1,397 research outputs found

    Fault tolerant architectures for integrated aircraft electronics systems

    Get PDF
    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered

    Evaluation of fault-tolerant parallel-processor architectures over long space missions

    Get PDF
    The impact of a five year space mission environment on fault-tolerant parallel processor architectures is examined. The target application is a Strategic Defense Initiative (SDI) satellite requiring 256 parallel processors to provide the computation throughput. The reliability requirements are that the system still be operational after five years with .99 probability and that the probability of system failure during one-half hour of full operation be less than 10(-7). The fault tolerance features an architecture must possess to meet these reliability requirements are presented, many potential architectures are briefly evaluated, and one candidate architecture, the Charles Stark Draper Laboratory's Fault-Tolerant Parallel Processor (FTPP) is evaluated in detail. A methodology for designing a preliminary system configuration to meet the reliability and performance requirements of the mission is then presented and demonstrated by designing an FTPP configuration

    Performance and evaluation of real-time multicomputer control systems

    Get PDF
    Three experiments on fault tolerant multiprocessors (FTMP) were begun. They are: (1) measurement of fault latency in FTMP; (2) validation and analysis of FTMP synchronization protocols; and investigation of error propagation in FTMP

    Attack-Tolerant Time-Synchronization in Wireless Sensor Networks

    Get PDF
    Abstract—Achieving secure time-synchronization in wireless sensor networks (WSNs) is a challenging, but very important problem that has not yet been addressed effectively. This pa-per proposes an Attack-tolerant Time-Synchronization Protocol (ATSP) in which sensor nodes cooperate to safeguard the time-synchronization service against malicious attacks. ATSP exploits the high temporal correlation existing among adjacent nodes in a WSN to achieve (1) adaptive management of the profile of each sensor’s normal behavior, (2) distributed, cooperative detection of falsified clock values advertised by attackers or compromised nodes, and (3) significant improvement of syn-chronization accuracy and stability by effectively compensating the clock drifts with the calibrated clock. To reduce the risk of losing time-synchronization due to attacks on the reference node, ATSP utilizes distributed, mutual synchronization and confines the impact of attacks to a local area (where attacks took place). Furthermore, by maintaining an accurate profile of sensors’ normal synchronization behaviors, ATSP detects various critical attacks while incurring only reasonable communication and computation overheads, making ATSP attack-tolerant and ideal for resource-constrained WSNs. I

    Self-stabilizing byzantine-fault-tolerant clock synchronization system and method

    Get PDF
    Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted

    06371 Abstracts Collection -- From Security to Dependability

    Get PDF
    From 10.09.06 to 15.09.06, the Dagstuhl Seminar 06371 ``From Security to Dependability\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore