
mu uuuu ui iiui imi uui uiii lull iuu mil uui umi uu uii mi
(12) United States Patent

Malekpour

(54) SELF-STABILIZING
BYZANTINE-FAULT-TOLERANT CLOCK
SYNCHRONIZATION SYSTEM AND
METHOD

(75) Inventor: Mahyar R. Malekpour, Hampton, VA
(US)

(73) Assignee: The United States of America, as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: 	Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 615 days.

(21) Appl. No.: 12/429,603

(22) Filed: 	Apr. 24, 2009

(65) 	 Prior Publication Data

US 2010/0019811 Al 	Jan. 28, 2010

Related U.S. Application Data

(60) Provisional application No. 61/056,537, filed on May
28, 2008.

(51) Int. Cl.
G06F 1112 	 (2006.01)
G06F 1104 	 (2006.01)
G06F 15116 	(2006.01)

(52) U.S. Cl 713/400; 713/375; 709/248
(58) Field of Classification Search None

See application file for complete search history.

(56) 	 References Cited

U.S. PATENT DOCUMENTS

	

4,866,606 A 	9/1989 Kopetz

	

4,979,191 A 	12/1990 Bond et al.

	

4,984,241 A 	1/1991 Truong

(lo) Patent No.: 	US 8,255,732 B2
(45) Date of Patent: 	Aug. 28, 2012

	

5,041,966 A
	

8/1991 Nakai et al 713/375

	

5,249,206 A
	

9/1993 Appelbaum et al.

	

5,295,257 A
	

3/1994 Berkovich et al.

	

5,377,205 A
	

12/1994 Shi

	

5,377,206 A
	

12/1994 Smith

	

5,557,623 A
	

9/1996 Discoll

	

5,600,784 A
	

2/1997 Bissett et al.

	

5,907,685 A
	

5/1999 Douceur

	

5,956,474 A
	

9/1999 Bissett et al.

	

5,964,846 A
	

10/1999 Berry et al.

	

6,178,522 B1
	

1/2001 Zhou et al.

	

6,349,391 B1
	

2/2002 Petnan et al.

	

6,567,927 B1
	

5/2003 Brinkmann

	

6,671,821 B1
	

12/2003 Castro et al.

	

7,023,884 B2
	

4/2006 Chuah et al.

	

7,124,316 B2
	

10/2006 Kopetz et al.

	

7,257,133 B2
	

8/2007 Jeske et al.

(Continued)

OTHER PUBLICATIONS

Mahyar R. Malekpour, "A Self-Stabilizing Byzantine-Fault-Tolerant

Clock Synchronization Protocol", NASA LaRC Abstract, May 23,

2008, pp. 1-14.

(Continued)

Primary Examiner Ji H Bae
(74) Attorney, Agent, orFirm Andrea Z. Warmbier; Helen
M. Galus

(57) 	 ABSTRACT

Systems and methods for rapid Byzantine-fault-tolerant self-
stabilizing clock synchronization are provided. The systems
and methods are based on a protocol comprising a state
machine and a set of monitors that execute once every local
oscillator tick. The protocol is independent of specific appli-
cation specific requirements. The faults are assumed to be
arbitrary and/or malicious. All timing measures of variables
are based on the node's local clock and thus no central clock
or externally generated pulse is used. Instances of the proto-
col are shown to tolerate bursts of transient failures and deter-
ministically converge with a linear convergence time with
respect to the synchronization period as predicted.

34 Claims, 6 Drawing Sheets

Norte i

203
202

From N1
Monitart

•

From N ,_t
Monitor i.t

•

E-

From N j, t
Monitor i+1

From N k
•

Monitor k

To Other

State Nodes

Machine

https://ntrs.nasa.gov/search.jsp?R=20120013570 2019-08-30T21:49:30+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10569856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 8,255,732 B2
Page 2

U.S. PATENT DOCUMENTS

7,260,652 132 8/2007 Fuehrer et al.
7,263,630 132 8/2007 Sailer
7,328,235 132 2/2008 Mori et al.
7,509,513 132 * 3/2009 Toillon et al......
7,792,015 132 * 9/2010 Malekpour
7,912,094 132 * 3/2011 Hall et al.
7,991,101 132 * 8/2011 Kocaman et al. .

2002/0129087 Al 9/2002 Cachin et al.
2004/0205372 Al 10/2004 Moser et al.
2005/0089131 Al 4/2005 Howell et al.
2006/0109868 Al 5/2006 Schopp

OTHER PUBLICATIONS

Mahyar R. Malekpour, "A Self-Stabilizing Byzantine-Fault-Tolerant
Clock Synchronization Protocol", NASA LaRC Abstract, Nov. 28,

	

713/375 	
2007, pp. 1-14.

	

...... 370/216 	
Mahyar R. Malekpour, "A Self-Stabilizing Byzantine-Fault-Tolerant

	

...... 370/508 	
Clock Synchronization Protocol", NASA TM-2008, Jan. 2008, pp.

	

375/359 	
1-42.
H. Koptez. "Real-Time Systems. Design Principles for Distributed
Embedded Applications," 1997, p. 47 Kluwer Academic Publishers,
United States of America.

* cited by examiner

U.S. Patent 	Aug. 28, 2012
	

Sheet 1 of 6 	 US 8,255,732 B2

to 	 tQ + D
	

to +D+d

D
	

d

Fig. 1

U.S. Patent 	Aug. 28, 2012 	Sheet 2 of 6 	 US 8,255,732 B2

Fig. 2

U.S. Patent 	Aug. 28, 2012 	Sheet 3 of 6 	 US 8,255,732 B2

liv i 	 VVI-r 	 %JW4-

Fig. 3

U.S. Patent 	Aug. 28, 2012 	Sheet 4 of 6 	 US 8,255,732 B2

Maintain
Restore 	 , F-A 	 L--)► Time

Y

StateTimer

L.ocaETimer

APrecision/71
Sync 	 Sync

Outgoing
Message

Fig. 4

U.S. Patent 	Aug. 28, 2012 	Sheet 5 of 6 	 US 8,255,732 B2

Protocol consists of a state machine and a set of monitors which execute
once every local oscillator tick. 	 ,

r

 501

Monitor:
ease (incoming message from the corresponding node)
(Resync:

if lnvalidSync(}
Invalidate the message

else
Validate and store the message

Other:
Do nothing

I H case

ConsumeMessage()

503
	

504 	iC
502

Node:
case (state of the node)
(Restore

if TimeOutRestore()
Reset StateTimer,
Go to Maintain state.

Maintain:

if Time Out Maintain() or Retry()
Transmit Sync message,
Reset StateTimer,
Go to Restore state.

else 	 else
if Trans itrryConditionsMet(} 	if TimeOutGammaTimer(j

Reset StateTimer, 	 if (StateTimer = rAprecisionty)
Go to Maintain state. 	 Reset Focal Timer.,

Stay in Maintain state.

else 	 else
Stay in Restore state. 	I 	Stay in Maintain state.

) H case

Fig. 5

U.S. Patent 	Aug. 28, 2012 	Sheet 6 of 6
	

US 8,255,732 B2

Any State

601

Coarse Synchronization

i4recision too iarge9

	No

Yes
	

602

Fine Synchronization

60

Fig. 6

US 8,255,732 B2
1

SELF-STABILIZING
BYZANTINE-FAULT-TOLERANT CLOCK

SYNCHRONIZATION SYSTEM AND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the filing date of U.S.
Provisional Patent Application Ser. No. 61/056,537 filed May
28, 2008, the entire disclosure of which is incorporated herein
by reference.

