion-capture system to track the user. Configuration-task systems restrict the user\u27s motions to a set of motion primitives, and guide the user to the target configuration by executing a sequence of motion-primitives. Trajectory tasks assume that the user understands the motion task. The systems for trajectory tasks provide corrective feedback that assists the user in improving their performance. This thesis presents the design, implementation, and results of user experiments with the prototype systems I have developed

    Detection and Prediction of Freezing of Gait in Parkinson’s Disease using Wearable Sensors and Machine Learning

    Get PDF
    Freezing of gait (FOG), is a brief episodic absence of forward body progression despite the intention to walk. Appearing mostly in mid-late stage Parkinson’s disease (PD), freezing manifests as a sudden loss of lower-limb function, and is closely linked to falling, decreased functional mobility, and loss of independence. Wearable-sensor based devices can detect freezes already in progress, and intervene by delivering auditory, visual, or tactile stimuli called cues. Cueing has been shown to reduce FOG duration and allow walking to continue. However, FOG detection and cueing systems require data from the freeze episode itself and are thus unable to prevent freezing. Anticipating the FOG episode before onset and supplying a timely cue could prevent the freeze from occurring altogether. FOG has been predicted in offline analyses by training machine learning models to identify wearable-sensor signal patterns known to precede FOG. The most commonly used sensors for FOG detection and prediction are inertial measurement units (IMU) that include an accelerometer, gyroscope and sometimes magnetometer. Currently, the best FOG prediction systems use data collected from multiple sensors on various body locations to develop person-specific models. Multi-sensor systems are more complex and may be challenging to integrate into real-life assistive devices. The ultimate goal of FOG prediction systems is a user-friendly assistive device that can be used by anyone experiencing FOG. To achieve this goal, person-independent models with high FOG prediction performance and a minimal number of conveniently located sensors are needed. The objectives of this thesis were: to develop and evaluate FOG detection and prediction models using IMU and plantar pressure data; determine if event-based or period of gait disruption FOG definitions have better classification performance for FOG detection and prediction; and evaluate FOG prediction models that use a single unilateral plantar pressure insole sensor or bilateral sensors. In this thesis, IMU (accelerometer and gyroscope) and plantar pressure insole sensors were used to collect data from 11 people with FOG while they walked a freeze provoking path. A custom-made synchronization and labeling program was used synchronize the IMU and plantar pressure data and annotate FOG episodes. Data were divided into overlapping 1 s windows with 0.2 s shift between consecutive windows. Time domain, Fourier transform based, and wavelet transform based features were extracted from the data. A total of 861 features were extracted from each of the 71,000 data windows. To evaluate the effectiveness of FOG detection and prediction models using plantar pressure and IMU data features, three feature sets were compared: plantar pressure, IMU, and both plantar pressure and IMU features. Minimum-redundancy maximum-relevance (mRMR) and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or Non-FOG states, wherein the Total-FOG class included windows with data from 2 s before the FOG onset until the end of the FOG episode. The plantar-pressure-only model had the greatest sensitivity, and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, freeze windows, and transition windows between Pre-FOG and FOG). The best model, which used plantar pressure and IMU features, detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Models using both plantar pressure and IMU features performed better than models that used either sensor type alone. Datasets used to train machine learning models often generate ground truth FOG labels based on visual observation of specific lower limb movements (event-based definition) or an overall inability to walk effectively (period of gait disruption based definition). FOG definition ambiguity may affect FOG detection and prediction model performance, especially with respect to multiple FOG in rapid succession. This research examined the effects of defining FOG either as a period of gait disruption (merging successive FOG), or based on an event (no merging), on FOG detection and prediction. Plantar pressure and lower limb acceleration data were used to extract a set of features and train decision tree ensembles. FOG was labeled using an event-based definition. Additional datasets were then produced by merging FOG that occurred in rapid succession. A merging threshold was introduced where FOG that were separated by less than the merging threshold were merged into one episode. FOG detection and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging had little effect on FOG detection model performance; however, for the prediction model, merging resulted in slightly later FOG identification and lower precision. FOG prediction models may benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid succession. Despite the known asymmetry of PD motor symptom manifestation, the difference between the more severely affected side (MSS) and less severely affected side (LSS) is rarely considered in FOG detection and prediction studies. The additional information provided by the MSS or LSS, if any, may be beneficial to FOG prediction models, especially if using a single sensor. To examine the effect of using data from the MSS, LSS, or both limbs, multiple FOG prediction models were trained and compared. Three datasets were created using plantar pressure data from the MSS, LSS, and both sides together. Feature selection was performed, and FOG prediction models were trained using the top 5, 10, 15, 20, 25 or 30 features for each dataset. The best models were the MSS model with 15 features, and the LSS and bilateral features with 5 features. The LSS model reached the highest sensitivity (79.5%) and identified the highest percentage of FOG episodes (94.9%). The MSS model achieved the highest specificity (84.9%) and the lowest false positive (FP) rate (2 FP/walking trial). Overall, the bilateral model was best. The bilateral model had 77.3% sensitivity, 82.9% specificity, and identified 94.3% of FOG episodes an average of 1.1 s before FOG onset. Compared to the bilateral model, the LSS model had a higher false positive rate; however, the bilateral and LSS models were similar in all other evaluation metrics. Therefore, using the LSS model instead of the bilateral model would produce similar FOG prediction performance at the cost of slightly more false positives. Given the advantages of single sensor systems, the increased FP rate may be acceptable. Therefore, a single plantar pressure sensor placed on the LSS could be used to develop a FOG prediction system and produce performance similar to a bilateral system

    Proceedings of the 3rd International Mobile Brain/Body Imaging Conference : Berlin, July 12th to July 14th 2018

    Get PDF
    The 3rd International Mobile Brain/Body Imaging (MoBI) conference in Berlin 2018 brought together researchers from various disciplines interested in understanding the human brain in its natural environment and during active behavior. MoBI is a new imaging modality, employing mobile brain imaging methods like the electroencephalogram (EEG) or near infrared spectroscopy (NIRS) synchronized to motion capture and other data streams to investigate brain activity while participants actively move in and interact with their environment. Mobile Brain / Body Imaging allows to investigate brain dynamics accompanying more natural cognitive and affective processes as it allows the human to interact with the environment without restriction regarding physical movement. Overcoming the movement restrictions of established imaging modalities like functional magnetic resonance tomography (MRI), MoBI can provide new insights into the human brain function in mobile participants. This imaging approach will lead to new insights into the brain functions underlying active behavior and the impact of behavior on brain dynamics and vice versa, it can be used for the development of more robust human-machine interfaces as well as state assessment in mobile humans.DFG, GR2627/10-1, 3rd International MoBI Conference 201

    Afferent information modulates spinal network activity in vitro and in preclinical animal models

    Get PDF
    Primary afferents are responsible for the transmission of peripheral sensory information to the spinal cord. Spinal circuits involved in sensory processing and in motor activity are directly modulated by incoming input conveyed by afferent fibres. Current neurorehabilitation exploits primary afferent information to induce plastic changes within lesioned spinal circuitries. Plasticity and neuromodulation promoted by activity-based interventions are suggested to support both the functional recovery of locomotion and pain relief in subjects with sensorimotor disorders. The present study was aimed at assessing spinal modifications mediated by afferent information. At the beginning of my PhD project, I adopted a simplified in vitro model of isolated spinal cord from the newborn rat. In this preparation, dorsal root (DR) fibres were repetitively activated by delivering trains of electrical stimuli. Responses of dorsal sensory-related and ventral motor-related circuits were assessed by extracellular recordings. I demonstrated that electrostimulation protocols able to activate the spinal CPG for locomotion, induced primary afferent hyperexcitability, as well. Thus, evidence of incoming signals in modulating spinal circuits was provided. Furthermore, a robust sensorimotor interplay was reported to take place within the spinal cord. I further investigated hyperexcitability conditions in a new in vivo model of peripheral neuropathic pain. Adult rats underwent a surgical procedure where the common peroneal nerve was crushed using a calibrated nerve clamp (modified spared nerve injury, mSNI). Thus, primary afferents of the common peroneal nerve were activated through the application of a noxious compression, which presumably elicited ectopic activity constitutively generated in the periphery. One week after surgery, animals were classified into two groups, with (mSNI+) and without (mSNI-) tactile hypersensitivity, based on behavioral tests assessing paw withdrawal threshold. Interestingly, the efficiency of the mSNI in inducing tactile hypersensitivity was halved with respect to the classical SNI model. Moreover, mSNI animals with tactile hypersensitivity (mSNI+) showed an extensive neuroinflammation within the dorsal horn, with activated microglia and astrocytes being significantly increased with respect to mSNI animals without tactile hypersensitivity (mSNI-) and to sham-operated animals. Lastly, RGS4 (regulator of G protein signaling 4) was reported to be enhanced in lumbar dorsal root ganglia (DRGs) and dorsal horn ipsilaterally to the lesion in mSNI+ animals. Thus, a new molecular marker was demonstrated to be involved in tactile hypersensitivity in our preclinical model of mSNI. Lastly, we developed a novel in vitro model of newborn rat, where hindlimbs were functionally connected to a partially dissected spinal cord and passively-driven by a robotic device (Bipedal Induced Kinetic Exercise, BIKE). I aimed at studying whether spinal activity was influenced by afferent signals evoked during passive cycling. I first demonstrated that BIKE could actually evoke an afferent feedback from the periphery. Then, I determined that spinal circuitries were differentially affected by training sessions of different duration. On one side, a short exercise session could not directly activate the locomotor CPG, but was able to transiently facilitate an electrically-induced locomotor-like activity. Moreover, no changes in reflex or spontaneous activity of dorsal and ventral networks were promoted by a short training. On the other side, a long BIKE session caused a loss in facilitation of spinal locomotor networks and a depression in the area of motor reflexes. Furthermore, activity in dorsal circuits was long-term enhanced, with a significant increase in both electrically-evoked and spontaneous antidromic discharges. Thus, the persistence of training-mediated effects was different, with spinal locomotor circuits being only transiently modulated, whereas dorsal activity being strongly and stably enhanced. Motoneurons were also affected by a prolonged training, showing a reduction in membrane resistance and an increase in the frequency of post-synaptic currents (PSCs), with both fast- and slow-decaying synaptic inputs being augmented. Changes in synaptic transmission onto the motoneuron were suggested to be responsible for network effects mediated by passive training. In conclusion, I demonstrated that afferent information might induce changes within the spinal cord, involving both neuronal and glial cells. In particular, spinal networks are affected by incoming peripheral signals, which mediate synaptic, cellular and molecular modifications. Moreover, a strong interplay between dorsal and ventral spinal circuits was also reported. A full comprehension of basic mechanisms underlying sensory-mediated spinal plasticity and bidirectional interactions between functionally different spinal networks might lead to the development of neurorehabilitation strategies which simultaneously promote locomotor recovery and pain relief

