2,508 research outputs found

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Finite time Synchronization of Inertial Memristive Neural Networks with Time Varying Delay

    Get PDF
    Finite time synchronization control of inertial memristor-based neural networks with varying delay is considered. In view of drive and response concept, the sufficient conditions to ensure finite time synchronization issue of inertial memristive neural networks is given. Based on Lyapunov finite time asymptotic theory, a kind of feedback controllers is designed for inertial memristorbased neural networks to realize the finite time synchronization. Based on Lyapunov stability theory, close loop error system can be proved finite time and fixed time stable. Finally, illustrative example is given to illustrate the effectiveness of theoretical results

    Finite-time stabilization for fractional-order inertial neural networks with time varying delays

    Get PDF
    This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results

    Exponential synchronization of complex networks with Markovian jump and mixed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this Letter, we investigate the exponential synchronization problem for an array of N linearly coupled complex networks with Markovian jump and mixed time-delays. The complex network consists of m modes and the network switches from one mode to another according to a Markovian chain with known transition probability. The mixed time-delays are composed of discrete and distributed delays, both of which are mode-dependent. The nonlinearities imbedded with the complex networks are assumed to satisfy the sector condition that is more general than the commonly used Lipschitz condition. By making use of the Kronecker product and the stochastic analysis tool, we propose a novel Lyapunov–Krasovskii functional suitable for handling distributed delays and then show that the addressed synchronization problem is solvable if a set of linear matrix inequalities (LMIs) are feasible. Therefore, a unified LMI approach is developed to establish sufficient conditions for the coupled complex network to be globally exponentially synchronized in the mean square. Note that the LMIs can be easily solved by using the Matlab LMI toolbox and no tuning of parameters is required. A simulation example is provided to demonstrate the usefulness of the main results obtained.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    Fixed-time control of delayed neural networks with impulsive perturbations

    Get PDF
    This paper is concerned with the fixed-time stability of delayed neural networks with impulsive perturbations. By means of inequality analysis technique and Lyapunov function method, some novel fixed-time stability criteria for the addressed neural networks are derived in terms of linear matrix inequalities (LMIs). The settling time can be estimated without depending on any initial conditions but only on the designed controllers. In addition, two different controllers are designed for the impulsive delayed neural networks. Moreover, each controller involves three parts, in which each part has different role in the stabilization of the addressed neural networks. Finally, two numerical examples are provided to illustrate the effectiveness of the theoretical analysis
    • …
    corecore