ORIGIN OF THE INVENTION

The invention was made in part by employees of the United
States Government and may be manufactured and used by or
for the Government of the United States of America for gov-
ernmental purposes without the payment of any royalties
thereon or therefor.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention is in the field of real-time systems

and more particularly concerns systems and methods for syn-
chronizing clocks among a plurality of distributed nodes in a
manner that is capable of reliably self-stabilizing even in the
presence of nodes exhibiting arbitrary Byzantine fault-prone
behavior.

2. Description of the Related Art
A major problem in operating with any distributed system

is establishing a consistent global view of the system from the
local perspective of the participants. A basic aspect of arriving
at such consistency is the ability to synchronize clocks,
Numerous methods have been devised for clock synchroni-
zation, and for achieving convergence in resynchronization.
The worst case scenario for synchronization is where the
nodes to be synchronized are subject to "Byzantine" faults
that is, where distributed systems experience arbitrary and/or
malicious faults during the execution of algorithms, includ-
ing, among others, "send and omission failures". See gener-
ally H. Kopetz, "Real-Time Systems, Design Principles for
Distributed embedded Applications" (Kluwer Academic
Publishers, 1997) (hereinafter "Kopetz 1997"). Known sys-
tems have not been able to guarantee convergence determin-
istically, scalably, and in a self-stabilizing manner in the
presence of Byzantine faults, without limiting assumptions
about initial states, use of a central clock, or relying on an
externally-generated pulse system.

SUMMARY OF THE INVENTION

It is an object of the invention to provide systems and
methods for synchronizing distributed clocks that self-stabi-
lize from any state; do not rely on any assumptions about the
initial state of the clocks, and do not require a central clock or
an externally-generated pulse system, but which converge
deterministically; are scalable; and/or self-stabilize in a short
amount of time, even with the inclusion of nodes exhibiting
Byzantine faults.

It is a further object of the invention to provide systems and
methods for rapid Byzantine-fault-tolerant synchronization
that tolerates bursts of transient failures, and deterministically
converges with a linear convergence time with respect to the
self-stabilization period.

2
It is another object of the invention to provide systems and

methods for rapid Byzantine-fault-tolerant synchronization
that are scalable with respect to the fundamental parameters
of number of nodes (K), minimum event-response delay (D)

5 and network imprecision (d).
In at least one embodiment, the foregoing objects are

achieved by the use, in systems and methods for distributed
clock synchronization, of a protocol comprising a state
machine and a set of monitors that execute once every local

10 oscillator tick. This protocol is independent of application-
specific requirements and, thus, is focused only on clock
synchronization of a system in the presence of Byzantine
faults and after the cause of transient faults has dissipated.
Instances of the protocol are proven to tolerate bursts of

15 transient failures and deterministically converge with a linear
convergence time with respect to the synchronization period
as predicted. This protocol does not rely on any assumptions
about the initial state of the system and no assumptions are
made about the internal status of the nodes, the monitors, and

20 the system as a whole) thus making the weakest assumptions
and, therefore, producing the strongest results. All timing
measures of variables are based on the node's local clock and
thus no central clock or externally generated pulse is used.
The Byzantine faulty behavior modeled here is a node with

25 arbitrary and/or malicious behavior. The Byzantine faulty
node is allowed to influence other nodes at every clock tick
and at all times. The only constraint is that the interactions are
restricted to defined interfaces.

Other aspects and advantages of the invention will be
30 apparent from the accompanying drawings, and the detailed

description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

35 	For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to the
following description taken in conjunction with the accom-
panying drawings, wherein like reference numerals represent
like parts, in which:

40 	FIG. 1 is a timeline depiction of event response delay and
network imprecision.

FIG. 2 is a block diagram for a node in accordance with one
embodiment of the invention, showing its monitors and state
machine.

45 	FIG. 3 is a state machine diagram of an exemplary node
state machine.

FIG. 4 is a timeline depiction of the activities of a good
node during steady state.

FIG. 5 shows three inter-related blocks of pseudocode,
50 representing implementations of the components of a self-

stabilization protocol in accordance with one embodiment of
the invention.

FIG. 6 is a flow chart showing the interaction of coarse and
fine level protocols in another embodiment of the invention.

55

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The following is a detailed description of certain embodi-
60 ments ofthe invention chosento provide illustrative examples

of how it may advantageously be implemented. The scope of
the invention is not limited to the specific embodiments
described, nor is it limited by any specific implementation,
composition, embodiment or characterization depicted in the

65 accompanying drawings or stated or described in the inven-
tion summary or the abstract. In addition, it should be noted
that this disclosure describes a number of methods that each

US 8,255,732 B2
3

comprise a plurality of steps. Nothing contained in this writ-
ten description should be understood to imply any necessary
order of steps in such methods, other than as specified by
express claim language.

1. System Description
The present disclosure is primarily directed at one advan-

tageous embodiment, with a number of suggested alternatives
and extensions. In this advantageous embodiment, the under-
lying topology considered is a network of K>3F+1 nodes that
communicate by exchanging messages through a set of com-
munication channels. A maximum of F Byzantine faulty
nodes are assumed to be present in the system, where F>0.
The Byzantine nodes may be modeled as nodes with arbitrary
and/or malicious behavior that may influence other nodes at
every clock tick and at all times, The communication chan-
nels are assumed to connect a set of source nodes to a set of
destination nodes such that the source of a given message is
distinctly identifiable from other sources of messages, The
minimum number of good nodes in the system, G, is given by
G=K—F nodes. Let K, represent the set of good nodes. The
nodes communicate with each other by exchanging broadcast
messages. Broadcast of a message to all other nodes is real-
izedby transmitting the message to all other nodes at the same
time. The source of a message is assumed to be uniquely
identifiable. The communication network does not guarantee
any relative order of arrival of a broadcast message at the
receiving nodes. To paraphrase Kopetz [Kopetz 1997], a con-
sistent delivery order of a set of messages does not necessarily
reflect the temporal or causal order of the events.

The symbols used herein are defined as they are intro-
duced. In addition, a table briefly describing each symbol is
provided at the end of this disclosure.

Each node is driven by an independent local physical oscil-
lator. The oscillators of good nodes have a known bounded
drift rate, O-p«l, with respect to real time. For the remain-
der of this disclosure, all references to time are withrespect to
the nominal tick, where p -0, and are simply referred to as
clock ticks.

Each node has two primary logical time clocks, StateTimer
and LocalTimer, which locally keep track of the passage of
time as indicated by the physical oscillator. In the context of
this disclosure, all references to clock synchronization and
self-stabilization of the system are with respect to the
StateTimer and the LocalTimer of the nodes. There is neither
a central clock nor an externally generated global pulse. The
communication channels and the nodes can behave arbi-
trarily, provided that eventually the system adheres to the
system assumptions (see Section 2.5 below).

FIG.1 is a time line showing event-response delay, D, and
network imprecision, d. The latency of interdependent com-
munications between the nodes is expressed in terms of the
minimum event-response delay, D, and network imprecision,
d. As depicted in FIG. 1, a message transmitted by node N at
real time to is expected to arrive at all destination nodes N , be
processed, and subsequent messages generated by N within
the time interval of [t o +D, to+D+d] for all N eK,. Communi-
cation between independently clocked nodes is inherently
imprecise. The network imprecision, d, is the maximum time
difference between all good receivers, N , of a message from
N with respect to real time. The imprecision is due to the drift
of the clocks with respect to real time, jitter, discretization
error, temperature effects and differences in the lengths of the
physical communication medium. These two parameters are
assumed to be bounded such that D? 1 and d?0 and both have
values with units of real time nominal tick.