    ESCOM 2017 Proceedings

    Get PDF

    Neuroimaging of human motor control in real world scenarios: from lab to urban environment

    Get PDF
    The main goal of this research programme was to explore the neurophysiological correlates of human motor control in real-world scenarios and define mechanism-specific markers that could eventually be employed as targets of novel neurorehabilitation practice. As a result of recent developments in mobile technologies it is now possible to observe subjects' behaviour and monitor neurophysiological activity whilst they perform natural activities freely. Investigations in real-world scenarios would shed new light on mechanisms of human motor control previously not observed in laboratory settings and how they could be exploited to improve rehabilitative interventions for the neurologically impaired. This research programme was focussed on identifying cortical mechanisms involved in both upper- (i.e. reaching) and lower-limb (i.e. locomotion) motor control. Complementary results were obtained by the simultaneous recordings of kinematic, electromyographic and electrocorticographic signals. To study motor control of the upper-limb, a lab­based setup was developed, and the reaching movement of healthy young individuals was observed in both stable and unstable (i.e. external perturbation) situations. Robot-mediated force-field adaptation has the potential to be employed in rehabilitation practice to promote new skills learning and motor recovery. The muscular (i.e. intermuscular couplings) and neural (i.e. spontaneous oscillations and cortico­muscular couplings) indicators of the undergoing adaptation process were all symbolic of adaptive strategies employed during early stages of adaptation. The medial frontal, premotor and supplementary motor regions appeared to be the principal cortical regions promoting adaptive control and force modulation. To study locomotion control, a mobile setup was developed and daily life human activities (i.e. walking while conversing, walking while texting with a smartphone) were investigated outside the lab. Walking in hazardous environments or when simultaneously performing a secondary task has been demonstrated to be challenging for the neurologically impaired. Healthy young adults showed a reduced motor performance when walking in multitasking conditions, during which whole-brain and task-specific neural correlates were observed. Interestingly, the activity of the left posterior parietal cortex was predictive of the level of gait stability across individuals, suggesting a crucial role of this area in gait control and determination of subject specific motor capabilities. In summary, this research programme provided evidence on different cortical mechanisms operative during two specific scenarios for "real­world" motor behaviour in and outside the laboratory-setting in healthy subjects. The results suggested that identification of neuro-muscular indicators of specific motor control mechanisms could be exploited in future "real-world" rehabilitative practice
    corecore