4
1.1 Gamma (y)
The time line is partitioned into a sequence of equally-

spaced intervals measured by the local oscillator since the
node transitioned into another state. Such an interval, y, is

5 expressed in terms of the minimum event-response delay, D,
and network imprecision, d, and is constrained such that
y?(D+d), and is one or more local clock ticks. Therefore, the
time-driven activities take place at equally-spaced intervals
measured by the local oscillator since the node entered a new

10 state. Unless stated otherwise, all time-dependent parameters
of this protocol are measured locally and expressed as func-
tions of y. In contrast, the event-driven activities are indepen-
dent of y and, thus, take place immediately.

2. Protocol Description
15 	When the system is stabilized, it is said to be in the steady

state. In order to achieve self-stabilization, the nodes commu-
nicate by exchanging a self-stabilization message labeled
Sync. The Sync message is transmitted either as a result of a
resynchronization timeout, or when a node determines that

20 sufficient number of other nodes have engaged in the resyn-
chronization process.

Four fundamental parameters characterize the self-stabili-
zation protocol, namely the topology, K, D, and d. The maxi-
mum number of faulty nodes, F, the minimum number of

25 good nodes, G and the remaining parameters that are subse-
quently presented are derived parameters and are based on
these fundamental parameters. One such derived parameter is
y, and another is TR , which is used as a threshold in connection
with the Sync messages.

30 	2.1 Message Validity
Since only one self-stabilization message) namely Sync, is

required for the proper operation of this protocol, a single
binary value is sufficient to represent it. As a result, receiving
such a message is indicative of its validity in the value

35 domain. The protocol works when the timing requirements of
the received messages from all good nodes at all other good
nodes are not violated. The time interval between any two
consecutive Sync messages from a node is denoted by Ass,
and the shortest such interval is denoted by Ass,mi,,. At the

4o receiving nodes, the following definitions hold:
A Sync message from a given source is valid if it arrives at

or after Ass,min of its previous valid Sync message.
While in the Maintain state, a Sync message from a given

source remains valid for the duration of that state.
45 	While in the Restore state, a Sync message from a given

source remains valid for the duration of one y.
2.2 The Monitor
In one embodiment, each node has a set of monitors and a

state machine. FIG. 2 is a block diagram showing i th node, N,,
50 with its monitors 201 etc. and state machine 202 (discussed in

Section 2.3 below). Inputs 203 etc. come from other nodes, to
each monitor, and output 204 goes to other nodes via broad-
cast.

The messages to be delivered to the destination nodes are
55 deposited on communication channels. To closely observe

the behavior of other nodes, a node employs (K-1) monitors,
one monitor for each source of incoming messages as shown
in FIG. 2. Anode neither uses nor monitors its own messages.
The distributed observation of other nodes localizes error

6o detection of incoming messages to their corresponding moni-
tors, and allows for modularization and distribution of the
self-stabilization protocol process within a node. A monitor
keeps track of the activities of its corresponding source node.
Specifically, a monitor reads, evaluates, time stamps, vali-

65 dates, and stores only the last valid message it receives from
that node. A monitor maintains a logical timer, MessageT-
imer, by incrementing it once per local clock tick. This timer

US 8,255,732 B2
5

is reset upon receiving a valid Sync message. A monitor also
disposes retained valid messages as appropriate.

2.3 The State Machine
FIG. 3 is a state transition diagram showing the node state

machine. There are two states, Restore state 301 and Maintain
state 302. Edge 303 relates to when a Sync message received
in the Restore state (the system stays in the Restore state as
explained below, because transition out of the Restore state
depends on meeting "transitory conditions"). Edge 304 is the
transition from the Maintain state to the Restore state, show-
ing a Sync message being sent in that event (as explained
below).

The assessment results of the monitored nodes are utilized
by the node in the self-stabilization process. The node com-
prises a state machine and a set of (K-1) monitors. The state
machine has two states, Restore (R) and Maintain (M), that
reflect the current state of the node in the system as shown in
FIG. 3. The state machine describes the behavior of the node,
N, utilizing assessment results from its monitors, M, ...
M _ 1 , Mz+1 ... MK as shown in FIG. 2, where M is the monitor
for the corresponding node N , . In addition to the behavior of
its corresponding source node, a monitor's internal status is
influenced by the current state of the node's state machine.
When the state machine transitions to the Restore state the
monitors update their internal status as appropriate.

The transitory conditions enable the node to migrate from
the Restore state to the Maintain state. Although during the
self-stabilization process a node may also transition from the
Restore state to the Maintain state upon a timeout, during
steady state, such a time-out is indicative of an abnormal
behavior. Therefore, the transitory conditions are defined
with respect to the steady state where such time-outs do not
occur. The transitory delay is the length of time a node stays
in the Restore state. The minimum required duration for the
transitory delay is denoted by TD_ ,, and the maximum dura-
tion of the transitory delay by TD_,,. The TD_ ,, is a derived
parameter and a function of F. For the fully connected topol-
ogy considered here, the transitory conditions are defined as
follows.

1. The node has remained in the Restore state for at least
TD_ ,, since it entered the Restore state, where
TDm n 2, for F=O, or
TDm n 2F, for F>0, and

2. One y has passed since the arrival of the last validSync
message.

The maximum duration of the transitory delay, TD__, is
dependent on the number of additional valid Sync messages
received and the drift rate p. The upper bound for TD__
during steady state is given by TD m,,— A,_,,9LO„+(F+2)•y),
where Ap_,,SLO ,, also referred to as synchronization precision,
is the guaranteed upper bound on the maximum separation
between the LocalTimers of any two good nodes.

In the Restore state, the node will either meet the transitory
conditions and transition to the Maintain state, or remain in
the Restore state for a predetermined maximum duration until
it times out and then transition to the Maintain state. In the
Maintain state, a node will either remain in the Maintain state
for a predetermined maximum duration until it times out and
transitions to the Restore state, or transition to the Restore
state when TR other nodes have transitioned out of the Main-
tain state. The node transmits a Sync message when transi-
tioning to the Restore state.

In FIG. 4 the transitions of a good node to the Restore state
and then from the Restore state to the Maintain state (during
steady state) are depicted along a timeline of activities of the
node. A Sync message is transmitted as the node transitions
from the Restore state to the Maintain state. Activities of the

6
StateTimer and LocalTimer of the node as it transitions
between different states are also depicted in this figure.

Due to the inherent drift of the clocks of the good nodes,
they need to be periodically resynchronized even if they start

5 in perfect synchrony with respect to each other. The periodic
synchronization during steady state is referred to as the resyn-
chronization process, whereby all good nodes transition to the
Restore state and then synchronously to the Maintain state.
The resynchronization process begins when the first good

io node transitions to the Restore state and ends after the last
good node transitions to the Maintain state.

The synchronization period is defined as the maximum
time interval (during steady state) that a good node engages in
the resynchronization process. The synchronization period

15 depends on the maximum durations of both states of the
node's state machine. The maximum duration for the Restore
state is denoted by PR, and the maximum duration for the
Maintain state is denoted by PM where PR and PM are
expressed in terms of y. The length of time a good node stays

20 in the Restore state is denoted by LR . During steady state LR
is always less than PR . The length of time a good node stays in
the Maintain state is denoted by LM. The effective synchro-
nization period, PA,tuat, is the time interval (during steady
state) between the last two consecutive resets of the Local-

25 Timer of a good node in a stabilized system, where
PAct,,Z L'R +L'MGPR +PM.

The time interval between any two consecutive Sync mes-
sages from a node is denoted by A SS . The shortest such inter-
val is denoted by A,,,_ ,,, and it follows that A,,,_,, —

30 (TD_,,•y+l) clock ticks.
A node keeps track of time by incrementing its logical time

clock StateTimer once every y. After the StateTimer reaches
PR or PM depending on the current state of the node, the node
times out, resets the StateTimer, and transitions to the other

35 state. If the node was in the Maintain state it transmits a new
Sync message, The current value of this timer reflects the
duration of the current state of the node.

This protocol does not maintain a history of past behavior
of the nodes. All such determinations about the health status

40 of the nodes in the system are assumed to be done by higher
level mechanisms.

This protocol is expected to be used as the fundamental
mechanism in bringing and maintaining a system within a
known synchronization precision bound. Therefore, the pro-

45 tocol has to properly filter out inherent oscillations in the
StateTimer during the resynchronization process as depicted
in FIG. 4. This issue is resolved by using the LocalTimer in
the protocol. The logical time clock LocalTimer is incre-
mented once every local clock tick and is reset either when it

5o reaches its maximum allowed value or when the node has
transitioned to the Maintain state and remained in that state
for ResetLocalTimerAt local clock ticks, where ResetLocal-
TimerAt is constrained by the following inequality:

55 	[Ar,-eCZSZO„/yl ~ResetLocalTimerAt~PAI— [Ap..j j „/yj 	 (1)

ResetLocalTimerAt can be given any value in its range as
specified in inequality (1). However, its specific value must be
the same at all good nodes. We chose the earliest such value,
ResetLocalTlmerAt=[Ap_,,SLO„/yI, to reset the LocalTimer of

6o all good nodes. Any value greater than [AP,,,,,,,,„lyl will
prolong the convergence time.

The LocalTimer is intended to be used by higher level
protocols and must be managed properly to provide the
desired behavior. The LocalTimer is also used in assessing the

65 state of the system in the resynchronization process and is
bounded by P, where P=PR +PM. During stead state, the value
of LocalTimer is always less than P.

US 8,255,732 B2
7

2.4 Protocol Functions
The functions used in this protocol are described in this

section.
The function InvalidSync() is used by the monitors. This

function determines whether a received Sync message is
invalid. When this function returns a true value, it indicates
that an unexpected behavior by the corresponding source
node has been detected.

The function ConsumeMessageO is used by the monitors.
When the host node is in the Restore state, the monitor invali-
dates the stored Sync message after it has been kept for y.

The Retry() function determines if at least T R other nodes
have transitioned out of the Maintain state, where T, -F+1.
When at least TR valid Sync messages from as many nodes
have been received, this function returns a true value indicat-
ing that at least one good node has transitioned to the Restore
state. This function is used to transition from the Maintain
state to the Restore state.

The TransitoryConditionsMet() function determines
proper timing of the transition from the Restore state to the
Maintain state. This function keeps track of the passage of
time by monitoring StateTimer and determines if the node has
been in the Restore state for at least TD_,,. It returns a true
value when the transitory conditions are met.

The TimeOutRestore() function uses P R as a boundary
value and asserts a timeout condition when the value of the
StateTimer has reached P R . Such timeout triggers the node to
transition to the Maintain state.

The TimeOutMaintain() function uses P M as a boundary
value and asserts a timeout condition when the value of the
StateTimer has reached P M. Such timeout triggers the node to
reengage in another round of synchronization. This function
is used when the node is in the Maintain state.

In addition to the above functions, the state machine uti-
lizes the TimeoutGammaTimer() function. This function is
used to regulate node activities at the y boundaries. It main-
tains a GammaTimer by incrementing it once per local clock
tick and once it reaches the duration of y, it is reset and the
function returns a true value.

2.5 System Assumptions
The system assumptions are defined as follows.
1. The cause of transient faults has dissipated.
2. All good nodes actively participate in the self-stabiliza-

tion process and correctly execute the protocol.
3. At most F of the nodes remain faulty.
4. The source of a message is distinctly identifiable by the

receivers from other sources of messages.
5. A message sent by a good node will be received and

processed by all other good nodes within y, where
y? (D+d).

6. The initial values of the state and all variables of a node
can be set to any arbitrary value within their correspond-
ing range. (In an implementation, it is expected that
some local capabilities exist to enforce type consistency
for all variables.)

2.6 The Self-Stabilizing Clock Synchronization Problem
To simplify the presentation of this protocol, it is assumed

that all time references are with respect to an initial real time
t0, where t0-0 when the system assumptions are satisfied, and
for all t>tO the system operates within the system assump-
tions. Let

C be the bound on the maximum convergence time,

ALoeaz,mer(t), for real time t, be the maximum difference of
values of the local timers of any two good nodes N, and
N. , where N , , N EK,, and K, is the set of all good nodes,
and

8
Ap_,iSLO ,, also referred to as self-stabilization or synchro-

nization precision, be the guaranteed upper bound on the
maximum separation between the local timers of any
two good nodes N, and Nj in the presence of a maximum

5 	of F faulty nodes, where N i, NjEKG .
A good node N, resets its variable LocalTimer , periodically

but at different points in time than other good nodes. The
difference of local timers of all good nodes at time t, ALoear
nmer(t), is determined by the following equation while recog-

io nizing the variations in the values of the LocalTimer , across
all good nodes.

4LocaZ7meY (t)—in((LocalTimerm_(t)—LocalTimer_,
(t)), (LocalTimerm_(t—r)—LocalTimerm,,,(t—r))),

15 where,

r=f APree=s=on1Yl

LocalTimermin(x)=min(LocalTimer (x)),
LocalTimerm_(x)=max(LocalTimer (x)), and
there exist C and Ap—ision such that:

20 	1. Convergence: ALo_,,_ r(t) ~__APreeision
2. Closure: Vt?C, AL_Mmer(t) ~_-APreeision
3. Congruence: `dNj, NjEKG, Vt?C, LocalTimer (t)-0—N,

and N. are in the Maintain state.
The values of C, AP,, sion (after an elapsed time of P), and

25 the maximum value for LocalTimer, P, are determined to be:

C— (2PR+PM)-y

Ap_j,jo„ (3F-1).y—D+A, f

30
P PR+PMr

PM»PRI

where the amount of drift from the initial precision is given by
35 	

oD f((1 +P)- li(1+P))P -y.

Note that since P>(h)PR and since the LocalTimer is reset
after reaching P (worst case wraparound), a trivial solution is
not possible.

40 	3. A Self-Stabilizing Byzantine-Fault-Tolerant Clock Syn-
chronization Protocol

The presented protocol is described in FIG. 5 and com-
prises a state machine and a set of monitors that execute once
every local oscillator tick.

45 	The semantics of the pseudocode in FIG. 5 are as follows:
Indentation is used to show a block of sequential state-

ments.
Commas (,) are used to separate sequential statements.
A period (.) is used to end a statement.

50 A period combined with a comma (.,) is used to mark the
end of a statement and at the same time to separate it
from other sequential statements.

The operational steps for each monitor 501 are:
1. if there is an incoming message from the node corre-

55 	sponding to the monitor:
(a) determining if the message is a valid Sync message;
(b) if the message is a valid Sync message, validating

and storing the message;
(c) if the message is not a valid Sync message, invalidat-

60 	ing the message;
2. otherwise, if there is no such message, doing nothing
With regard to the state machine 502, for the Restore state

503, the protocol steps are:
1. determining if the node has timed out in the Restore

65 	state;
2. if the node has timed out in the Restore state,

resetting the StateTimer; and

US 8,255,732 B2
9

changing the machine state for the node to the Maintain
state;

3. if the node has not timed out in the Restore state,
determining if transitory conditions are met (i.e., that (a)

the node has remained in the Restore state , since last
entering that state, for a period equal to or greater than
two StateTimer ticks, where the number of said faulty
nodes is zero, or two times the number of faulty nodes,
where the number of faulty nodes is greater than zero,
and (b) a period of at least one y has passed since the
arrival of the last valid Sync message);

if the transitory conditions are met,
resetting the StateTimer;
changing the machine state for the node to the Main-

tain state;
if the transitory conditions are not met,

keeping the machine state for the node in the Restore
state;

4. else (if the node has not timed out in the Restore state),
keeping the machine state for the node in the Restore

state;
For the Maintain state 504, the protocol steps are:
1. if either (a) the StateTimer has exceeded P M, or (b) the

number of valid Sync messages received from other
nodes is at least one more than the number of faulty
nodes,
(i) broadcasting a Sync message to all of said other

nodes;
(ii) resetting the StateTimer clock;
(iii) changing the machine state for the node to the

Restore state;
2. else (if neither (a) the StateTimer has exceeded P M nor

(b) the number of valid Sync messages received from
other nodes is at least one more than the number of faulty
nodes, and (c) the GammaTimer clock has reached the
duration of y),
(a) if the value of the StateTimer clock equals ~ AP eCLSLO l

y], resetting said LocalTimer clock;
(b) keeping the machine state for the node in the Main-

tain state;
3. else (if neither (a) the StateTimer has exceeded a prede-

termined maximum interval , nor (b) the number of valid
Sync messages received from other nodes is at least one
more than the number of faulty nodes, and (c) the Gam-
maTimer clock has not reached the duration of y),
keeping the machine state for the node in the Maintain

state.
To avoid introducing oscillations in the system, P R has to be

sufficiently large to allow time to reset the LocalTimer after
the node transitions to the Maintain state. In other words,
PR >AP,,,,,,,,„+Latest to Maintain state (LM)+A p_,,SLO11 .

If 01A D,f <D,

PR>7F-1.

If AD,f-D,

PR>7F+I.

If 2D>AD f >D,

PR>7F+3.

In general, and for all F>0 and K?3F+1, and to prevent an
early timeout , PR must be constrained in accordance with the
previous paragraph . The maximum duration for the Maintain
state, PM is typically much larger than PR . Thus, Phis derived
to be Pm?PR .

10
Since this protocol self-stabilizes from any state , initializa-

tion and/or reintegration are not treated as special cases.
Therefore, a reintegrating node will always be admitted to
participate in the self -stabilization process as soon as it

5 becomes active.
Since PA,,,,,<PR+PM and typically Phis much greater than

PR the maximum convergence time, C, can be approximated
to C—P. Therefore, C is a linear function of P, and, similarly, C
is a linear function of PM.

IO 	A model of this protocol has been mechanically verified
using the SMV state machine language where the entire state
space is examined, and proven to self-stabilize in the presence
of one arbitrary faulty node.

15 	4. Protocol Overhead
Since only one message , namely Sync, is required for the

operation of this protocol, therefore, during steady state the
protocol overhead is at most (depending on the amount of
AD f,) two messages per P. Also, since only one message is

20 needed , a single binary value is sufficient to represent it.
5. Applications
The self-stabilizing protocol disclosed herein has many

practical applications . Embedded systems, distributed pro-
cess control, synchronization, inherent fault tolerance which

25 also includes Byzantine agreement, computer networks, the
Internet, Internet applications , security, safety , automotive,
aircraft , wired and wireless telecommunications, graph theo-
retic problems, leader election , and time division multiple
access (TDMA), are a few examples. These are some of the

30 many areas of distributed systems that can use self-stabiliza-
tion in order to design more robust distributed systems.

6. Achieving Tighter Precision
Since the time-driven self-stabilization activities take place

at y intervals, if y, and hence Ap_,,SLO ,, are larger than the
35 desired precision, the system is said to be coarsely synchro-

nized. Otherwise, the system is said to be finely synchronized.
If the granularity provided by the self-stabilization precision
is coarser than desired, a higher synchronization precision
can be achieved in a two step process. First, a system from any

40 initial state has to be coarsely synchronized and guaranteed
that the system remains coarsely synchronized and operates
within a known precision, AP,, isio11 . The second step, in con-
junction with the coarse synchronization protocol, is to utilize
a proven protocol that is based on the initial synchrony

45 assumptions to achieve optimum precision of the synchro-
nized system as depicted in FIG. 6.

As depicted in FIG. 6, the coarse synchronization protocol
601 initiates the start of the fine synchronization protocol 603
if a tighter precision of the system is desired (602). The coarse

50 synchronization protocol maintains self-stabilization of the
system while the fine synchronization protocol increases the
precision of the system.

The necessary conditions to initiate the fine synchroniza-
tion protocol are that convergence has to be achieved and all

55 good nodes have to be in the Maintain state. It follows from
Theorem Congruence that upon convergence all good nodes
are in the Maintain state. Thus, examination of the current
state as well as the value of the StateTimer of the good nodes
provides the necessary conditions to attempt to initiate the

60 fine synchronization protocol.
It is apparent , based on the foregoing, that the invention

meets the objectives set forth above. Although the invention
has been described in detail, it should be understood that
various changes, substitutions , and alterations may be readily

65 ascertainable by those skilled in the art and may be made
herein without departing from the spirit and scope of the
present invention as defined by the claims appended hereto.

US 8,255,732 B2
11

The following table lists the symbols used in the protocol.

Symbols Description

P bounded drift rate with respect to real time
d network imprecision
D event-response delay
F maximum number of faulty nodes
G minimum number of good nodes
K sum of all nodes
KG set of all good nodes
Sync self-stabilization message
S abbreviation for Sync message

Ass time difference between the last consecutive Sync
messages

TR threshold for Retry() function
Restore self-stabilization state
Maintain self-stabilization state
R abbreviation for Restore state
M abbreviation for Maintain state
PR maximum duration while in the Restore state
PR, m; ,, minimum value of PR
PM maximum duration while in the Maintain state

PA-1 effective synchronization period
V equal space time intervals for time-driven

activities
C maximum convergence time
ALo 	I 	,,1eY(t) maximum time difference of LocalTimers of any two

good nodes at real time t
LM Latest Maintain
EM Earliest Maintain

ALmEm difference of LM and EM, initial self-stabilization
precision

Ap ...,,, o„ maximum self-stabilization precision
AD, f maximum deviation from the initial synchrony
Ni the i' node
M, the i' monitor of a node

What is claimed as new and desired to be secured by
Letters Patent of the United States is:

1. A method for synchronizing clocks among a plurality of
nodes in a system, the plurality of nodes comprising faulty
nodes and good nodes having an arbitrary state and in the
presence of a bounded number of arbitrary faults, said nodes
being capable of communicating with each other by exchang-
ing messages through a set of communication channels, com-
prising performing the following steps at each node:

(1.1) providing a local oscillator clock which provides a
local oscillator clock tick;

(1.2) executing once every local oscillator clock tick (a) a
plurality of operational steps for each of a set of monitors
comprising one monitor for and corresponding to each
other node in said plurality of nodes, and (b) a plurality
of protocol steps for a state machine for each node,
wherein the state machine comprises a Restore state and
a Maintain state;

(1.3) providing a GammaTimer clock and incrementing
said GammaTimer clock once per local oscillator clock
tick;

(1.4) providing a StateTimer clock, and incrementing said
StateTimer clock on each equally spaced interval y com-
prising one or more local oscillator clock ticks such that
y is equal to or greater than the sum of a minimum event
response delay D among said plurality of nodes and a
network imprecision d; and

(1.5) providing a LocalTimer clock, and incrementing said
LocalTimer clock on the local oscillator clock tick.

2. The method of claim 1, wherein said plurality of opera-
tional steps for a particular monitor of said set of monitors
comprises:

12
(2.1) determining if upon the local oscillator clock tick

there is an incoming message from the node correspond-
ing to said particular monitor;

(2.2) if there is such an incoming message,
5 	(2.2. 1) determining if said message is a valid Sync mes-

sage, wherein said message is considered valid if the
time between its arrival and the arrival of a prior Sync
message is equal to or greater than an interval
regarded as the shortest permissible interval between

10 	any two consecutive Sync messages;
(2.2.2) if said message is a valid Sync message, validat-

ing and storing said message; and
(2.2.3) if said message is not a valid Sync message,

invalidating said message;
15 	(2.3) otherwise, if there is no message, doing nothing.

3. The method of claim 2, wherein said steps of said state
machine comprises determining the state machine for the
node.

4. The method of claim 3, wherein:
20 	(4.1) if the state machine is in the Restore state,

(4.1.1) determining if the node has timed out in the
Restore state by exceeding a limit time duration that
has been selected for the Restore state;

(4.1.2) if the node has timed out in the Restore state,
25 	 (4.1.2.1) resetting the StateTimer; and

(4.1.2.2) changing the state machine for the node to
the Maintain state;

(4.1.3) if the node has not timed out in the Restore state,
(4.1.3.1) determining if transitory conditions are met,

30 said transitory conditions comprising the condi-
tions that (a) the node has remained in the Restore
state, since last entering that state, for a period
equal to or greater than two StateTimer ticks when
a number of said faulty nodes is zero, or two times

35 the number of faulty nodes, when the number of
said faulty nodes is greater than zero, and (b) a
period of at least one y has passed since the arrival
of the last valid Sync message;

(4.1.3.2) if the transitory conditions are met,
40 	 resetting the StateTimer, and changing the state

machine for the node to the Maintain state;
(4.1.3.3) if the transitory conditions are not met, keep-

ing the state machine for the node in the Restore
state;

45 	(4.1.4) if the node has not timed out in the Restore state,
(4.1.4.1) keeping the state machine for the node in the

Restore state;
(4.2) if the state machine is in the Maintain state,

(4.2.1) determining if either (a) the StateTimer has timed
50 out by exceeding a limit time duration selected for the

Maintain state, or (b) the number of valid Sync mes-
sages received from other nodes is at least one more
than the number of faulty nodes,

(4.2.2) if either (a) the StateTimer has timed out, or (b)
55 the number of valid Sync messages received from

other nodes is at least one more than the number of
faulty nodes,
(4.2.2.1) broadcasting a Sync message to all of said

other nodes;
60 	 (4.2.2.2) resetting said StateTimer clock; and

(4.2.4.3) changing the state machine for the node to
the Restore state;

(4.2.3) if neither (a) the StateTimer has timed out, nor (b)
the number of valid Sync messages received from

65 other nodes is at least one more than the number of
faulty nodes, but if the GammaTimer clock has
reached the duration of y,

US 8,255,732 B2
13

(4.2.3.1) determining if the value of the StateTimer
clock is equal to or greater than the next higher
integer value of the quotient of an upper bound on
the maximum separation between the LocalTimer
clocks of any two good nodes, divided by y; 5

(4.2.3.2) if the value of the StateTimer clock is equal
to or greater than said next higher integer value,
resetting said LocalTimer clock;

(4.2.3.3) keeping the state machine for the node in the
Maintain state; 	 10

(4.2.4) if neither (a) the StateTimer has timed out, nor (b)
the number of valid Sync messages received from
other nodes is at least one more than the number of
faulty nodes, and (c) the GammaTimer clock has not
reached the duration of y, 	 15
(4.2.4.1) keeping the state machine for the node in the

Maintain state.
5. The method of claim 4, wherein said limit time duration

for the Restore state, PR, is chosen such that (a) if O-AD,,jf,<D,
then PR>7F-1, (b) if AD,,~ D, then PR>7F+1, and (e) if 20
2D>AD ,f,>D, then PR>7F+3, where F is the number of faulty
nodes, AD ft , a maximum deviation from the initial syn-
chrony, is ((1+p)-1/(1+p))P•y, p is a drift rate (0-p «1) of
the local oscillator clock, and P, an effective synchronization
period, is a time interval between the last two consecutive 25
resets of the LocalTimer, measured at a steady state when said
system is stabilized.

6. The method of claim 5, wherein an interval regarded as
the shortest permissible interval between any two consecutive
Sync messages, Assm W is (TDm „•+1), where TDm n is 2 for 30
cases when the number of faulty nodes is zero, otherwise
TDm n is equal to two times the number of faulty nodes when
the number of faulty nodes is greater than zero.

7. The method of claim 5, wherein said method requires
only one message, which message is Sync. 	 35

8. The method of claim 5, wherein a synchronization pre-
cision, AP,, ision , comprising the upper bound on the maxi-
mum separation between the LocalTimers of any two good
nodes, equals

40
(3F-1).y-D+A, f

9. The method of claim 8, wherein a bound on the maxi-
mum convergence time, C, equals (2PR +PM)•y wherein Ph is
a maximum duration for the Maintain state.

10. The method of claim 9, wherein the P, is a maximum 45
time interval between two consecutive resets of the Local-
Timer by a good node, and is equal to PR +PM during said
steady state.

11. The method of claim 10, wherein upon reaching said
steady state when said system is stabilized, the following 50
properties are obtained: (a) convergence, wherein for all val-
ues of t greater than or equal to C, the maximum difference of
values of the LocalTimers of all good nodes in said plurality
of nodes. ALoeaZnmer(t), is less than or equal to AP,,eCL,9LOnl (b)
closure, wherein for all values of t greater than C it remains 55
true that ALocaZT—er(t) is less than or equal to APree s on, and (c)
congruence, wherein for all said good nodes, and for all
values of t greater than C, the condition that LocalTimer(t) —O
for any such good node implies that all of said good nodes are
in the Maintain state. 	 60

12. The method of claim 5, wherein said limit me duration
for the Maintain state is chosen to be a value greater than the
limit time duration for the Restore state.

13. The method of claim 5, further comprising determining
if all good nodes are in the Maintain state by examining the 65
current state of said good nodes and the StateTimer value of
said good nodes, and if all good nodes are in the Maintain

14
state, performing a fine synchronization by reducing the
upper bound on the maximum separation between the Local-
Timer clocks of any two good nodes.

14. The method of claim 1, wherein said system does not
comprise a central clock used by said nodes for synchroniza-
tion.

15. The method of claim 1, wherein said nodes do not use
an externally generated global pulse.

16. A clock synchronization control element for a node
within a plurality of nodes in a system comprising faulty
nodes and good nodes, having an arbitrary state and in the
presence of a bounded number of arbitrary faults, said nodes
being capable of communicating with each other by exchang-
ing messages through a set of communication channels, com-
prising:

(16.1) a local oscillator clock having a local oscillator
clock tick;

(16.2) a set of monitors comprising one monitor for and
corresponding to each other node in said plurality of
nodes, and a state machine for the node, having a Restore
state and a Maintain state, said monitors and said state
machine each being executed on each tick of said local
oscillator clock;

(16.3) a StateTimer clock, incremented on each equally
spaced interval y comprising one or more local oscillator
clock ticks such that y is equal to or greater than the sum
of a minimum event response delay D among said plu-
rality of nodes and a network imprecision d;

(16.4) a LocalTimer clock, incremented on every local
oscillator clock tick; and

(16.5) a GammaTimer clock, incremented once per local
oscillator clock tick.

17. The control element in accordance with claim 16,
wherein a monitor in the set of monitors comprises logic to
determine if upon the local oscillator clock tick there is an
incoming message from the node corresponding to said moni-
tor, and if there is an incoming message, to determine if said
incoming message is a valid Sync message by testing if a time
comprising the difference between an arrival time and an
arrival time of a prior Sync message is equal to or greater than
an interval regarded as the shortest permissible interval
between any two consecutive Sync messages, and if said
incoming message is a valid Sync message, to validate and
store said incoming message, and if said incoming message is
not a valid Sync message, to invalidate said incoming mes-
sage, and otherwise, if there is no incoming message, to do
nothing.

18. The control element in accordance with claim 16,
wherein said state machine comprises logic to determine a
state of the state machine for the node.

19. The control element in accordance with claim 18,
wherein said state machine comprises logic executable in said
Restore state to determine if the node has timed out in the
Restore state by testing whether said node has been in the
Restore state for more than a selected limit time duration for
the Restore state, and if the node has timed out in the Restore
state, to reset the StateTimer, and change the state machine for
the node to the Maintain state, and if the node has not timed
out in the Restore state, determining if transitory conditions
are met, said transitory conditions comprising that (a) the
node has remained in the Restore state, since last entering that
state, for a period equal to or greater than two StateTimer
ticks, when the number of said faulty nodes is zero, or two
times the number of faulty nodes, when the number of said
faulty nodes is greater than zero, and (b) a period of at least
one y has passed since an arrival of a last valid Sync message,
and if the transitory conditions are met, to reset the

US 8,255,732 B2
15

StateTimer, and change the state machine for the node to the
Maintain state, and, if the transitory conditions are not met, to
keep the state machine for the node in the Restore state, and
otherwise , if the node has not timed out in the Restore state, to
keeping the state machine for the node in the Restore state.

20. The control element in accordance with claim 19,
wherein said state machine comprises logic executable in said
Maintain state to determine if either (a) the StateTimer has
exceeded a predetermined maximum interval , or (b) a number
of valid Sync messages received from other nodes is at least
one more than the number of faulty nodes, and either (a) the
StateTimer has exceeded a predetermined maximum interval,
or (b) the number of valid Sync messages received from other
nodes is at least one more than the number of faulty nodes, to
broadcast a Sync message to all of said other nodes , reset said
StateTimer clock, and change the state machine for the node
to the Restore state, and if neither (a) the StateTimer has
exceeded a predetermined maximum interval , nor (b) the
number of valid Sync messages received from other nodes is
at least one more than the number of faulty nodes, but if the
GammaTimer clock has reached the duration of y, to deter-
mine if the value of the StateTimer clock is equal to or greater
than the next higher integer value of the of an upper bound on
the maximum separation between the LocalTimer clocks of
any two good nodes, divided by y, and if the value of the
StateTimer clock is equal to or greater than said next higher
integer value, to reset said LocalTimer clock, to keep the state
machine for the node in the Maintain state, and otherwise, if
neither (a) the StateTimer has exceeded the predetermined
maximum interval, nor (b) the number of valid Sync mes-
sages received from other nodes is at least one more than the
number of faulty nodes, and (c) the GammaTimer clock has
not reached the duration of y, to keep the state machine for the
node in the Maintain state.

21. The control element in accordance with claim 20,
wherein said limit time duration for the Restore state, P R, is
chosen such that (a) if O - :~AD,.jft<D, then PR>7F-1, (b) if
AD ft D, then PR>7F+1, and (c) if 2D>AD jft>D, then
PR>7F+3, where F is the number of faulty nodes, AD,.ift, a
maximum deviation from the initial synchrony , is ((1+p)-1/
(1+p))P•y, p is a drift rate (0 - :~p «1) of the local oscillator
clock, and P, an effective synchronization period, is a time
interval between the last two consecutive resets of the Local-
Timer, measured at a steady state when said system is stabi-
lized.

22. The control element in accordance with claim 20,
wherein an interval regarded as the shortest permissible inter-
val between any two consecutive Sync messages , A,,,_ ,,, is
(TD_ „•y+l), where TD_ ,, is 2 for cases when the number of
faulty nodes is zero, and otherwise TD_ ,, is equal to two times
the number of faulty nodes when the number of faulty nodes
is greater than zero.

23. The control element in accordance with claim 20
wherein said node requires only one message, which message
is Sync.

24. The control element in accordance with claim 20,
wherein a synchronization precision, AP eCLSLO , which is the
upper bound on the maximum separation between the Local-
Timers of any two good nodes, equals (3F-1)•y—D+AD,,jft .

25. The control element in accordance with claim 24,
wherein a bound on the maximum convergence time, C,
equals (2PR +PM) •y wherein Phis a maximum duration for the
Maintain state.

26. The control element in accordance with claim 25,
wherein the P is a maximum time interval between two con-
secutive resets of the LocalTimer by a good node , and is equal
to PR +PM during said steady state.

16
27. The control element in accordance with claim 16,

wherein said system does not comprise a central clock used
by said nodes for synchronization.

28. The control element in accordance with claim 16,
5 wherein said nodes do not use an externally generated global

pulse.
29. The control element in accordance with claim 26,

wherein upon reaching said steady state when said system is
stabilized, the following properties are obtained: (a) conver-
gence, wherein for all values of t greater than or equal to C, a
maximum difference of values of the local timers of any good
node in said plurality of nodes, APo~Qime (t), is less than or
equal to AP,, isiow (b) closure, wherein for all values of t

15 greater than C it remains true that APo,,,,_,1.(t) is less than or
equal to APrecision, and (c) congruence, wherein for all said
good nodes, and for all values oft greater than C, the condi-
tion that LocalTimer(t)-0 for any such good node implies that
all of said good , nodes are in the Maintain state.

20 	30 . The control element in accordance with claim 20,
wherein said predetermined maximum interval for said Main-
tain state is chosen to be a value greater than the limit time
duration for the Restore state.

31. The control element in accordance with claim 20, com-
25 prising logic to determine if all good nodes are in the Maintain

state by examining the current state of said node and the
StateTimer value of said good nodes, and if all good nodes are
in the Maintain state, to perforin a fine synchronization by
reducing the upper bound on the maximum separation

30 between the LocalTimer clocks of any two good nodes.
32. A clock synchronization control element for a node

within a plurality of nodes in a system, having an arbitrary
state and in the presence of a bounded number of arbitrary

35 faults, said nodes being capable of communicating with each
other by exchanging messages through a set of communica-
tion channels and said nodes comprising good nodes and
faulty nodes, comprising:

(32.1) a local oscillator clock having a local oscillator

40 clock tick;
(32.2) a set of monitors comprising one monitor for and

corresponding to each other node in said plurality of
nodes, and a state machine for the node, having a Restore
state and a Maintain state, said monitors and said state

45 machine each being executed on each tick of said local
oscillator clock;

(32.3) a StateTimer clock, incremented on each equally
spaced interval y comprising one or more local oscillator
clock ticks such that y is equal to or greater than the sum

50 of the minimum event response delay D among said
plurality of nodes and the network imprecision d;

(32.4) a LocalTimer clock, incremented on every local
oscillator clock tick;

(32.5) a GammaTimer clock and incrementing said Gam-
55 	maTimer clock once per local oscillator clock tick;

(32.6) a monitor in the set of monitors comprising logic to
determine if upon the local oscillator clock tick there is
an incoming message from the node corresponding to
said monitor, and if there is an incoming message, to

60 determine if said incoming message is a valid Sync
message by testing if a time between an arrival time and
an arrival time of a prior Sync message is equal to or
greater than an interval comprising a shortest permis-
sible interval between any two consecutive Sync mes-

65 sages, and if said incoming message is a valid Sync
message, to validate and store said incoming message,
and if said incoming message is not a valid Sync mes-

US 8,255,732 B2
17

sage, to invalidate said incoming message, and other-
wise, if there is no such incoming message, to do noth-
ing;

(32.7) said state machine comprising:
(32.7.1) logic to determine a state of the state machine

for the node;
(32.7.2) logic executable in said Restore state to deter-

mine if the node has timed out in the Restore state by
testing whether said node has been in the Restore state
for more than a selected limit time duration for the
Restore state, and if the node has timed out in the
Restore state, to reset the StateTimer, and change the
state machine for the node to the Maintain state, and if
the node has not timed out in the Restore state, deter-
mining if transitory conditions are met, said transitory
conditions comprising that (a) the node has remained
in the Restore state, since last entering that state, for a
period equal to or greater than two StateTimer ticks
when a number of said faulty nodes is zero, or two
times the number of faulty nodes, when the number of
said faulty nodes is greater than zero, and (b) a period
of at least one y has passed since the arrival of the last
valid Sync message, and if the transitory conditions
are met, to reset the StateTimer, and change the state
machine for the node to the Maintain state, and, if the
transitory conditions are not met, to keep the state
machine for the node in the Restore state, and other-
wise, if the node has not timed out in the Restore state,
to keeping the state machine for the node in the
Restore state;

(32.7.3) logic executable in said Maintain state to deter-
mine if either (a) the StateTimer has exceeded a pre-
determined maximum interval, or (b) the number of
valid Sync messages received from other nodes is at
least one more than the number of faulty nodes, and
either (a) the StateTimer has exceeded the predeter-
mined maximum interval, or (b) the number of valid
Sync messages received from other nodes is at least
one more than the number of faulty nodes, to broad-
cast a Sync message to all of said other nodes, reset
said StateTimer clock, and change the state machine
for the node to the Restore state, and if neither (a) the
StateTimer has exceeded the predetermined maxi-
mum interval, nor (b) the number of valid Sync mes-
sages received from other nodes is at least one more
than the number of faulty nodes, but if the Gamma-
Timer clock has reached the duration of y, to deter-
mine if the value of the StateTimer clock is equal to or
greater than a next higher integer value of the of upper
bound on the maximum separation between the
LocalTimer clocks of any two good nodes, divided by
y, and if the value of the StateTimer clock is equal to
or greater than said next higher integer value, to reset
said LocalTimer clock, to keep the state machine for
the node in the Maintain state, and otherwise, if nei-
ther (a) the StateTimer has exceeded the predeter-
mined maximum interval, nor (b) the number of valid
Sync messages received from other nodes is at least
one more than the number of faulty nodes, and (c) the

18
GammaTimer clock has not reached the duration of y,
to keep the state machine for the node in the Maintain
state;

(32.8) wherein said limit time duration for the Restore
5 state, PR, is chosen such that (a) if O-A D,,'ft<D, then

PR>7F-1, (b) if AD ift— D, then PR>7F+1, and (c) if
2D>AD I7ft>D, then PR>7F+3, where F is the number of
faulty nodes, AD ft, a maximum deviation from the ini-
tial synchrony, is ((1+p)-1/(1+p))P•y, p is the drift rate

to (0<p«1) of the local oscillator clock, and P an effec-
tive synchronization period, is a time interval between
the last two consecutive resets of the LocalTimer, mea-
sured at the steady state when said system is stabilized;

(32.9) wherein an interval regarded as the shortest permis-

15
sible interval between any two consecutive Sync mes-
sages, Assmiw is (TDmi„ y+1), where TD min is 2 for cases
when the number of faulty nodes is zero, and otherwise

TDmin is equal to two times the number of faulty nodes
when the number of faulty nodes is greater than zero;

(32.10) wherein said node requires only one message,
~~ 	which message is Sync;

(32.11) wherein the synchronization precision, AP,,eCLSLO I
which is the upper bound on the maximum separation
between the LocalTimers of any two good nodes, equals
(3F-1)•y—D+AD,,~;

25 (32.12) wherein a bound on the maximum convergence
time, C, equals (2PR +PM)•y wherein PM is a maximum
duration for the Maintain state;

(32.13) wherein P, is a maximum time interval (during

30 	
steady state) between two consecutive resets of the
LocalTimer by a good node, and is equal to PR +PM;

(32.14) wherein said system does not comprise a central
clock used by said nodes for synchronization;

(32.15) wherein said nodes do not use an externally gen-
35 erated global pulse; and

(32.16) such that, upon reaching said steady state when
said system is stabilized, the following properties are
obtained: (a) convergence, wherein after all times for all
values of t greater than or equal to C, the maximum
difference of values of the local timers of any good node

4o in said plurality of nodes, Ammo..,,. 1.(t), is less than or
equal to AP,, isiow (b) closure, wherein for all values of
t greater than C it remains true that Aio,.,,.,1,(t) is less
than or equal to AP,,eCLSLOn, and (c) congruence, wherein
for all said good nodes, and for all values oft greater than

45 C, the condition that LocalTimer(t)-0 for any such good
node implies that all of said good nodes are in the Main-
tain state.

33. A node in accordance with claim 32, wherein said

So
predetermined maximum interval for said Maintain state is
chosen to be a value greater than the limit time duration for the
Restore state.

34. Anode in accordance with claim 32, further comprising
logic to determine if all good nodes are in the Maintain state
by examining the current state of said node and the

55 StateTimer value of said good nodes, and if all good nodes are
in the Maintain state, to perform a fine synchronization by
reducing the upper bound on the maximum separation
between the LocalTimer clocks of any two good nodes.

	8255732-p0001.pdf
	8255732-p0002.pdf
	8255732-p0003.pdf
	8255732-p0004.pdf
	8255732-p0005.pdf
	8255732-p0006.pdf
	8255732-p0007.pdf
	8255732-p0008.pdf
	8255732-p0009.pdf
	8255732-p0010.pdf
	8255732-p0011.pdf
	8255732-p0012.pdf
	8255732-p0013.pdf
	8255732-p0014.pdf
	8255732-p0015.pdf
	8255732-p0016.pdf
	8255732-p0017.pdf

